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1. Lecture 1: Background And Motivation

1.1 Introduction

These lectures attempt to survey some work I have done over the past few years with Davide

Gaiotto and Edward Witten. There is a rather long (about 370 pp.) paper “Algebra of

the Infrared: String Field Theoretic Structures in Massive N = (2, 2) Field Theory in Two

Dimensions,” that is thankfully nearing completion. It will be cited as
AlgebraicStructures
[8] and is the basis

for everything said here. There is also a “short” (c. 53pp.) summary of the web-based

formalism “Concise Summary of Web-Based Formalism,” which has been completed, but

not yet posted on the arxiv. Finally, these notes are available at

http://www.physics.rutgers.edu/∼gmoore/FloridaLectures2.pdf

Three closely related references:

1. K. Hori et. al. “Mirror Symmetry....” Clay volume.
Hori:2003ic
[11]

2. P. Seidel, Fukaya categories and Picard-Lefschetz theory,
SeidelBook
[15]

3. Recent paper of Kapranov, Kontsevich, and Soibelman:
Kapranov:2014uwa
[12]

1.2 Goals

Let X be a Kähler manifold, and W : X → C a holomorphic Morse function. To this data

physicists associate a “Landau-Ginzburg model.” It is closely related to the Fukaya-Seidel

(FS) category.

My goals will be:

1. To construct an A∞- category of branes in this model, using only data “visible at

long distances” - that is, only data about BPS solitons and their interactions. This

is the “web-based formalism.”

2. To explain how the “web-based” construction of an A∞-category of branes is related

to the FS category.

3. To construct an A∞ 2-category of theories, interfaces, and boundary operators.

4. To show how these interfaces categorify the wall-crossing formula for BPS solitons as

well as the wall-crossing formulae for so-called framed BPS states.

5. To sketch how the formalism might be useful in formulating a theory of knot homol-

ogy.
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1.3 A review of Landau-Ginzburg models

To warm up, let us review some well-known facts about the physicist’s Landau-Ginzburg

theory. We want to understand the groundstates of the model in various geometries with

various boundary conditions. We approach the subject from the viewpoint of Morse theory.

1.3.1 Supersymmetric Quantum Mechanics And Morse Theory

From a physicist’s point of view Morse theory is the theory of the computation of ground-

states in supersymmetric quantum mechanics (SQM)
Witten:1982im
[16]. Recall that in SQM we have a

particle moving on a Riemannian manifold q : R → M together with a real Morse function

h : M → R and we consider the (Euclidean) action

SSQM =

∫
dt

(
1

2
|q̇|2 +

1

2
|dh|2 + · · ·

)
(1.1)

There is a uniquely determined perturbative vacuum Ψ(pi) associated to each critical point

pi of h. True vacua are linear combinations of the Ψ(pi). How do we find them?

To find the true vacua we introduce the MSW (“Morse-Smale-Witten”) complex gen-

erated by the perturbative ground states

M = ⊕pi:dh(pi)=0Z · Ψ(pi) (1.2)

The complex is graded by the Fermion number operator F , whose value on Ψ(pi) is:

f =
1

2
(n− − n+) (1.3)

where n± is the number of ± eigenvalues of the Hessian.

The matrix elements of the differential Q are obtained by counting the number of

solutions to the instanton equation:
dq

dτ
= ∇h (1.4)

which have no reduced moduli and interpolate between two critical points.

By “counting” we always mean “counting with signs determined by certain orienta-

tions.” Getting the signs right is a highly technical business and we will avoid it altogether

in these lectures.

The space of true ground states is the cohomology H∗(M, Q) of the MSW complex.

1.3.2 Landau-Ginzburg Models From Supersymmetric Quantum Mechanics

Now, to formulate LG models, we apply the above picture of Morse theory to the case where

the target manifold of the SQM is a space of maps D → X where D is a one-dimensional

manifold, possibly with boundary:

M = Map(D → X) (1.5)

The Morse function is

h = −

∫

D

(
φ∗(λ) −

1

2
Re(ζ−1W )dx

)
(1.6) eq:MorseFun
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Here ζ is a phase. For simplicity we assume that the Kahler manifold is exact and choose

a trivialization of the symplectic form ω = dλ.

We apply this story to our case with target space M = Map(D,X) and superpotential

(
eq:MorseFun
1.6). If we work out the SQM action we get a 1 + 1 dimensional field theory. The bosonic

terms in the action are

∫

D×R

1

2
|dφ|2 +

1

2
|∇W |2 + · · · (1.7)

Now, this theory has massive vacua on D = R at the critical points φi ∈ X of W :

φ(x, t) = φi ∈ V (1.8)

Sometimes, boundary conditions do not admit solutions with φ a constant vacuum. In this

case groundstates are given by solitons - solutions of δh = 0.

The stationary points of the Morse function h are solutions of the ζ-soliton equation

d

dx
φI = gIJ̄

iζ

2

∂W̄

∂φ̄J̄
(1.9) eq:LG-flow

Later we will find it useful to note that the ζ-soliton equation is equivalent to

1. Upwards gradient flow with potential Im(ζ−1W ).

2. Hamiltonian flow with Hamiltonian Re(ζ−1W ).

1.3.3 Solitons On The Real Line

Now suppose D = R. We choose boundary conditions of finite energy:

lim
x→−∞

φ = φi (1.10) eq:left-infty-bc

where φi ∈ V. Similarly, if D extends to +∞ then we require

lim
x→+∞

φ = φj (1.11) eq:right-infty-bc

with φi 6= φj . What is the MSW complex in this case?

Recall that solutions to (
eq:LG-flow
1.9) project to straight lines of slope iζ in the complex W -

plane. Therefore, there is no solution for generic ζ. There can only be a solution for

iζ = iζji :=
Wj −Wi

|Wj −Wi|
(1.12) hopeful

in which case a solution projects in the W -plane to a line segment from Wi to Wj.

We assume that the left and right Lefshetz thimbles intersect transversally in the fiber

over a regular value of W on the line segment [Wi,Wj ]. In this case, there will be a finite

number of classical solitons, one for each intersection point p ∈ Sij . The MSW complex is

then:

Mij = ⊕p∈Sij

(
ZΨf

ij(p) ⊕ ZΨf+1
ij (p)

)
(1.13) eq:MorseComplexR
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The grading of the complex is

f = −
η(D + ε)

2
. (1.14) zelbor

where D is the Dirac operator obtained by linearizing the ζ-soliton equation (
eq:LG-flow
1.9) and ε

small and positive. For fixed ij the complex is graded by a Z-torsor. 1 We can now

introduce the BPS soliton degeneracies
Cecotti:1992qh
[2]:

µij := −TrMij
F(−1)F . (1.15)

These will show up in Lecture 2 (Section §
subsec:Cat-Muij
2.4) and again in Lecture 3 when we discuss

wall-crossing. We can already note that, in some sense, Mij has “categorified the 2d BPS

degeneracies.”

The differential on Mij is given by counting solutions to the ζ-instanton equation:

(
∂

∂x
+ i

∂

∂τ

)
φI =

iζ

2
gIJ̄

∂W̄

∂φ̄J̄
, (1.16) eq:LG-INST

with boundary conditions illustrated in Figure
fig:INSTANTON-ON-R
1:

Figure 1: Left: An instanton configuration contributing to the differential on the MSW complex.

The black regions indicate the locus where the field φ(x, τ) varies vary significantly from the vacuum

configurations φi or φj . The length scale here is ℓW , set by the superpotential. Right: Viewed from

a large distance compared to the length scale ℓW the instanton looks like a straight line x = x0,

where the vacuum changes discontinuously from vacuum φi to φj . The nontrivial τ -dependence of

the instanton configuration, interpolating from a soliton p1 to another soliton p2 has been contracted

to a single vertex located at τ = τ0. This illustrates the origin of the 2-valent vertices of extended

webs in the context of LG theory. fig:INSTANTON-ON-R

Written out this is:

lim
x→−∞

φ(x, τ) = φi lim
x→+∞

φ(x, τ) = φj (1.17) bcond

lim
τ→−∞

φ(x, τ) = φp1
ij (x) lim

τ→+∞
φ(x, τ) = φp2

ij (x). (1.18) ccond

1There is a tricky point here. In the algebraic manipulations below it is important to use the Koszul

rule. But that only makes sense when there is an integral grading. One needs to write f = fi − fj + nij ,

where nij is integral, and remove the fi, which turn out to be the phase of the determinant of the Hessian.
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Following the rules of SQM, the matrix elements of the differential are obtained by counting

the solutions with no reduced moduli, (i.e. the solutions with two moduli).

Remarks:

1. The complex (
eq:MorseComplexR
1.13) is not a standard mathematical Morse theory complex: h is

degenerate because of translation invariance. The critical set is R, parametrizing

the “center” of the soliton. But we take neither the cohomology nor the compactly

supported cohomology of of this critical set. Rather, we attach a certain Clifford

module to each critical locus. (“Quantization of the collective coordinate.”)

