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So, why isn’t it on the arXiv ?   

The draft seems to have stabilized for a while at 
around 350 pp ….. 

In our universe we are all familiar with the fact that

In that part of the multiverse in which we have the 
refined identity

our paper has definitely been published!

So, why isn’t it on the arXiv?  



Several talks on my homepage. 

Much ``written’’ material is available: 

Davide Gaiotto: Seminar at Perimeter, Fall 2013: 
``Algebraic structures in massive (2,2) theories 

In the Perimeter online archive of talks. 

Davide Gaiotto: ``BPS webs and 
Landau-Ginzburg theories,’’  
Talk at String-Math 2014. On the web. 



Three Motivations 

1. IR sector of massive 1+1 QFT with N =(2,2) 
SUSY

2. Knot homology. 

3. Spectral networks & categorification of 2d/4d 
wall-crossing formula [Gaiotto-Moore-Neitzke].

(A unification of the Cecotti-Vafa and Kontsevich-Soibelman formulae.) 
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d=2, N=(2,2)  SUSY

We will be interested in situations where 
two supersymmetries are unbroken:



Main Goal & Result  

Goal:  Say everything we can about the theory 
in the far IR. 

Result: When we take into account the BPS 
states there is an extremely rich mathematical 
structure.  

Since the theory is massive this would 
appear to be trivial. 



Vacua and Solitons

We develop a formalism – which we call 
the ``web-based formalism’’  -- which 
describes many things: 

The theory has many vacua: 

There will be BPS states/solitons sij on R



BPS states have ``interaction amplitudes’’ 
governed by an L¶ algebra

Interior Amplitudes



Branes/Half-BPS BC’s

BPS   ``emission amplitudes’’ are governed 
by an A¶ algebra



Interfaces 
Given a pair of theories   T1, T2 we construct 
supersymmetric interfaces  

There is an (associative) way of ``multiplying’’ interfaces 
to produce new ones 



Interface OPE 

We give a method to compute the product. It can 
be considered associative, once one introduces a 
suitable notion of ``homotopy equivalence’’ of 
interfaces.   



Mapping branes

Using interfaces we can ``map’’  branes in 
theory T1, to branes in theory T2 .



This will be the key idea in 
defining a ``parallel transport’’ 
of Brane categories. 



Half-susy interfaces form an A¶ 2-category, and to a 
continuous family of theories we associate a flat parallel 
transport of brane categories. 

If we have continuous path of theories 
(e.g. a continuous family of LG superpotentials)  
then we can construct half-supersymmetric interfaces 
between the theories. 

Categorification of 2d wall-crossing

The flatness of this connection implies, and is a 
categorification of, the 2d wall-crossing formula. 

When the path crosses marginal stability walls we 
construct interfaces which ``implement’’ wall-crossing. 







Enough with vague generalities! 

Now I will start to be more systematic. 

The key ideas behind everything we 
do come from Morse theory. 

First review d=2 N=(2,2)  Landau-Ginzburg

Then review the relation to Morse theory.
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LG Models - 1

Chiral superfield

Holomorphic superpotential

Massive vacua are Morse critical points:  

Label set of vacua:  



LG Models -2 

(X,w):   Kähler manifold.   

W: X ö C     Superpotential (A holomorphic Morse function)

More generally,… 



Boundary conditions for f

Boundaries 
at infinity: 

Boundaries at finite 
distance: Preserve 
-susy: 

(Simplify: w=dl)



Fields Preserving -SUSY

U()[Fermi] =0  implies the -instanton equation: 

Time-independent: -soliton equation: 



Projection to W-plane

The projection of solutions to the complex W 
plane are contained in straight lines of slope z



Lefshetz Thimbles

If D contains x ö -¶

If D contains x ö +¶

Inverse image in X of all 
solutions defines left and 
right Lefshetz thimbles 

They  are  Lagrangian
subvarieties of X 



Example: 



Solitons For D=R

For general z there is 
no solution. 

