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Introduction

We will be exploring some relations between black hole en-
tropy and topological string theory.

The setting is type II string theory compactified on

IR1,3 ×X

with X a smooth compact Calabi-Yau manifold.

The work of

MSW: Maldacena, Strominger, Witten

CDM: Cardoso, DeWit, Mohaupt

OSV: Ooguri, Strominger, Vafa

in this setting led to some striking conjectures for relations
between entropy of BPS black holes and topological string
theory on X .

We will be trying to test some of these conjectures.



Summary

We focus on BPS states with charges denoted (p, q).

For large charges, these states are semiclassically black holes.

The attractor mechanism expresses the entropy S(p, q) of the
black hole in terms of a prepotential entering the 4d effective
supergravity.

This led OSV to propose a relation of the form

Ω(p, q) =
∫

dφ |Ψtop(p + iφ)|2eπq·φ

1. We will make the proposal more precise, and try to define
our terms carefully.

2. We will show that one can systematically evaluate the
integral in some limits.

3. We can then test the proposal by using typeII/heterotic
duality to compare to known degeneracies of perturbative
heterotic BPS states.

4. We find that sometimes the proposal works, (in a highly
nontrivial way!) and sometimes it appears to fail.

gmoore
Rectangle

gmoore
Line

gmoore
Line

gmoore
Line

gmoore
Line

gmoore
Line



N = 2 supergravity

Low energy type II compactified on a smooth X is N = 2
supergravity coupled to vectormultiplets in an abelian gauge
group.

The group of charges is

K1(X ) for IIB K0(X ) for IIA.

For today’s talk we focus on IIA and replace K0(X ) by

Heven(X ) = [H0(X )⊕H2(X )]magnetic⊕[H4(X )⊕H6(X )]electric

The effective N = 2, d = 4 supergravity has h vectormulti-
plets,

h = h1,1(X ) for IIA and h = h2,1(X ) for IIB

with moduli described by special coordinates XI , I = 0, 1, . . . , h

For charges (p, q) one finds BPS black hole solutions.

The values of gµν and XI at the horizon are functions of
(p, q) (“Attractor mechanism”)
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Entropy & Microscopics

From the supergravity solution one computes the entropy
via Beckenstein-Hawking:

S =
A

4π
= |Z(p, q)|2

How do we account for this microscopically?

MSW showed (with no D6 branes) that one can do so by
interpreting the configuration as a wrapped M5 brane.

One finds
S = |Z(p, q)|2 + correction

The correction is due to
∫

R2 in Leff .
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A formula for the entropy

CDM investigated corrections to the area law from higher
derivative terms in the effective action of the supergravity,
focussing on those from chiral integrals over superspace.

The chiral superspace terms are governed by a prepotential

Fsugra(XI ,W 2)

Weyl multiplet

W 2 = (T−)2 + · · ·+ θ4(−C−)2 + · · ·

The prepotential has an expansion

Fsugra =
∑
h≥0

Fh(XI)W 2h

So the higher-derivative terms in the effective action form
an expansion

Leff ∼
∑
h≥1

∫
(−C−)2(T−)2h−2
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Reformulation in terms of a free energy

The formula of CDM was expressed by OSV as follows:

Define:

F(φ, p) := −πIm
[
Fsugra(pI + iφI , 28)

]

φI is real, = electric potential, = RR potential.

Then the “chiral Wald entropy” Sbh is:

Sbh(p, q) = F(φ, p)− φI ∂F
∂φI

∂F
∂φI

= −πqI
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The OSV proposal

Based on the formula

Sbh(p, q) = F(φ, p)− φI ∂F
∂φI

OSV went further and proposed that:

1. One should introduce a mixed thermodynamical ensemble

Zbh(p, φ) :=
∑

q

Ω(p, q)e−πqφ

2. Since
Ψtop ∼ eiFsugra

they then conjectured:

|Ψtop|2 = Zbh

This is formally equivalent to

Ω(p, q) =
∫

dφ |Ψtop(p + iφ)|2eπq·φ

This is the conjecture we wish to test.
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A few problems

1. The sum Zbh does not converge. The physical ensemble
is unstable.

2. Formally, Zbh is periodic in φ, but Ψtop(p + iφ) is not.

These two problems are ameliorated by the integral form of
the conjecture, so we focus on that.

3. What is Ψtop ?

4. What is the integration domain (which contour)?

5. What is Ω? How do we count the BPS states?

There are nontrivial issues associated with each of these.
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What is Ψtop?