2. Supersymmetric quantum mechanics has two supersymmetries satsifying {Q, Q̄} =

2H. When the spatial domain is D = R there are more symmetries in the problem not

manifest from the SQM viewpoint. Namely the LG model has (2,2) supersymmetry:

{Q+, Q̄+} = H + P {Q+, Q−} = Z̄

{Q−, Q̄−} = H − P {Q̄+, Q̄−} = Z.
(1.19) eq:22susy

The supersymmetries of the SQM are

Qζ := Q− − ζ−1Q̄+, Q̄ζ := Q̄− − ζQ+. (1.20) manifest

The ζ-soliton and -instanton equations are the Qζ-fixed point equations for the classi-

cal field configurations. When D is a half-line or an interval, with suitable boundary

conditions only the two-dimensional supersymmetry algebra will be preserved.

3. Now comes an important physics point: The theory is massive with a length scale

ℓW corresponding to the inverse of the lightest soliton. Physical correlations should

decay exponentially beyond that scale. We can picture the solitons and instantons

as in Figure
fig:INSTANTON-ON-R
1.

1.4 LG Models On A Half-Plane And The Strip

1.4.1 Boundary Conditions

If D has a left-boundary xℓ ≤ x or a right boundary x ≤ xr at finite distance then we need

to put boundary conditions to get a good Morse theory, or QFT.

1. At x = xℓ, xr, the boundary value φ∂ must be valued in a maximal Lagrangian

submanifold Lℓ,Lr of X in order to have elliptic boundary conditions for the Dirac

equation on the fermions.

2. The theory is simplest when the Lagrangian submanifolds are exact: ι∗(λ) = dk, for a

single-valued k, and we will make that assumption here. Indeed, the Morse function

(
eq:MorseFun
1.6) is replaced by h → h ± k(φ∂), where the sign is for the negative/positive half-

plane, respectively.
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Figure 2: A pair of Lagrangian submanifolds  Lℓ,  Lr embedded in the u − v plane.  Lℓ and  Lr

intersect at the one point indicated. u is plotted horizontally and we assume that  Lℓ,  Lr are

embedded in the half-plane u > 0. fig:Lagrangians

We are certainly interested in X which is noncompact (since we want W to be non-

trivial) and we are typically interested in noncompact Lagrangians. Now, we want to

have well-defined spaces of quantum states on an interval HLℓ,Lr , invariant under separate

Hamiltonian symplectomorphisms of the left and right branes.

The generators of the MSW complex in this case can be identified with the intersection

points

L
(∆x)
ℓ ∩ Lr (1.21)

where we regard the ζ-soliton equation (
eq:LG-flow
1.9) as a flow in x and L(∆x) means the flow has

been applied for a range (∆x).

But now there is a problem: Intersection points can go to infinity as the length of the

interval is changed (or if independent Hamiltonian symplectomorphisms are applied to left

and right branes).

Example: Consider ζ−1W = iφ2 and consider the candidate left and right branes shown

in Figure
fig:Lagrangians
2. We regard the ζ-soliton equation as a flow in x, and if φ = u + iv is the

decomposition into real and imaginary parts then

∂xu = u ∂xv = −v (1.22)

Therefore, the flow in x of Lℓ will not intersect Lr for sufficiently large x. Therefore there

will be supersymmetric states for small width of [xℓ, xr] but none for large width of [xℓ, xr].

This is a problem for the kind of “partially topological field theory” we are studying.

In
AlgebraicStructures
[8] we find that there are two distinct criteria we could impose on the allowed

Lagrangians to avoid the above problem. In these lectures we focus on just one namely,

we will restrict the Lagrangians to be Branes of class Tκ: Choose a phase κ 6= ±ζ, and

constants c, c′. The precise choices don’t matter too much, although which component of

the circle κ sits in is significant. Branes of class Tκ are based on Lagrangians which project
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T
κ

Figure 3: The rays in the complex W -plane that start at critical points and all run in the ıκ

direction fit into the semi-infinite strip Tκ, which is shown as a shaded region. manyrays

under W to a semi-infinite rectangle in the W -plane:

|Re (κ−1W )| ≤ c

Im (κ−1W ) ≥ c′,
(1.23) zelbo

as in Figure
manyrays
3. The for this is that, under the x-flow of the ζ-soliton equation we have

d

dx
Re (κ−1W ) = −

1

2
{Re(ζ−1W ),Re(κ−1W )} =

1

4
Im(

ζ

κ
)|dW |2 (1.24) eq:x-flow

Then, points at infinity flow very fast out of the rectangle and hence intersection points

L
(∆x)
ℓ ∩ Lr always sit in a bounded region and cannot escape to infinity.

1.4.2 LG Ground States On A Half-Line

Now, we consider the theory on the positive half-plane. We choose ζ so that it does not

coincide with any of the ζij defining the solitons for D = R. What are the groundstates

preserving Qζ supersymmetry?

The MSW complex MLℓ,j is generated by the ζ-solitons on the half-plane satisfying

the above boundary conditions.

The grading on the complex is a little nontrivial. We only know how to do it when X

is Calabi-Yau. In this case case we define

eıϑ =
vol

Ω|L
(1.25) dommy

(where Ω trivializes KX and is normalized so that ΩΩ̄ is the volume form on X) and we

need to be able to define a single-valued logarithm ϑ. In this case we define the fermion

number (on the interval) to be:

f = −
1

2
η(D) − 2

ϕr − ϕℓ

2π
. (1.26) cgt

where ϕ = ϑ(φ∂). On a half-line we drop ϕr or ϕℓ as appropriate.

The differential on the complex is given by counting ζ-instantons. The picture of the

instantons on the half-plane is shown in Figure
fig:HALFPLANE-INSTANTON-1
4
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Figure 4: An instanton in the complex ML,j . The solitons corresponding to p1, p2 ∈ L ∩ Rζ
j are

exponentially close to the vacuum φj except for a small region, shown in turquoise, of width ℓW .

In addition, the instanton transitions from one soliton to another in a time interval of length ℓW ,

indicated by the green square. At large distances the green square becomes the 0-valent vertex used

in extended half-plane webs. fig:HALFPLANE-INSTA

1.4.3 LG Ground States On The Strip

The story on the strip is very similar to the half-plane, but there is an interesting wrinkle

that provides a nice example where naive categorification of formulae for BPS degeneracies

fails.

We consider the LG theory on R× [xℓ, xr]. When |xr − xℓ| ≫ ℓW the ζ-solitons must

nearly “factorize” so there is a natural isomorphism:

MLℓ,Lr
∼= ⊕i∈VMLℓ,i ⊗Mi,Lr . (1.27) eq:appxt-complex-ii

So if we define the BPS degeneracy of the half-line solitons:

µLℓ,i := TrML,i
eiπF (1.28)

then the Euler-Poincaré principle guarantees

µLℓ,Lr =
∑

i∈V

µLℓ,iµi,Lr (1.29) eq:WittenIndexFacto

Now, the naive categorification would state:

H∗(MLℓ,Lr)
?
∼= ⊕i∈VH

∗(MLℓ,i) ⊗H∗(Mi,Lr). (1.30) wrong

Here we have used the natural differential on the tensor-product complex. It corre-

sponds to the ζ-instantons of Figure
fig:NaiveStripDifferential
5: As we will see, equation (

wrong
1.30) is wrong. The reason

is that there are other ζ-instantons which are also relevant. One example is a ζ-instanton

that looks like Figure
fig:StripInstanton
6:

We will interpret this figure more precisely in Lecture 2 at the end of Section §
subsubsec:BoostSol
2.1.1.
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Figure 5: Naive differential on the strip. fig:NaiveStripDiffe

Instanton corrections to the naïve

differential

Figure 6: An instanton correction to the naive differential on the strip. fig:StripInstanton

1.5 The Fukaya-Seidel Category, d’après Les Physiciens

Finally, we sketch the Fukaya-Seidel (FS) category, at least the way a physicist would

approach it. 2

Fix ζ. Our objects will be branes based on Lagrangians in class Tκ, where κ is in one

of the two components of U(1) −{±ζ}. The morphism space is the MSW complex MLℓ,Lr

generated by solutions of the ζ-soliton equation.

Then, to compute the differential M1, we count ζ-instantons with one-dimensional

moduli space. (That is, zero-dimensional reduced moduli space.)

To compute the higher A∞-products we follow the example of open string field theory

in light-cone gauge. We divide up the interval into equal length subintervals and consider

the diagram in Figure
fig:Worldsheets
7

We have to integrate over the moduli - the relative positions of the joining times. When

the fermion numbers of the incomming and outgoing states are such that the amplitude is

not trivially zero the expected dimension of the moduli space will be zero, and in fact the

2We thank Nick Sheridan for many useful discussions about the mathematical approaches to the FS

category.
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τ3

τ2

τ1

τ2

τ3

τ1

a) b)

Figure 7: (a) n open strings all of width w come in from the past (τ = −∞) and a single one of

width nw goes out to the future (τ = +∞). There are n− 1 values of τ at which two open strings

combine to one. The linearly independent differences between these critical values of τ are the n−2

real moduli of this worldsheet. (b) The picture in (a) can be slightly modified in this fashion so

that H becomes smooth. The moduli are still the differences between the critical values of τ . fig:Worldsheets

solutions will only exist for a finite set of critical values τi − τi+1 where the strings join.

The amplitude is obtained by counting over the finite set of solutions to the ζ-instanton

equation.

Remark: The A∞-category we have sketched above is not precisely what we one finds in

the papers in the literature. (See, for example
SeidelBook
[15].) Our understanding from experts in

the subject is that what we have described is well-known to be conceptually the correct

definition, but it does not appear in papers because there are some technical difficulties in

handling the PDE’s. We fully expect it to be A∞-equivalent to the standard mathematical

construction.