But for a  suitable phase  there is a 
solution 

Scale set 
by W

This is the classical soliton. 
There is one for each 
intersection (Cecotti & Vafa)

(in the fiber of a regular value)



Near a critical point



BPS Index
The BPS index is the Witten index: 

Remark: It can be computed with a signed sum 
over classical solitons: 

``New supersymmetric index’’ of  Fendley & Intriligator; 
Cecotti, Fendley, Intriligator, Vafa;  Cecotti & Vafa c. 1991



These BPS indices were studied by [Cecotti, Fendley, 
Intriligator, Vafa and by Cecotti & Vafa]. They found the 
wall-crossing phenomena: 

Given a one-parameter family of W’s: 



One of our goals will be to ``categorify’’ 
this wall-crossing formula. 

That means understanding what actually 
happens to the ``off-shell complexes’’ 
whose cohomology gives the BPS states.

We define chain complexes whose 
cohomology is the space of BPS states

Complex



Replace wall-crossing for indices: 
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SQM & Morse Theory
(Witten: 1982) 

M: Riemannian;  h: M ö R,  Morse function

SQM: 

Perturbative
vacua: 



Instantons & MSW Complex

MSW 
complex: 

Instanton
equation: 

``Rigid instantons’’  - with zero reduced moduli – will lift 
some perturbative vacua. To compute exact vacua:

Space of groundstates (BPS states) is the cohomology. 



Why d2 = 0 

Ends of the moduli space correspond to broken 
flows which cancel each other in computing d2 = 0.    
(A similar argument shows independence of the cohomology from h and gIJ.)

The moduli space 
has two ends. 



1+1 LG Model as SQM
Target space for SQM: 

Recover the standard 1+1 LG model with 
superpotential: Two –dimensional -susy
algebra is manifest. 



Two advantages of this view

1. Nice formulation of supersymmetric
interfaces

2. Apply Morse theory ideas to the 
formulation of various BPS states.



Families of Theories

Consider a family of Morse functions

Let  be a path in C connecting z1 to z2. 

View it as a map z: [xl, xr] ö C with z(xl) = z1 and z(xr) = z2

C

This presentation makes construction of half-
susy interfaces easy: 



Domain Wall/Interface

From this construction it manifestly 
preserves two supersymmetries. 

Using z(x) we can still formulate our SQM!



MSW Complex 

(Taking some shortcuts here….) 

Now return to a single W. Another good thing about this 
presentation is that we can discuss ij solitons in the 
framework of Morse theory: 

Equivalent to the -soliton
equation



Instantons
Instanton equation 

At short distance scales  W is irrelevant and we have 
the usual holomorphic map equation.

At long distances  the theory is almost trivial since it has 
a mass scale, and it is dominated by the vacua of W. 

(Leading a relation to the Fukaya-Seidel category.)  



Scale set 
by W





BPS Solitons on half-line D: 

Semiclassically:

Qz -preserving BPS states must be solutions of differential 
equation

Classical solitons on the 
positive half-line are labeled by: 



Quantum Half-Line Solitons

MSW complex: 

Grading the complex: Assume X is CY  and that we can 
find a logarithm:  

Then the grading is by 



Scale set 
by W

Half-Plane Instantons



These instantons define the differential Q on 
the complex of approximate groundstates: 

and the cohomology gives the BPS states 
on the half-line: 



The theory is massive:

For a susy state, the field in the middle of a large 
interval is close to  a vacuum:

What is the space of BPS states on an interval ? 



Does the Problem Factorize?  

For the Witten index: Yes

Naïve categorification?   

No!



Solitons On The Interval

The Witten index factorizes nicely: 

But the differential  

is too naïve !