Except in rare cases Fsugra is only known as an asymptotic
expansion near large radius limits ⇒ Distinguished X0:

XI = (X0, XA), A = 1, . . . , h

Fsugra = F pert − 2i

π
FGW (λ, q)

F pert = −1
6
CABC

XAXBXC

X0
− c2AXA

6X0

FGW (λ, q) =
∑

h≥0,β

Nh,β qβ λ2h−2

β ∈ H2(X ), qβ = e
2πi
∫

β
(B+iJ) ∼ e−Area(β)

λ =
4π

X0

Ψtop(X) := λχ/24e−
iπ
2 Fsugra

1. FGW (λ, q) is only defined as an asymptotic series for λ →
0. We assume there is some well-defined nonperturbative
completion.

2. The prefactor λχ/24 is inserted by hand to make things
work better. It is similar to a factor needed for the nonholo-
morphic version of Ψtop to satisfy the BCOV equation.
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Evaluation in the perturbative approximation - I

For appropriate charges there is a systematic saddle point
evaluation of the integral keeping only F pert.

For simplicity, set p0 = 0 ⇒

tA =
XA

X0
=

pA + iφA

iφ0
=

φA

φ0
− i

pA

φ0

Keep perturbative part

Fpert = −π

6
Ĉ(p)
φ0

+
π

2
1
φ0

CABφAφB

C(p) := CABCpApBpC , Ĉ(p) := C(p)+c2ApA, CAB := CABCpC

Saddle point analysis for∫
dφeF

pert+πqφ

φ0
∗ = −

√
Ĉ(p)
6|q̂0|

, ImtA∗ = −pA

φ0
∗

q̂0 = q0 −
1
2
qACABqB
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Evaluation in the perturbative approximation - II

Gaussian integral on φA ⇒∫
dφeF

pert+πqφ → N (p)
∫

dφ0(φ0)he
− Ĉ

φ0 +q̂0φ0

⇒ Bessel integral ⇒ asymptotics

N (p)Îν

(
2π

√
Ĉ(p)|q̂0|

6

)
ν = h/2 + 1

Roughly
Îν(z) ∼ ez

More precisely:

Îν(z) ∼ ez · z−ν−1/2
[
1 +O(1/z)

]

∼ ez · z−ν−1/2

[
1− (4ν2 − 1)

8z
+

(4ν2 − 1)(4ν2 − 32)
2!(8z)2

+ . . .

]
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Justifying the saddle-point evaluation

φ0
∗ = −

√
Ĉ(p)
6|q̂0|

, ImtA∗ = −pA

φ0
∗

|q̂0| � Ĉ(p) ⇒ |φ0
∗| � 1

So if β 6= 0 we have

|(qβ)s.p.| � 1

so terms in FGW with β 6= 0 contribute exponentially small
corrections.

However we must handle the β = 0 contributions to FGW

separately.

We will show that in fact these contributions are also expo-
nentially small.

N.B.! λ ∼ 1/φ0 is therefore large - we are in the nonpertur-
bative regime of the topological string!

gmoore
Rectangle



Handling the β = 0 terms

GV defined a nontrivial rearrangement of the GW series:

∑
h≥0,β

Nh,β qβ λ2h−2 =
∑

h≥0,β,d≥1

nh
β

1
d

(
2 sin

dλ

2

)2h−2

qdβ

⇒ For β = 0 the GW series can be summed:∑
h≥0

Nh,0λ
2h−2 ∼ n0

0f(λ)

f(λ) :=
∞∑

d=1

1
d
(2 sin

dλ

2
)−2 = log

∞∏
k=1

(1− eiλk)k

and n0
0 = − 1

2χ.

λ = 4π
iφ0 , φ0 < 0 small ⇒ f(λ) is exponentially small.

Actually, we need a slight correction:

n0
0

[
f(λ) +

1
12

log
λ

2πi
−K

]
∼
∑

h

Nh,0λ
2h−2

⇒ correction factor λχ/24.
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Summary

We do not know Ψtop nonperturbatively.

We assume some nonperturbative completion exists.

We can write

F = Fpert + FGW
β=0 + FGW

β 6=0

We assume that FGW
β 6=0 ∼ e−A if worldsheet instantons all

have area ≥ A, even at strong string coupling λ ∼ A. Note:
λ2h−2qβ ∼ A2h−2e−A.