1.6 Two Motivations For The Theory Of Interfaces

Now we sketch in some detail two of the motivations for this work, and in particular the

contents of Lecture 3 on interfaces and categorified wall-crossing.

1.6.1 Motivation 1: Knot Homology
subsubsec:KnotHomology

We follow the approach of Witten
WItten:2011pz
[18] as further developed by Gaiotto and Witten

Gaiotto:2011nm
[6].

Let L ⊂ M3 be a link in an oriented 3-fold. We would like to construct a (doubly

graded) chain complex K̂(L) whose Euler character gives interesting knot polynomials

such that there are chain maps associated with knot bordisms obeying natural topological

conditions.

The complex is associated with a certain list of data, and the first piece of data is a

choice of a compact simple Lie group G together with an irreducible representation Ra of

G associated to each connected component La of L.

Witten’s approach starts with the famous 6d (2,0) theory for g = Lie(G) on a six-

manifold

R×M3 ×D (1.31)

where D is a cigar. Since nobody knows what the (2, 0) theory is we then KK reduce with

respect to the U(1) symmetry of the cigar to get a description in terms of 5d SYM on

R︸︷︷︸
x0

× M3︸︷︷︸
x1,x2,x3

× R+︸︷︷︸
y

(1.32)
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where underneath the factors we have written typical coordinates on these spaces.

Witten’s basic idea is that K̂(L) is a Morse-Smale-Witten complex generated by solu-

tions of the Kapustin-Witten (KW) equations on M4 = M3×R+, where the differential on

the complex is obtained by counting solutions to a certain 5d equation (written indepen-

dently by A. Haydys and E. Witten). The boundary conditions on the 4d and 5d equations

at y = 0 are slightly subtle. At generic points of M3 they are Nahm pole boundary condi-

tions and near La they encode the data of the link, in particular Ra. See
WItten:2011pz,Mazzeo:2013zga,Witten:2011z
[18, 14, 17, 19] for

detailed discussion. It is also convenient to put boundary conditions at y = ∞ to reduce

the structure group from G to an abelian subgroup.

The connection to our story starts to emerge when we consider the special case

M3 = R︸︷︷︸
x1

× C︸︷︷︸
z=x2+ix3

(1.33)

(Here we deliberately use the same notation for the Riemann surface C that is often used

for the ultraviolet curve in theories of class S.) In this case, the KW and HW equations are

identical to those of a Landau-Ginzburg model on a spacetime R2 that should be thought

of as the x0 − x1 plane:

R︸︷︷︸
x0

× R︸︷︷︸
x1

(1.34)

The data (X,W ) of the model is then given by:

1. The target space of the model is a space of complexified gauge fields on a principal

Gc-bundle Ec → M̃3 where

M̃3 = C × R+ (1.35)

with complex gauge field A = A+ iφ. (Here A is a unitary connection on a principal

G bundle E.) The boundary conditions at y → 0,∞ that encode the link and its data

{Ra} are used in the precise definition of the allowed gauge potentials U c. Then

X = U c/Gc (1.36)

for a suitable group of complexified gauge transformations Gc.

2. The Kahler metric and symplectic structure are:

ds2 =

∫

M̃3

Tr(δA ∗ δA) (1.37) eq:Uc-metric

ω =

∫

M̃3

Tr(δA ∗ δφ). (1.38) eq:Uc-Symp

3. The holomorphic superpotential is the Chern-Simons form

W cs(A) =

∫

M̃3

Tr(AdA +
2

3
A3) (1.39) eq:CS-kappa
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This formulation, while exact, is not easy to work with because the target space of

the LG model is infinite-dimensional. In some situations the problem can be reduced to

questions about a finite-dimensional LG model. This is one of the main results of Gaiotto

and Witten
Gaiotto:2011nm
[6].

The basic idea is to describe the link in M3 = R×C as an evolving set of points in C,

za(x1), a = 1, . . . n, as in Figure
fig:KNOT-HOM-4
8:

Figure 8: This figure depicts the link L in the boundary at y = 0 at a fixed value of x0. It is

presented as a tangle evolving in the x1 direction and therefore can be characterized as a trajectory

of points za(x1) in the complex z = x2 + ix3 plane. The tangle is closed by “creation” and

“annihilation” of the points za in pairs (with identical values of ka). fig:KNOT-HOM-4

We first consider the case where the za(x1) are constant and study the MSW complex

in that case, finding equivalence to certain LG models with finite-dimensional target space.

Then, when we introduce “slow” x1-dependence we have a family, parametrized by x1,

of LG models, a so-called “Janus” or “interface” of theories: See the discussion in Lecture

3, Section
subsec:LG-Interface
3.1.

Gaiotto and Witten studied the case that C = C or CP1 and G = SU(2) or G = SO(3).

In this case the representations on the link components define positive integers ka at the

points za (so the representations have dimension ka + 1). They showed that, in the case

that za(x1) are constant, the stationary points of the CS-LG theory correspond to “opers

with monodromy-free singularities” on M̃3. By this we mean the following:

We have a flat gauge SL(2,C) gauge field

Da = ∂a + Aa a = z, z̄, y (1.40)

The gauge fields obey boundary conditions:

A →
1

2y

(
dy 2dz

0 −dy

)
+ · · · z 6= za, y → 0 (1.41) eq:NP-2
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For y → ∞ at fixed z we have

A → −
dz

ξ

(
c 0

0 −c

)
+ ξdz̄

(
c̄ 0

0 −c̄

)
+ dy

(
c1 0

0 −c1

)
(1.42) eq:y-infty-bc

where c is complex, c1 is real, and ξ is a phase, with a flat section:

Dz̄s = 0

Dys = 0
(1.43) eq:Flt-Sec

and moreover has the properties that for y → 0 at fixed z, ♣also at z = za? ♣

s ∧ Dzs = K(z) :=

n∏

a=1

(z − za)ka , y → 0 (1.44) eq:Flt-Sec-bc-1

Now, opers with monodromy-free singularities have known connections to the Gaudin

model, WZW models, and free-field representations of conformal blocks. Using this, the

problem is simplified to a study of the following Landau-Ginzburg theory, which we call

the Yang-Yang-Landau-Ginzburg model :

1. Fix n distinct points za ∈ C labeled with positive integers ka and let q := 1
2

∑
a ka.

The target space of the model is a covering space of the configuration space C(q; {za})

of q distinct, but indistinguishable points wi, i = 1, . . . , q on C := C− {z1, . . . , zn}.

2. To define the covering space X we introduce the function:

W =
∑

i,a

ka log(wi − za) −
∑

i<j

log(wi − wj)
2 − c

∑

i

wi (1.45) eq:YangYangW-1

where c is a nonzero complex number related to the boundary conditions of the oper

at y = ∞. The target space X of the YYLG model should be the smallest cover on

which W is single-valued as a function of the wi.

3. We simply take the obvious Euclidean metric on X induced from
∑

i |dwi|
2.

Now, as the za(x1) evolve we have a family of theories, and when the za undergo

braiding or creation/fusion then we have interfaces between the theories. In a way we will

describe in Lecture 3 we can construct a complex out of these interfaces, and this will be

the knot homology complex.

1.6.2 Motivation 2: Spectral Networks

Consider a Hitchin system, say for SU(N), on a (punctured) Riemann surface C. The

spectral curve is

Σ := {det(λ− ϕ) = 0} ⊂ T ∗C (1.46)

and is an N : 1 branched cover

π : Σ → C (1.47)
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One of the mathematical outcomes of the paper
Gaiotto:2012rg
[7] was the definition of a “nonabelian-

ization” map, a kind of inverse of the standard abelianization map of Higgs bundle theory.

The statement is that, given a flat C∗-connection on a complex line bundle

(L,∇ab) → Σ (1.48)

we can push it forward to a flat rank N bundle

(E,∇) → C (1.49)

To do this, fix a phase ζ. One constructs a network of paths on C where the edges are

integral curves ∫ z

(λi − λj) = ζ (1.50) eq:edge-equation

and where i, j label two sheets of the cover.

How to construct the actual network is a long story. One begins from branch points,

(assumed simple) where three edges emerge as in Figure
fig:SpectralNetworkBranchpoint2
9:

ij

ji

ji

Near a (simple)

branch point of

type (ij):

Figure 9: WKB paths in the neighborhood of a simple branchpoint exchanging sheets ij. fig:SpectralNetwork

The edges are then evolved using the equation (
eq:edge-equation
1.50), supplemented by some local rules

at intersections. Call the spectral network Wζ . Away from Wζ we have an isomorphism

E ∼= π∗(L) (1.51)

To define (E,∇) everywhere we say what its parallel transport is along a path

℘ : z1 → z2 (1.52)

We say the parallel transport is

F (℘) = P exp

∫

℘
∇ =

∑

γij′

Ω(℘, ϑ, γij′)Yγij′ (1.53)
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C

Figure 10: The lift of a path ℘ from z to z′ is associated with a framed BPS state. Its “charge”

is the relative homology class γij′ of this path. fig:GammaIJ-Prime

where the sum is over homology paths γij′ on Σ beginning and ending at preimages z
(i)
1

and z
(j′)
2 as in Figure

fig:GammaIJ-Prime
10

Moreover,

Yγij′ = exp

∫

γij′

∇ab (1.54)

and the Ω(℘, ϑ, γij′) are integers, known as “framed BPS degeneracies” . The crucial aspect

of this definition is that if we consider a family of small paths where the endpoint crosses

one of the edges of a spectral network, as in Figure
fig:DetourRule1
11

Figure 11: A small path ℘ crosses a single S-wall of type ij. fig:DetourRule1

then

F (℘) =
∑

i

exp

∫

℘(i)

∇ab

+
∑

γij∈Γij(z,z)

µ(γij)

(
exp

∫

℘
(i)
+

∇ab

)(
exp

∫

γij

∇ab

)(
exp

∫

℘
(i)
−

∇ab

) (1.55) eq:FRWC

where µ(γij) is another set of integers, known as “2d BPS soliton degeneracies.”