When the interval is much longer than the scale set by 
W the MSW complex is





Instanton corrections to the naïve 
differential 
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The Boosted Soliton - 1

Therefore we produce a solution of the instanton
equation with phase z if 

We are interested in the -instanton equation for a fixed generic 

We can still use the soliton to produce a solution for phase 



The Boosted Soliton -2

Stationary 
soliton

``Boosted 
soliton’’

These will define 
edges of webs…



The Boosted Soliton - 3
Put differently, the stationary soliton in Minkowski space 
preserves the supersymmetry: 

So a boosted soliton preserves supersymmetry : 

b is a real boost. In Euclidean space this becomes a 
rotation: 

And for suitable q this will preserve -susy



More corrections to the naïve 
differential 





Path integral on a large disk 

Consider a cyclic ``fan of solitons’’   
Choose boundary conditions preserving -supersymmetry: 



Localization

The path integral of the LG model with these 
boundary conditions (with A-twist) localizes on 
moduli space of  -instantons: 

We assume the mathematically nontrivial statement that, 
when the index of the Dirac operator (linearization of the 
instanton equation) is positive then the moduli space is 
nonempty. 



Gluing

Two such solutions can 
be ``glued’’ using the 
boosted soliton solution -



Ends of moduli space
This moduli space has several “ends” where 
solutions of the -instanton equation look like 

We call this 
picture a 
 - web: w



-Vertices

The red vertices represent solutions from the 
compact and connected components of 

The contribution to the path integral from such 
components  are called ``interior amplitudes.’’  
In the A-model for the zero-dimensional moduli 
spaces they count (with signs) the  solutions to 
the -instanton equation. 



Label the ends of M(F) by webs w.  Each end 
contributes (w) to the path integral: 

The total wavefunction is 
Q-invariant

L¶ identities on the interior amplitudes

The wavefunctions (w)  are themselves constructed by gluing 
together wavefunctions (r)  associated with -vertices r

Path Integral With Fan Boundary Conditions
Just as in the Morse theory proof of d2=0 using ends of moduli space 
corresponding to broken flows, here the broken flows correspond to webs w



Example: 
Consider a fan of vacua {i,j,k,t}. One end of the 
moduli space looks like: 

The red vertices are path integrals with rigid 
webs. They have amplitudes  bikt and  bijk. 

?



In LG theory (say, for X= Cn)  the moduli space 
cannot have an end like the finite bndry of R+

Ends of Moduli Spaces in QFT

In QFT there can be three kinds of ends to moduli 
spaces of the relevant PDE’s: 

UV effect: Example: Instanton shrinks to 
zero size; bubbling in Gromov-Witten theory

Large field effect: Some field goes to ¶

Large distance effect: Something happens 
at large distances. 



None of these three things can happen at the 
finite boundary of R+. So, there must be another 
end: 

Amplitude: 



The boundaries where the internal 
distance shrinks to zero must cancel 
leading to identities on the amplitudes like: 

This set of identities turns out to be the 
Maurer-Cartan equation for an 
L¶ - algebra.

This is really a version of the argument for 
d2 = 0 in SQM.    
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Knot Homology -1/5

pD:

M3: 3-manifold containing a 
surface defect at R x L x {p}    
More generally, the surface defect is 
supported on a link cobordism L1  L2: 

TIME 

Study (2,0) superconformal
theory based on Lie algebra g

(Approach of E. Witten, 2011)



Knot Homology – 2/5
Now, KK reduce by U(1) isometry of the cigar D 
with fixed point p to obtain 5D SYM on  
R x M3 x R+

Link 
cobordism



Knot Homology – 3/5

This space is constructed from a chain 
complex using infinite-dimensional Morse 
theory on a space of gauge fields and 
adjoint-valued differential forms. 

Hilbert space of states depends on M3
and L: 

is identified with the knot homology of L in M3. 



Equations for the semiclassical states generating the 
MSW complex are the Kapustin-Witten equations  for 
gauge field with group G and adjoint-valued one-form  f
on the four-manifold  M4 = M3 x R+

Knot Homology 4/5 

Boundary conditions at y=0  include Nahm pole and extra 
singularities at the link L involving a representation Rv of the dual 
group. 

Differential on the complex comes from counting ``instantons’’ – solutions to a 
PDE in 5d  written by Witten and independently by Haydys.  