In this case the asymptotics of∫
dφ |Ψtop(p + iφ)|2eπq·φ

for
|q̂0| � Ĉ(p)

is that of

N (p)Îν

(
2π

√
−Ĉ(p)q̂0

6

)
+O

(
e−
√
|q̂0|
)

Now, we want to test this using some known degeneracies.

gmoore
Rectangle



Comparison with attractor formula

Compare Attractor formula

S(q, p) = 2π

√
Ĉ(p)|q̂0|

6
+O(e−κ

√
|q̂0|)

Remark: DeWit et. al. and Sen take a different approach.
They are trying to produce the microcanonical degeneracies

Smicro(p, q) := log Ω(p, q)

from

S(p, q) = Feff (φ, p)− φI ∂Feff

∂φI

∂Feff

∂φI
= −πqI



What is Ω?

Various candidates

HBPS(Q) := Hilbert space of BPS states of charge Q.

Ωabs(Q) := dimHBPS

Helicity Supertraces:

Ωn(Q) := TrHBP S(Q)(−1)2J3(J3)n

J3 in the massive little group in 4 dimensions.

Moduli dependence

1. Ωabs(Q) is only locally constant as a function of moduli

2. Ω2(Q) is constant as a function of hypermultiplet moduli,
but can jump across lines of marginal stability

3. Ω(Q) can depend on (K-theory) torsion charges
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Specialization: Small black holes in K3-fibrations

Now, specialize to cases where Ω(p, q) is exactly computable
from a dual picture.

X is K3-fibered.

D4 wraps the K3 fibers. D2 wraps cycles in K3.

For such charges one has C(p) = CABCpApBpC = 0, but

Ĉ(p) = c2APA = 24p1 6= 0

The advantage of these states is that under Heterotic/TypeII
duality they map to perturbative heterotic BPS states.

These states are known as “small black holes”: The area of
the horizon comes from the 1-loop term in the prepotential.
In terms of supergravity the R2 corrections to the action are
important. [Dabholkar; Dabholkar, Kallosh, Maloney; Sen].

Whether or not there is a consistent interpretation in terms
of black holes, we may regard the OSV proposal as a state-
ment about BPS degeneracies, and test it.
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Example: Het/T 6= TypeII/K3× T 2

The small black holes map to Dabholkar-Harvey states.

These are BPS states with momentum −q0 and winding p1

around a circle in T 6.

These have the form∏
αNn
−n|0〉left ⊗ |QL;QR〉 ⊗ |8v + 8s〉right

with
N − 1 =

1
2
(Q2

R −Q2
L) =

1
2
Q2 = −p1q0

⇒
Ωabs(Q) = p24(

1
2
Q2)

1
η24

=
1

q
∏

(1− qn)24
=

∞∑
N=0

p24(N)qN−1
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Comparing OSV with exact degeneracy

Compare type II

2π

√
Ĉq̂0/6 = 4π

√
N − 1

OSV : Ω(p1, q0) ∼ N (p)Î13(4π
√

N − 1)
Exact : Ωabs(Q) = p24(N)

There is an exact formula (Rademacher formula):

p24(N) = 16·

[
Î13(4π

√
N − 1)+2−14eiπN Î13(2π

√
N − 1)+· · ·

]

Spectacular agreement of all orders in 1/N in the leading
exponential.

Do the subleading terms agree?

In fact, Ψtop is known exactly for K3× T 2:

|Ψtop|2 = e
π
2 p1CABφAφB/φ0

|∆(τ)|−2

τ = (φ1 − ip1)/φ0

⇒|Ψtop|2 is not a normalizable wavefunction
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Generalizations

We can carry out this strategy for more general Het/TypeII
pairs.

We focus on orbifolds of Het/T 6.

These are limits of Het/K3×T 2 and we have DH states with
momentum + winding around T 2.

Such BPS states are in:

Hosc,L ⊗Hmom ⊗ H̃gnd

We can compute Ωabs(Q) and Ωn(Q) in terms of the coeffi-
cients of modular forms for congruence subgroups of SL(2,ZZ).

We then find the asymptotics of Ω(Q) using the “Rademacher
expansion.”