Now, in this Hitchin situation physicists associate a canonical 1+1 dimensional quan-

tum field theory Sz to each point z ∈ C. The vacua of Sz are in 1-1 correspondence with

the preimages z(i) and in the above construction there are physical interpretations:

1. ℘ corresponds to an interface between theories Sz1 and Sz2 .

2. Ω(℘, ϑ, γij′) correspond to degeneracies of BPS states of particles bound to the inter-

face.
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3. µ(γij) correspond to degneracies of 2d soliton states within the theory Sz.

4. The rule (
eq:FRWC
1.55) corresponds to a wall-crossing formula for the framed BPS states.

Remark: The quantum field theory Sz is in general not a Landau-Ginzburg theory, but

it has many of the same features: It has massive vacua and (2, 2) supersymmetry. Pairs

of critical points of the LG superpotential W correspond to relative homology classes γij
and differences of critical values of W , i.e., central charges in solitons sectors, correspond

to
∫
γij

λ.

One of the goals of
AlgebraicStructures
[8] is to categorify this story and replace the BPS degeneracies by

chain complexes and the wall-crossing formula by a statement about suitable categories.

We achieve this goal in Lecture 3 in Section §
subsubsec:Cat-S-Wall
3.4.1.

2. Lecture 2: The Web Formalism

2.1 Boosted Solitons And ζ-Webs

Now we would like to interpret more precisely the meaning of Figure
fig:StripInstanton
6.

2.1.1 Boosted Solitons
subsubsec:BoostSol

Recall that ζ-instantons satisfy

(
∂

∂x
+ i

∂

∂τ

)
φI =

iζ

2
gIJ̄

∂W̄

∂φ̄J̄
, (2.1) eq:LG-INST-p

and we are interested in solutions for arbitrary phase ζ.

Recall too that ζ-solitons on D = R satisfy

d

dx
φI = gIJ̄

iζ

2

∂W̄

∂φ̄J̄
(2.2) eq:LG-flow-p

and with boundary conditions (φi, φj) at x = −∞,+∞ only exist for special phases iζji
given by the phase of the difference of critical values Wj −Wi.

We can use solitons of type ij to produce solutions of the ζ-instanton equation on the

Euclidean plane by taking the ansatz:

φboosted
ij (x, τ) := φsoliton

ij (cos μx + sin μτ), (2.3)

obeys (
∂

∂x
+ i

∂

∂τ

)
φboosted,I
ij (x, τ) =

ieiμζji
2

gIJ̄∂J̄W̄ (φij(x)) (2.4) eq:boosted-soliton

so we choose the rotation μ so that

eiμζji = ζ (2.5) eq:xi-to-zeta

We call such solutions to the ζ-instanton equation ζ-boosted solitons. A short computation

show that the “worldline” (i.e. the region where the solution is not exponential close to
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Stationary

soliton

``Boosted

soliton’’

These will define

edges of webs…

Figure 12: The boosted soliton. A short computation show that the “worldline” is parallel to the

complex number zij := zi − zj where zi = ζW̄i. fig:BoostedSolitonF

one of the vacua φi or φj) is parallel to the complex number zij := zi − zj where zi = ζW̄i.

See Figure
fig:BoostedSolitonFlorida
12:

Now we can start to interpret the “extra” ζ-instanton illustrated in Figure
fig:StripInstanton
6. The

idea is that if the width of the interval is much larger than ℓW then the ζ-instanton is

well-approximated, away from the boundaries, by a boosted soliton. There is some kind

of “emission amplitude” and “absorption amplitude” associated with the region where

the boosted soliton joins the boundaries. In order to discuss these we first consider the

ζ-instanton equation on the plane, but with some unusual boundary conditions.

2.1.2 Fan Boundary Conditions

We would like to make a solution to the ζ-instanton equation that looks like several boosted

solitons at infinity. Thus suppose we have a cyclic fan of solitons:

F = {φp1
i1,i2

, . . . , φpn
in,i1

}. (2.6) eq:solseq

We would like to have a solution which looks like the corresponding boosted solitons as z

moves clockwise around a circle at infinity, as in Figure
fig:WEDGES
13.

Note this only makes sense when the phases of the successive differences zik ,ik+1
are

clockwise ordered. We call such a sequence of vacua a cyclic fan of vacua.

If the index of a certain Dirac operator is positive then we expect, from index theory,

that there will be ζ-instantons which approach such a cyclic fan of solitons at infinity. In

fact, physicists studying domain wall junctions have in fact established the existence of

such solutions in some special cases
Carroll:1999wr,Gibbons:1999np
[1, 9]. We will assume that a moduli space of such

solutions M(F) exists. Based on physical intuition we expect these moduli spaces to satisfy

two crucial properties:
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Figure 13: Boundary conditions on the ζ-instanton equation defined by a cyclic fan of solitons. fig:WEDGES

1. Gluing : Under favorable conditions, two solutions which only differ significantly from

fan solutions inside a bounded region can be glued together as in Figure
fig:GluedSolution
14 This

process can be iterated to produce what we call ζ-webs, shown in Figure
fig:ZetaWeb
15:

2. Ends: The moduli space M(F) can have several connected components. Some of

these components will be noncompact, and the “ends,” or “boundaries at infinity,”

of the moduli space will be described by ζ-webs.

Two such solutions can be

``glued’’ using the boosted

soliton solution

Figure 14: Gluing two solutions with fan boundary conditions to produce a new solution with fan

boundary conditions. The red regions indicate where the solution deviates significantly from the

boosted solitons and the vacua. When the “centers” of the two ζ-instantons are far separated the

approximate, glued, field configuration can be corrected to a true solution. fig:GluedSolution

The compact connected components of ζ-webs are called ζ-vertices. We are most

interested in the ζ-vertices of dimension zero: These will contribute to the path integral of

the LG model with fan boundary conditions provided the fermion number of the outgoing

states sums to 2. We claim that counting such points for fixed fans of solitons produces

interesting integers that satisfy L∞ identities. We will state that a bit more precisely later.

This picture is the inspiration for the web-formalism, to which we turn next. It will

give us the language to state the above claim in more precise terms.
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We call this

picture a

web: w

Figure 15: Several solutions can be glued together to produce a ζ-web solution fig:ZetaWeb

2.2 The Web Formalism On The Plane

Now switch to a mathematical formalism that we call the web-based formalism for describ-

ing the above physics.

2.2.1 Planar Webs And Their Convolution Identity

Definition: The vacuum data is the pair (V, z) where V is a finite set called the set of

vacua and z : V → C defines the vacuum weights.

Remarks:

1. Vacua are denoted i, j, · · · ∈ V. The vacuum weight associated to i is denoted zi.

2. The vacuum weights {zi} are assumed to be in general position. This means

{z1, . . . , zN} ∈ V := CN − E (2.7) eq:VacWtSpace

where E is the exceptional set. Thus, zij 6= 0 for i 6= j. Moreover, no three vacuum

weights are colinear and finally there are no exceptional webs. 3

Definition: A plane web is a graph in R2, together with a coloring of the faces by vacua

such that the labels across each edge are different and moreover, when oriented with i

on the left and j on the right the edge is straight and parallel to the complex number

zij := zi − zj . We take plane webs to have all vertices of valence at least two.

Definition The deformation type of a web is the equivalence class under stretching of

internal edges and overall translation. There is a moduli space of deformation types and

it can be oriented. We denote an oriented deformation type by w.

Example: An example of two different deformation types of web is shown in Figure
fig:DIFFERENT-DEFORMATION-TYPE
16:

A key construction we can make with webs is known as convolution. To define it we

introduce some terminology:

3Exceptional webs are defined to be webs whose deformation space has a dimension larger than the

expected dimension 2V − E. For details see
AlgebraicStructures
[8].
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Figure 16: The two webs shown here are considered to be different deformation types, even though

the web on the left can clearly degenerate to the web on the right. fig:DIFFERENT-DEFOR

1. The local fan at a vertex v ∈ w: is denoted Iv(w).

2. The fan of vacua at infinity: is denoted I∞(w).

For example see Figure
fig:LocalGlobalFan
17:

Local fan of vacua at a vertex v:

For a web w there are two kinds of cyclic fans we

should consider:

Fan of vacua :

Figure 17: Illustrating the local fan of vacua and the fan of vacua at infinity for a web w. fig:LocalGlobalFan

Now, suppose we have two webs w and w′ such that there is a vertex v of w we have

Iv(w) = I∞(w′). (2.8)

Then define w ∗v w
′ to be the deformation type of a web obtained by cutting out a small

disk around v and gluing in a suitably scaled and translated copy of the deformation type

of w′. The procedure is illustrated in Figure
fig:CONVOLUTION
18.