Knot Homology 5/5
In the case M3 = C x R with coordinates (z, x1) 
these are precisely the equations of a gauged 
Landau-Ginzburg model  defined on 1+1 
dimensional spactime (x0,x1)  with target space 

Gaiotto-Witten showed that in some situations one can 
reduce this model to an ungauged LG model with finite-
dimensional target space. 
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Theories of Class S
(Slides 77-91  just a reminder for experts.) 

Begin with the (2,0) superconformal
theory based on Lie algebra g

Compactify (with partial topological twist) on 
a Riemann surface C with codimension two 
defects D inserted at punctures sn  C.

Get a four-dimensional QFT with 
d=4 N=2 supersymmetry S[g,C,D] 

Coulomb branch of these theories 
described by a Hitchin system on C. 



SW  differential

For g =su(K)
is a K-fold branched 
cover

Seiberg-Witten Curve

78

UV Curve



Canonical Surface Defect in 
S[g,C,D] 

For z  C  we have a canonical surface defect  Sz

It can be obtained from an M2-brane 
ending at x1=x2=0  in R4 and z in C

In the IR the different vacua for this M2-brane are the 
different sheets in the fiber of the SW curve over z. 

This is a 1+1 dimensional QFT localized at (x1,x2)=(0,0) 
coupled to the ambient four-dimensional theory. At a 
generic point on the Coulomb branch it is massive.



Susy interfaces for S[g,C,D]  

Interfaces between  Sz and  Sz’ are  labeled by  
open paths  on C

This data, together with an angle J defines a 
susy interface Lƒ,J .



Spectral networks 

Spectral networks are combinatorial 
objects associated to a branched covering 
of Riemann surfaces  S ö C with l

CSpectral network branch point

(D. Gaiotto, G. Moore, A. Neitzke)



S-Walls

Edges are made of  WKB paths:

The path segments are ``S-walls of type  ij’’  

Spectral network WJ of phase J is 
a graph in C. 



12

2121

32

32
23

But how do we choose which WKB 
paths to fit together?  



Evolving the network -1/3

ij

ji

ji
Near a (simple) 
branch point of 
type (ij):  



Evolve the differential equation. 
There are rules for how to continue 
when S-walls intersect. For example:  

Evolving the network -2/3





Formal Parallel Transport
Introduce the generating function of framed BPS 
degeneracies:  

S

C



Homology Path Algebra

Xa generate the  “homology path algebra” of  S

To any relative homology class  
a œ H1(S,{xi, xj’ }; Z)  assign Xa



Four (Defining) Properties of F

Homotopy
invariance

If ƒ does NOT 
intersect WJ : 

``Detour rule’’ 

=

1

2

3

4 If ƒ DOES
intersect WJ : 

(``Parallel transport’’) 

(``Flat parallel transport’’) 



Detour Rule

ij

= Wall-crossing formula for 
Detour 
Rule



Theorem: These four conditions 
completely determine both F(ƒ,J) and m

One can turn this formal transport into a rule 
for pushing forward a flat GL(1,C) connection 
on  to a flat GL(K,C)  connection on C. 

We want to categorify the parallel 
transport F(ƒ,J)  and the framed BPS 
degeneracies: 

``Nonabelianization map’’ 
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Summary – 1/2
1. Instantons effects can be thought of in terms 
of an ``effective theory’’ of BPS particles. 

2. This naturally leads to L¶ and A¶ structures. 

3. Naïve categorification can fail. (Example of the BPS 
states on the interval and half-lines.)

4. We expect these algebraic structures to be universal 
identities for massive 1+1 N=(2,2) QFT. 

(Because the web formalism can be formulated 
at this level of generality.) 



Summary – 2/2

5. When there are paths of Landau-Ginzburg
theories, one can define supersymmetric
interfaces. Colliding these interfaces with the 
boundaries gives a map of branes.  

6. This defines a notion of flat parallel 
transport of the A¶ category of branes. 
Existence of this transport categorifies
2d wall-crossing.



Some Open Problems

1. What is the relation of interior amplitudes to 
S-matrix singularities? 

2. Generalization to 2d4d systems: 
Categorification of the 2d4d WCF. 

3. Is the formalism at all useful for knot 
homology?   

(Under discussion with T. Dimofte.) 