Comparing with the OSV prediction we find partial agree-
ment:

1. Reduced rank N = 4 models: Good agreement

2. N = 2 heterotic orbifolds: Good agreement in twisted
sectors, discrepancies in untwisted sectors.
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Degeneracies of DH states

There is an exact formula for the degeneracies of DH states
in T 6/Γ orbifolds of charge Q:

Ωw(Q) = e4πQ2
R

∫
dτ1 q

1
2 Q2

L q̄
1
2 Q2

RZw

Zw =
1
|Γ|
∑
g∈Γ

1
η2+2k

[
11−k∏
j=1

(−2 sinπθj(g))
η

ϑ[
1
2

1
2+θj(g)

](|τ)

]
w(g)Fg,Q(q)

w(g) =

 16 cos πθ̃1(g) cos πθ̃2(g) cos πθ̃3(g) w = abs
2(sinπθ̃(g))2 w = 2
3
2 w = 4
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The Rademacher expansion- I

Consider a modular form

F (τ) = q∆
∑
n≥0

F (n)qn

with ∆ < 0 and w < 0:

F (−1/τ) = (−iτ)wF (τ)

Then we get the asymptotics of F (n) for large n by:

F (n) =
∫ τ0+1

τ0

dτq−∆−nF (τ)

=
∫ τ0+1

τ0

dτe−2πiτ(∆+n)e−
2πi∆

τ (−iτ)−w(1 + · · ·)

⇒ saddle point τ = i
√

|∆|
n+∆ ⇒

F (n) ∼ Î1−w(4π
√
|∆|(n + ∆))

More generally,

Fi(−1/τ) = (−iτ)wSijFj(τ)

Fi(n) ∼
∑

∆j<0

SijI1−w(4π
√
|∆j |(n + ∆i))
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The Rademacher expansion- II

In fact there is an exact expression:

F (n) =
∞∑

s=1

Ks,nÎ1−w(
4π

s

√
|∆|(n + ∆))

Ks,n ∼ sw−3/2



Example: FHSV model (K3× T 2)/ZZ2

Electric charges in untwisted sector

M0 =
1√
2
II9,1 ⊕ II1,1

Electric charges in twisted sector:

M1 =
1√
2
II9,1 ⊕ (II1,1 + δ)

Ωabs(Q) ∼


Îν(4π

√
1
2Q2) Q ∈ M ′

0

0 Q ∈ M0 −M ′
0

Î7(4π
√

1
2Q2) Q ∈ M1

ν = 13, for generic moduli, but can vary

Ω2(Q) ∼


e2πiQ·δ(1− eiπQ2/2)Î7(2π

√
1
2Q2) Q ∈ M ′

0

0 Q ∈ M0 −M ′
0

Î7(4π
√

1
2Q2) Q ∈ M1

Compare OSV prediction:

Ω(Q) ∼ Î7(4π

√
1
2
Q2)

for all Q.
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Other Apparent Discrepancies

1. In general, for T 6/Γ orbifolds, for states in the twisted
sector Ωabs ∼ Ω2 goes like

Î 1
2 (nv+2)(4π

√
1
2
Q2)

in nice agreement with OSV

However, for states in the untwisted sector Ωabs(Q) is a func-
tion of hypermultiplet moduli,

while

Ω2(Q) ∼ Î 1
2 (nv+2)(4π

√
|∆g|

1
2
Q2)

with −1 < ∆g < 0 ⇒ exponentially too small...

2. Very singular for purely electric states

3. Predicts duality noninvariant results

4. Using only monodromy invariance of Ω(p, q) in the large
radius limit one can formally evaluate Zbh =

∑
q Ω(p, q)e−πqφ.

The φA dependence is via a theta function - and does not
reproduce the topological string answer.
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Elaboration

(2): For pI = 0, Fpert = 0 and tA = φA/φ0 ∈ IR.

⇒ automorphic functions on the real axis.

Example: K3× T 2: |Ψtop|2 = |∆(τ = φ1

φ0 )|−2:

∫
|Ψtop|2eπqφ = δ(~q)

∫
dφ0dφ1 eπq0φ0+πq1φ1

|∆(τ = φ1

φ0 )|2

(3): In fact, such states are related to p1 D4 plus q0 D0 by
a duality transformation! ⇒ OSV formula breaks duality
invariance.



Conclusions

Ω(p, q) ?=
∫

dφ |Ψtop(p + iφ)|2eπq·φ

Sometimes it works, and sometimes it doesn’t.

But when it works, it works very well!

Because of the discrepancies it seems unlikely that it will
apply as an exact formula valid for all (p, q).

This still leaves room for a nontrivial conjecture:

Perhaps it is only to be viewed as a statement about asymp-
totic expansions for large charges valid in regions of moduli
space for BPS states with a black hole interpretation.

Note Ωabs ∼ Ω2 in successful cases

Other lessons:

1. Ψtop might not be in the Hilbert space for quantization
of H3(X , IR).

2. The Ω(Q) are subtle arithmetic functions of Q and can
change dramatically under small changes in “direction” of
Q. Only “course-grained” versions of Ω(Q) have well-defined
asymptotics.
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