The upshot is that if W is the free abelian group generated by oriented deformation

types of webs then convolution defines a product

W ×W → W (2.9)

(making it a “pre-Lie algebra” in the sense of
ChapotonLivernet
[4]).

Now, we consider the taut webs. These are, by definition, those with only one internal

degree of freedom. That is, the moduli space of the taut webs is three-dimensional. See

Figure
fig:RigidTautSliding
19:
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Figure 18: Illustrating the convolution of a web w with internal vertex v having a fan Iv(w) =

{j1, j2, j3, j4} with a web w′ having an external fan I∞(w′) = {j1, j2, j3, j4}. fig:CONVOLUTION

A rigid web has d(w) = 0.

It has one vertex:

A taut web has d(w)

= 1:

A sliding web has d(w)

= 2

Figure 19: Illustrating rigid, taut, and sliding webs with 0, 1, and 2 internal degrees of freedom. fig:RigidTautSlidin

We define the taut element to be the sum over all the taut webs:

t :=
∑

d(w)=3

w. (2.10) eq:taut-planar

we can coherently orient all the taut webs in, say, the direction of getting larger.

Now the key theorem is that

t ∗ t = 0. (2.11)

The proof is that if we expand this out then we can group products in pairs which cancel.

The pairs correspond to opposite ends of a moduli space of “sliding” webs, with two internal

degrees of freedom. The idea is illustrated in Figure
fig:TAUT-SQUARE
20:

2.2.2 Representation Of Webs

Definition: A representation of webs is a pair R = ({Rij}, {Kij}) where Rij are Z-graded

Z-modules defined for all ordered pairs ij of distinct vacua and Kij is a degree −1 symmetric

perfect pairing

Kij : Rij ⊗Rji → Z. (2.12) whichone
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Figure 20: The two boundaries of the deformation type of the sliding web shown on the right

correspond to different convolutions shown above and below. If we use the lengths L1, L2 of the

edges as coordinates then the orientation from the top convolution is dL2 ∧ dL1. On the other

hand the orientation from the bottom convolution is dL1 ∧ dL2 and hence the sum of these two

convolutions is zero. This is the key idea in the demonstration that t ∗ t = 0. fig:TAUT-SQUARE

Given a representation of webs, we define a representation of a cyclic fan of vacua

I = {i1, i2, . . . , in} to be

RI := Ri1,i2 ⊗Ri2,i3 ⊗ · · · ⊗Rin,i1 (2.13)

when I is the cyclic fan at a vertex of a web we refer to RIv(w) to as the representation of

the vertex. Elements of this representation are called interior vectors.

Next we collect the representations of all the vertices by forming

Rint := ⊕IRI (2.14) eq:Rint-def

where the sum is over all cyclic fans of vacua. We want to define a map

ρ(w) : TRint → Rint (2.15)

where for any Z-module M we define the tensor algebra to be

TM := M ⊕M⊗2 ⊕M⊗3 ⊕ · · · (2.16)

In fact, the operation will be graded-symmetric so it descends to a map from the symmetric

algebra SRint → Rint.

We now define the contraction operation:

We take ρ(w)[r1, . . . , rn] to be zero unless n = V (w) and there exists an order {v1, . . . , vn}

for the vertices of w such that ra ∈ RIva (w). If such an order exists, we will define our map

ρ(w) : ⊗v∈V(w)RIv(w) → RI∞(w) (2.17) eq:web-rep-1
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as the application of the contraction map K to all internal edges of the web. Indeed, if an

edge joins two vertices v1, v2 ∈ V(w) then if RIv1(w) contains a tensor factor Rij it follows

that RIv2 (w) contains a tensor factor Rji and these two factors can be paired by K as shown

in Figure
fig:WEBEDGE
21:

Figure 21: The internal lines of a web naturally pair spaces Ri1,i2 with Ri2,i1 in a web represen-

tation, as shown here. fig:WEBEDGE

It is not difficult to see that the convolution identity t ∗ t = 0 implies that ρ(t) satisfies

the axioms of an L∞ algebra ρ(t) : TRint → Rint:

∑

Sh2(S)

ǫS1,S2 ρ(t)[ρ(t)[S1], S2] = 0 (2.18) eq:L-infty-rho

where we sum over 2-shuffles of the ordered set S = {r1, . . . , rn} and ǫS1,S2 is a sign factor

discussed at length in
AlgebraicStructures
[8].

Definition: An interior amplitude is an element β ∈ Rint of degree +2 so that if we define

eβ ∈ TRint ⊗Q by the exponential series then

ρ(t)(eβ) = 0. (2.19) eq:bulk-amp

Definition: A Theory T consists of a set of vacuum data (V, z), a representation of webs

R = ({Rij}, {Kij}) and an interior amplitude β.

Remark: If β is an interior amplitude and we define ρβ(w)[r1, . . . , rℓ] := ρ(w)[r1, . . . , rℓ, e
β ]

then ρβ(t) : TRint → Rint satisfies the L∞ Maurer-Cartan equation.

2.2.3 Realization Via LG Models

1. Vacua: V is the set of critical points of W .

2. Vacuum weights: zi = ζW̄i

3. Web representation:

Rij := ⊕p∈Sij
ZΨf+1(p) (2.20)

and the contraction K is defined by the path integral.
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4. Interior amplitude: Suitably interpreted, the path integral leads to a counting of

ζ-instantons with fan boundary conditions and defines an element in Rint which is an

interior amplitude β. This follows from localization of the path integral on the moduli

space of ζ-instantons and the fact that the path integral must create a Qζ-closed state
AlgebraicStructures
[8].

2.2.4 Examples: Theories With Cyclic Weights

Two useful examples have V = Z/NZ. We break the cyclic symmetry and label vacua by

i ∈ {0, . . . , N − 1} with weights:

VN
ϑ : zk = e−iϑ− 2πi

N
k k = 0, · · ·N − 1 (2.21) eq:CyclicWt

The first example is T N
ϑ with a single chiral superfield and superpotential

W = ζ
N + 1

N

(
φ− e−iNϑ φN+1

N + 1

)
. (2.22) eq:TN-Superpot

The web-representation is

Rij = Z[1] i < j

Rij = Z i > j (2.23) eq:ExpleTN-webrep

At a vertex of valence n we have degRI = n−1 and hence only 3-valent vertices contribute

to the MC equations, so the only nonzero amplitudes are βijk ∈ Rijk for 0 ≤ i < j < k ≤

N − 1. The L∞ equations come from the two taut webs of Figure
fig:TNEXAMPLE-1
22:

Figure 22: The two terms in the component of the L∞ equations for i < j < k < t. fig:TNEXAMPLE-1

and are just:

bijkbikt − bijtbjkt = 0 i < j < k < t (2.24) eq:ExpleMC-1

A more elaborate set of examples is provided by the mirror dual to the B-model on

CPN−1 with SU(N) symmetry. This again has vacuum weights (
eq:CyclicWt
2.21) but now we take
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Rij = A
[1]
j−i i < j

Rij = AN+j−i i > j (2.25) eq:SUN-Rij

where Aℓ is the ℓ-th antisymmetric power of a fundamental representation of SU(N) and

Kij(v1 ⊗ v2) = κij
v1 ∧ v2

vol
(2.26) eq:Kij-TSUN

with κij ∈ {±1}. An SU(N)-invariant ansatz for the interior amplitude reduces the L∞

MC equations to (
eq:ExpleMC-1
2.24) above.

2.3 The Web Formalism On The Half-Plane

Fix a half-plane H ⊂ R2 in the (x, τ) plane. Most of our pictures will take the positive or

negative half-plane, x ≥ xℓ or x ≤ xr, but it could be any half-plane.

Definition: Suppose ∂H is not parallel to any of the zij . A half-plane web in H is

a graph in the half-plane, which allows some vertices to be subsets of the boundary. We

apply the same rule as for plane webs: Label connected components of the complement of

the graph by vacua so that if the edges are oriented with i on the left and j on the right

then they are parallel to zij .

We can again speak of a deformation type of a half-plane web u. Now translations

parallel to the boundary of H act freely on the moduli space. Once again we define half-

plane webs to be rigid, taut, and sliding if d(u) = 1, 2, 3, respectively. Similarly, we can

define oriented deformation type in an obvious way and consider the free abelian group

WH of oriented deformation types of half-plane webs in the half-plane H. Some examples

where H = HL is the positive half-plane are shown in Figures
fig:BNDRY-WEB-1
23 and

fig:HALFPLANE-TAUTWEB
24.

Figure 23: Two examples of rigid positive-half-plane webs. fig:BNDRY-WEB-1

Figure 24: Four examples of taut positive-half-plane webs fig:HALFPLANE-TAUTW

There are now two kinds of convolutions:

1. Convolution at a boundary vertex defines

∗ : WH ×WH → WH (2.27) eq:bbstar
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2. Convolution at an interior vertex defines:

∗ : WH ×W → WH (2.28) eq:bistar

We now define the half-space taut element (oriented in the direction in which the web

gets bigger):

tH :=
∑

d(u)=2

u. (2.29)

The convolution identity is

tH ∗ tH + tH ∗ tp = 0. (2.30)

The idea of the proof is the same as in the planar case. An example is shown in Figure
fig:BLK-BDRY-WEBIDENT
25:

Figure 25: An example of the identity on plane and half-plane taut elements. On the right

is a sliding half-plane web. Above is a convolution of two taut half-plane webs with orientation

dy∧dℓ1∧dℓ2. Below is a convolution of a taut half-plane web with a taut plane web. The orientation

is dy ∧ dℓ2 ∧ dℓ1. The two convolutions determine the same deformation type but have opposite

orientation, and hence cancel. fig:BLK-BDRY-WEBIDE

2.4 Categorification Of The 2D Spectrum Generator
subsec:Cat-Muij

Given a half-plane and a representation of webs we can introduce a collection of chain

complexes R̂ij that will play and important role in what follows.

One way to motivate the R̂ij is to recall the Cecotti-Vafa-Kontsevich-Soibelman wall-

crossing formula
Cecotti:1992rm,Kontsevich:2008fj
[3, 13] for the Witten indices/BPS degeneracies µij = TrRij

(−1)F of 2d

solitons. The µij were extensively studied in
Fendley:1992dm,Cecotti:1992qh,Cecotti:1992rm
[5, 2, 3] where the wall-crossing phenomenon

was first discussed. One way to state the formula uses the matrix of BPS degeneracies

1 + ⊕zij∈Hµ̂ijeij =
⊗

zij∈H

(1 + µijeij) (2.31) eq:2d-CVKS-prod
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where we assume there are N vacua so we can identify V = {1, . . . , N}, eij are elementary

N × N matrices, 1 is the N × N unit matrix, and in the tensor product we order the

factors left to right by the clockwise order of the phase of zij . Continuous deformations of

the Kähler metric gIJ̄ or the superpotential will lead to jumps of the µij when zij become

parallel. The wall-crossing formula states that nevertheless, the matrix (
eq:2d-CVKS-prod
2.31) remains

constant as long as no ray enters of leaves H.

The matrix (
eq:2d-CVKS-prod
2.31) is sometimes called the “spectrum generator.” We now “categorify”

the spectrum generator, and define R̂ij from the formal product

R̂ := ⊕N
i,j=1R̂ijeij :=

⊗

zij∈H

(Z · 1 + Rijeij) (2.32) eq:Cat-KS-prod

Note that R̂ii = Z is concentrated in degree zero and R̂ij = 0 if zij points in the opposite

half-plane −H. If J = {j1, . . . , jn} is a half-plane fan in H then we define

RJ := Rj1,j2 ⊗ · · · ⊗Rjn−1,jn (2.33) eq:RJ

and R̂ij is just the direct sum over all RJ for half-plane fans J that begin with i and end

with j.

Remarks:

1. We can “enhance” the (categorified) spectrum generator R̂ with “Chan-Paton fac-

tors.” By definition, Chan-Paton data is an assignment i → Ei of a Z-graded module

to each vacuum i ∈ V. The modules Ei will be referred to as Chan-Paton factors.

The enhanced spectrum generator is defined to be

R̂(E) := ⊕i,j∈VR̂ij(E)eij := (⊕i∈VEieii) R̂ (⊕j∈VEjejj)
∗ (2.34) eq:Add-CP-Hop

2. Phase ordered products such as (
eq:2d-CVKS-prod
2.31) have also appeared in many previous works

on Stokes data, so the Rij can also be considered to be “categorified Stokes factors”

and R̂ is an “categorified Stokes matrix.”

3. If we consider a family of theories where the rays zij and zjk pass through each other

then the categorified spectrum generator R̂ is in general not invariant. In Lecture 3

will discuss the categorified version of the above wall-crossing formula.

2.5 A∞-Categories Of Thimbles And Branes

2.5.1 The A∞-Category Of Thimbles

We now want to define the A∞-category of Thimbles, denoted Vac: Suppose we are given

the data of a Theory T and a half-plane H. Then Vac has as objects the vacua i, j, · · · ∈ V

(as we will see, they are better thought of as Thimble branes Ti,Tj , . . . ). The space of

morphisms Hom(j, i), (which we also denote as Hop(i, j) := Hom(j, i) since many formulae

in A∞-theory look much nicer when written in terms of Hop) is simply

Hop(i, j) := R̂ij (2.35)
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We can enhance the category with Chan-Paton factors. The morphism spaces are simply

HopE(i, j) := R̂ij(E) = EiR̂ijE
∗
j . (2.36)

The corresponding category is denoted Vac(E).

Now we need to define the A∞-multiplication in Vac(E) of an n-tuple of composable

morphisms. As a first step, for any half-plane web u we define a map

ρ(u) : TR̂(E) ⊗ TRint → R̂(E) (2.37)

It will be graded symmetric on the second tensor factor. As usual, we define the element

ρ(u)[r∂1 , . . . , r
∂
m; r1, . . . , rn] (2.38) eq:Rho-rp-r

by contraction. We will abbreviate this to ρ(u)[P ;S] where P = {r∂1 , . . . , r
∂
m} and S =

{r1, . . . , rn}. We define ρ(u)[P ;S] to be zero unless the following conditions hold:

• The numbers of interior and boundary vertices of u match the number of arguments

of either type: V∂(u) = m and Vi(u) = n.

• The boundary arguments match in order and type those of the boundary vertices:

r∂a ∈ RJ
v∂a

(u)(E).

• We can find an order of the interior vertices Vi(u) = {v1, . . . , vn} of u such that they

match the order and type of the interior arguments: ra ∈ RIva (u)
.

If the above conditions hold, we will simply contract all internal lines with K and

contract the Chan Paton elements of consecutive pairs of r∂a by the natural pairing Ei⊗E∗
j →

δijZ. With this definition in hand, we can check that the convolution identity for taut

elements implies a corresponding identity for ρ[tH]:
∑

Sh2(S),Pa3(P )

ǫ ρ(tH)[P1, ρ(tH)[P2;S1], P3;S2] +
∑

Sh2(S)

ǫ ρ(tH)[P ; ρ(tp)[S1], S2] = 0. (2.39) eq:big-rel-rho

where Pa3(P ) is the set of partitions of the ordered set P into an ordered set of three

disjoint ordered sets, all inheriting the ordering of P . We call (
eq:big-rel-rho
2.39) the LA∞ relations.

The most important consequence of these identities is that if we are given an interior

amplitude β, we can immediately produce an A∞ category where the multiplication

ρβ(tH) : TR̂(E) → R̂(E) (2.40) eq:R-AFTYALG

is defined by saturating all the interior vertices with the interior amplitude:

ρβ(tH)[r∂1 , . . . , r
∂
m] := ρ(tH)[r∂1 , . . . , r

∂
m; eβ ]. (2.41)

This has the effect of killing the second term in (
eq:big-rel-rho
2.39) and combining the first summand

into the usual defining relations for an A∞-category. The product is illustrated in Figure
fig:AINFTY-PRODUCT
26:

Remark: The conceptual meaning of (
eq:big-rel-rho
2.39) is that there is an L∞ morphism from the

L∞ algebra Rint to the L∞ algebra of the Hochschild cochain complex of the A∞ category

Vac(E). The paper
Kapranov:2014uwa
[12] shows that in the present context the map is in fact an L∞

isomorphism.
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Figure 26: Illustrating the A∞-product on time-ordered boundary vectors r∂1 , . . . , r
∂
n. We sum

over taut half-plane webs u, indicated by the green blob, and saturate all interior vertices with the

interior amplitude β. fig:AINFTY-PRODUCT

2.5.2 The A∞-Category Of Branes
subsec:VacCategory

We define a Brane, denoted B = (E ,B) to be a choice of Chan-Paton data E together with

a boundary amplitude, that is, a degree +1 element

B ∈ R̂(E) (2.42)

which solves the Maurer-Cartan equations

∞∑

n=1

ρβ(tH)[B⊗n] = ρβ(tH)[
B

1 − B
] = 0. (2.43) eq:boundary-amp

The category of Branes is denoted Br. It depends on the Theory T and the half-plane

H. Its objects are Branes B = (E ,B) where E is any choice of Chan Paton data E and B

is a compatible boundary amplitude. The space of morphisms from B2 to B1 is defined

by simply modifying the enhanced spectrum generator to

Hop(B1,B2) :=
(
⊕iE

1
i eii
)
⊗ R̂⊗

(
⊕iE

2
i eii
)∗

. (2.44) eq:BHOM

In order to define the composition of morphisms

δ1 ∈ Hop(B0,B1), δ2 ∈ Hop(B1,B2), . . . , δn ∈ Hop(Bn−1,Bn) (2.45)

we use the formula

Mn(δ1, . . . , δn) := ρβ(tH)

(
1

1 − B0
, δ1,

1

1 −B1
, δ2, . . . , δn,

1

1 − Bn

)
. (2.46) eq:BraneMultiplicat

Note that Mn(δ1, . . . , δn) ∈ Hop(B0,Bn). After some work (making repeated use of the

fact that the Ba solve the A∞-Maurer-Cartan equation) one can show that the Mn satisfy

the A∞-relations and hence Br is an A∞-category.

Remarks:
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1. The multiplication (
eq:BraneMultiplications
2.46) can be illustrated much as in Figure

fig:AINFTY-PRODUCT
26. The only difference

is that now the boundary vectors r∂s don’t have to saturate all boundary vertices.

Rather, boundary vertices between r∂k and r∂k+1 can be saturated by the boundary

amplitude Bk.

2. For each vacuum i we define the Thimble Brane Ti to be the brane with CP data

E(Ti)j = δi,jZ with boundary amplitude B(Ti) = 0. Then the category of Thimbles

Vac is a full subcategory of Br. ♣Say it also for

Vac(E). ♣

2.5.3 Realization In The LG Model
subsubsec:BraneAmpLG

Choose H to be the positive half-plane with boundary conditions set by a Lagrangian

L ⊂ X. The Chan-Paton data is given by the MSW complex:

Ei = ML,i (2.47)

We consider amplitudes with boundary conditions shown in Figure
fig:HALFPLANEBC
27. Counting the

number of ζ-instantons satisfying these boundary conditions can be used to define an

element in BJ ∈ E ⊗ RJ ⊗ E∗. As with the case of the interior amplitude, localization of

the path integral to the moduli space of ζ-instantons together with Qζ-closure of the state

produced by the path integral implies that B is a boundary amplitude in the above sense.

In general Hop(B1,B2) is a space of Qζ-closed local boundary operators and the

physical interpretation of Mn(δ1, . . . , δn) is that we are taking a kind of “operator product.”

The Qζ closure of the path integral implies that the Mn satisfy the A∞-MC equation.

Figure 27: Boundary conditions for general half-plane instantons with fan boundary conditions

at x → +∞ and solitons at τ → ±∞. fig:HALFPLANEBC

Remark: If we want good morphism spaces associated to the interval [xℓ, xr] we

need to restrict the class of Lagrangian submanifolds, as we have seen. In the web-based

formalism we definitely do not want branes of class Tκ for κ ∈ U(1)−{±ζ}!! One way to see

this is that it is important to allow left-boundary branes which are left Lefshetz thimbles

of phase ζ. These are in Tζ , not Tκ. Moreover, the construction of the category should not

depend on the particular position xℓ of the boundary. But again from equation (
eq:x-flow
1.24) it is

clear that it would depend on xℓ if we used branes of class Tκ. In
AlgebraicStructures
[8] it is argued that the

suitable class of branes are W -dominated branes for which Im(ζ−1W ) → +∞ at infinity.

(For right-branes on boundaries of the negative half-plane we require Im(ζ−1W ) → −∞.)
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Figure 28: We count rigid ζ-instantons in the funnel geometry to define an A∞-morphism between

the FS category and the web-based category. The branes B1,B2 are in class Tζ . fig:FUNNEL-STRIP

2.6 Relation Of The Web-Based Formalism To The FS Category

Now we would like the relate the A∞-category constructed in the FS approach and in the

web-based approach, say, for the positive half-plane. The web-based formalism applies to

branes of class Tζ and our description of the FS category applies to branes of class Tκ with

κ 6= ±ζ.

To relate the two we strongly use the rotational non-invariance of the ζ-instanton

equation and consider the FS category based on branes of class Tζ but now the morphism

spaces are defined by solving the equation on a horizontal strip, obtained from the vertical

one by rotation by π/2. Thus, to define the MSW complex MB1,B2 the generators are

given by solutions of the ζ-instanton equation which are invariant under translation in x,

not in τ . Now we can use branes of class Tζ on the upper and lower boundary.

To relate the FS and web-based categories we now consider the ζ-instanton equation

on the funnel geometry of Figure
fig:FUNNEL-STRIP
28:

A state in the far past at x → −∞ on the strip is an incoming soliton, in the above

sense. A state in the morphisms in the web-based formalism gives half-plane fan boundary

conditions at infinity for the positive half-plane. But these two states determine boundary

conditions for the ζ-instanton equation on the space in Figure
fig:FUNNEL-STRIP
28. We can therefore define

a map

U : MB1,B2 → Hop(B1,B2) (2.48)

The matrix elements of U are defined by counting ζ-instantons in the funnel geometry.

When we consider states of the same fermion number the expected dimension of the moduli

space is dimension zero and the moduli space is expected to be a finite set of points.

To prove that U is a chain map we consider the one-dimensional moduli spaces of so-

lutions to the ζ-instanton equation between states whose fermion number differs by 1. The

two ends correspond to ζ-instantons far down the strip - giving the differential on MB1,B2

and taut webs far out on the positive half-plane, giving the differential on Hop(B1,B2),

so

U ◦MFS
1 −Mweb

1 ◦ U = 0 (2.49)

where M1 denotes the differential on the morphisms in the A∞-category. U can be extended

to an A∞-equivalence between the categories
AlgebraicStructures
[8].
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Figure 29: When the difference of fermion numbers of ingoing and outgoing states is +1 there

will be a one-dimensional moduli space of ζ-instantons. The two typical boundaries are indicated

in (a) and (b). They lead to the two terms in the equation assuring that U is a chain map. fig:FUNNEL-CHAINMAP

3. Lecture 3: Interfaces And Categorified Wall-Crossing

3.1 Motivation: Interfaces In Landau-Ginzburg Models
subsec:LG-Interface

Suppose we have a family of superpotentials W (φ; c), parametrized by a point c in a

topological space C. 4 Suppose ℘ : [xℓ, xr] → C is a continuous path. Then we can define

a variant of LG theory based on an x-dependent superpotential:

Wx(φ) := W (φ;℘(x)), (3.1)

so that Wx(φ) is constant (in x) for x ≤ xℓ and for x ≥ xr. Clearly this 1 + 1 dimensional

theory no longer has translational invariance. It does, however, still have two out of the four

supersymmetries of LG theory. This is demonstrated most easily if we take the approach

via Morse theory/SQM using the Morse function on Map(R,X):

h = −

∫

R

[
φ∗(λ) −

1

2
Re(ζ−1W (φ;℘(x))dx

]
(3.2) eq:Interface-h

Clearly the resulting theory has a kind of “defect” or “domain wall” localized near [xℓ, xr]

interpolating between the left LG theory defined with superpotential Wxℓ
(φ) and the right

LG theory defined with superpotential Wxr(φ)).

We will refer to this as a (LG, supersymmetric) interface. The term “Janus” is also

often used in the literature.

Thus we have a continuous family of vacuum weights

zi(x) = ζW̄x(φi,x) (3.3)

where the vacuum i is parallel transported from the vacua in the theory at xℓ and φi,x are

the critical points of the superpotential Wx(φ). The ζ-instanton equation now becomes:

(
∂

∂x
+ i

∂

∂τ

)
φI =

iζ

2
gIJ̄

∂W̄

∂φ̄J̄
(φ̄;℘(x)) (3.4) eq:LG-forced-flow
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Figure 30: An analog of the boosted soliton for the case of a supersymmetric interface. fig:FORCEDFLOWBOOST

and ζ-solitons are just τ -independent solutions. The analog of boosted solitons have curved

worldlines, as in Figure
fig:FORCEDFLOWBOOSTEDSOLITON
30

Now, we would like to define a relation of the branes in the left theory to the branes

in the right theory by “parallel-transporting” across the interface.

3.2 Abstract Formulation: Flat Parallel Transport Of Brane Categories

Suppose we have a “continuous family of Theories.” We use the term “Theory” in the

sense of the web formalism. To make sense of this one must put a topology on the set of

Theories. Note that the set of vacuum weights V of (
eq:VacWtSpace
2.7) carries a natural topology. Thus

we can certainly speak of a continuous map

℘ : [xℓ, xr] → V = CN − E (3.5) eq:tame

We call this a vacuum homotopy.

More generally, one could also define a sense in which web representations and the

interior amplitudes change continuously. So, in general, we have a continuous family of

Theories T (x) on [xℓ, xr]. We would like to relate T ℓ = T (xℓ) to T r = T (xr). More

precisely, we want to define an A∞-functor

F(℘) : Br(T ℓ,H) → Br(T r,H) (3.6)

where H is, say, the positive half-plane.

The functor F(℘) is meant to be a categorical version of parallel transport by a flat

connection. Thus we want:

1. An A∞-equivalence of functors:

F(℘1) ◦ F(℘2) ∼= F(℘1 ◦ ℘2) (3.7)

4C can be any space, but the notation is again chosen because one of the primary motivations is the

theory of spectral networks and Hitchin systems.
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for composable paths ℘1, ℘2.

2. An A∞-equivalence of functors:

F(℘1) ∼= F(℘2) (3.8)

for paths ℘1, ℘2 homotopic in, say, V.

We will show that one can construct such functors for “tame” vacuum homotopies,

of the type (
eq:tame
3.5). Flushed with success we then want to extend the construction to more

general vacuum homotopies for paths of weights which cross the exceptional walls E. But

you don’t always get what you want:

The existence of such a functor forces discontinuous changes of the web representa-

tion and the interior amplitude: This is the categorified version of wall-crossing.

The secret to constructing F(℘) is the theory of Interfaces in the web-based formalism,

to which we turn next.

3.3 Interface Webs And Composite Webs

3.3.1 The A∞-Category Of Interfaces

In order to understand the parallel transport of Brane categories it will actually be very

useful to consider discontinuous jumps between Theories.

Given a pair of vacuum data (V−, z−) and (V+, z+) we can define an interface web by

using the data on the negative and positive half-planes, respectively. Examples are shown

in Figures
fig:DOMAINWALL-CHANPATON
31 and

fig:ID-INTERFACE
33 below. We can define the taut element t−,+ and write a convolution

identity.

If we are given left and right Theories (T −,T +) then we can define a representation

of interface webs:

1. Chan-Paton factors now depend on a pair of vacua Ej−,j′+
.

2. At a boundary vertex we have the representation:

RJ(E) := Ejm,j′1
⊗R+

J ′
+
⊗ E∗

j1,j′n
⊗R−

J−
. (3.9) eq:RJ-intfc

associated to the picture in Figure
fig:DOMAINWALL-CHANPATON
31, where J = (J−, J

′
+).

Now the categorified spectrum generator is given by the product

R̂(E) =
(
⊕i,i′Eii′ eii ⊗ ei′i′

)
⊗ R̂(T −,H−)tr ⊗ R̂(T +,H+) ⊗

(
⊕j,j′Ejj′ ejj ⊗ ej′j′

)∗
(3.10) eq:Inf-Vac-Homs2

See Figure
fig:DOMAINWALL-CHANPATON
31 for a typical summand.
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Figure 31: Conventions for Chan-Paton factors localized on interfaces. If representation spaces

are attached to the rays then this figure would represent a typical summand in Hom(jmj′1, j1j
′
n).

We order such vertices from left to right using the conventions of positive half-plane webs. fig:DOMAINWALL-CHAN

Now an interface amplitude is a degree one element B−,+ ∈ R̂(E) satisfying the A∞-MC

equation:

ρ(t−,+)

(
1

1 − B−,+
; eβ− ; eβ+

)
= 0 (3.11)

We define an Interface to be a pair

I−,+ = (E−,+,B−,+) (3.12)

and we can define an A∞-category of Interfaces, denoted

Br(T −,T +). (3.13)

The objects of Br(T −,T +) are Interfaces, for some choice of CP data and the space of

morphisms between I
−,+
2 and I

−,+
1 is the natural generalization of (

eq:BHOM
2.44):

Hop(I−,+
1 ,I−,+

2 ) :=
(
⊕i,i′E

1
ii′ eii ⊗ ei′i′

)
⊗R̂(T −,H−)tr⊗R̂(T +,H+)⊗

(
⊕j,j′E

2
jj′ ejj ⊗ ej′j′

)∗
.

(3.14)

The A∞-multiplications are given by the natural generalization of equation (
eq:BraneMultiplications
2.46): we just

contract with the taut element tH → t−,+ and saturate all interior vertices with the left or

right interior amplitude β−, β+.

Remarks:

1. An Interface between the empty theory and itself is precisely the data of a Chain

complex. See Figure
fig:INTFCE-TRIV-TRIV
32 for the explanation.

2. The identity Interface. A very useful example of an Interface is the identity Interface

Id ∈ Br(T ,T ). The CP spaces are

E(Id)ij = δi,jZ (3.15)
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Figure 32: The only taut interface web when T ℓ, T r are the trivial theory has two boundary

vertices. The boundary amplitude is associated to a single boundary vertex: B ∈ E ⊗ E∗ is a

morphism of E of degree one. There is only one taut web, shown above. The MC therefore says

that B2 = 0. Thus as Interface between the trivial theory and itself is the same thing as a chain

complex. fig:INTFCE-TRIV-TRI

and

R̂(E) = ⊕i,jR̂
+
ij ⊗ R̂−

jieij ⊗ eij (3.16)

where the superscripts ± indicate that R̂ is defined with respect to the positive,

negative half-plane, respectively. To define the interface we take BI to have nonzero

component only in summands of the form Rij⊗Rji corresponding to the fan {i, j; j, i}.

The vertex looks like a straight line of a fixed slope running through the domain wall.

The boundary amplitude is the element in Rij ⊗Rji given by K−1
ij . and the Maurer-

Cartan equation is proved by Figure
fig:ID-INTERFACE
33:

3. Landau-Ginzburg interfaces and branes in the product theory : In the context of

Landau-Ginzburg models we can consider interfaces between a theory defined by

(X1,W1) on the negative half-plane and (X2,W2) on the positive half-plane. By the

doubling trick we would expect such interfaces to be related to branes for the posi-

tive half-plane of the theory based on (X̄1 ×X2, W̄1 + W2). This is morally correct,

but there are two closely related subtleties which should be pointed out. First, from

the purely abstract formalism, if we try to related Interface amplitudes for a pair of

Theories T −,T + to boundary amplitudes for T − × T + we will, in general, fail: The

vacua of the product theory are labeled by (j−, j+) but the slopes of the edges of

the webs are the slopes of zj1−,j2−
+ zj1+,j2+

. In general half-plane fans for the product

theory will have nothing to do with pairs of half-plane fans in the left and right the-

ories. The two concepts will be equivalent, however, in the special case that the web

representations are of the form

R(j1−,j1+),(j2−,j2+) = δj1−,j2−
R+

j1+,j2+
⊕ δj1+,j2+

R−
j1−,j2−

. (3.17) eq:SpecialRep
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Second, on the Landau-Ginzburg side, if we literally take the product metric and the

product superpotential then the Morse function h1+h2 is too degenerate: The critical

manifolds are R×R, corresponding to a center of mass collective coordinate for two

separate solitons. We must perturb the theory by perturbing the superpotential with

∆W (φ̄1, φ2). Generic such perturbations will in fact produce MSW complexes giving

web representations of the form (
eq:SpecialRep
3.17).

Figure 33: Examples of taut interface webs which contribute to the Maurer-Cartan equation for

the identity interface Id between a Theory and itself. fig:ID-INTERFACE

3.3.2 Composition Of Interfaces

A crucial new ingredient is that Interfaces can be composed. Suppose we have a situation

as shown in Figure
fig:CompInterface1
34 with a pair of Interfaces I−,0 and I0,+:

Figure 34: Two interfaces between a sequence of three Theories. fig:CompInterface1

then we will produce a new Interface, denoted

I−,0
⊠ I0,+ ∈ Br(T −,T +) (3.18)

– 38 –



as shown in Figure
fig:CompInterface2
35:

Figure 35: The Interface resulting from the “operator product” of the two Interfaces. fig:CompInterface2

The key idea in the construction is to use “composite webs” c = (u−, s, u+). An

example is shown in Figure
fig:COMPOSITEWEB1
36:

Figure 36: An example of a composite web, together with conventions for Chan-Paton factors. In

this web the fan of vacua at infinity has J∞(c) = {j′1, . . . j
′
n; j1, . . . , jm} Reading from left to right

the indices are in clockwise order. fig:COMPOSITEWEB1

Again one can develop the whole web theory, write taut elements and a convolution

identity. (The convolution identity has some novel features. See
AlgebraicStructures
[8] for details.) The upshot

is that the product Interface I−,0
⊠ I0,+ has

1. Chan-Paton data:

E(I−,0
⊠ I0,+)ii′ := ⊕i′′∈V0E−,0

i,i′′ ⊗ E0,+
i′′,i′ (3.19) eq:Comb-CP

2. Interface amplitude:

B(I−,0
⊠ I0,+) := ρβ(tc)

[
1

1 − B−,0
;

1

1 − B0,+

]
(3.20) eq:InterfaceComp

where tc is the taut element for composite webs.

Using the convolution identity (omitted here) one can show that it indeed satisfies

the Maurer Cartan equations for an interface amplitude between the theories T − and

T + with Chan-Paton spaces (
eq:Comb-CP
3.19).
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Now one can show that we have an A∞-bifunctor

Br(T −,T 0) ×Br(T 0,T +) → Br(T −,T +) (3.21)

This is illustrated in Figure
fig:InterfaceBiFunctor
37

Figure 37: Illustrating the bi-functor property: We take the “OPE” of both local boundary

operators on the interfaces, and of the interfaces, shown in (a), to produce a local operator on an

interface, shown in (b). fig:InterfaceBiFunc

An important special case is the case where T − is the trivial Theory so that Br(T −,T 0) =

Br(T 0). Then we see that an Interface in Br(T 0,T +) gives an A∞-functor on categories

of Branes:

Br(T 0) ×Br(T 0,T +) → Br(T +) (3.22)

Physically: We are moving a 0,+ interface into a boundary and mapping a boundary

condition for Theory T 0 to one for Theory T +.

Thus, our quest for parallel transport of Brane categories will be fulfilled if we can find

suitable Interfaces I[℘] associated with paths between theories T ℓ and T r.

3.3.3 Homotopy of Branes and Interfaces

Part of the A∞-structure of the category of Branes and Interfaces is that the Hop spaces

have a differential: If δ ∈ Hop(B1,B2) then

M1(δ) = ρβ(tH)

(
1

1 − B1
, δ,

1

1 − B2

)
(3.23)

and M1 ◦ M1 = 0, when this makes sense. We can thus define a notion of homotopy

equivalence of Branes (and entirely parallel definitions apply to Interfaces):

1. Two morphisms are homotopy equivalent if δ1 − δ2 = M1(δ3).

2. Two Branes are homotopy equivalent, denoted, B ∼ B′, if there are two M1-closed

morphisms δ : B → B′ and δ′ : B′ → B which are inverses up to homotopy. That is:

M2(δ, δ
′) ∼ Id M2(δ′, δ) ∼ Id. (3.24) eq:hmtpy-Br

where Id is the natural identity in ⊕iEi ⊗ E∗
i .
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3.3.4 An A∞ 2-Category Of Interfaces

A natural question to ask about the composition of Interfaces is whether it is associative.

In fact, to define the composite webs we need to choose positions on the x-axis of the two

domain walls and where the final interface should be located. These positions can influence

the set of composite webs. So we should really denote the product of Interfaces by

(
I−,0

⊠ I0,+
)
x−,0,x0,+,x−,+ (3.25)

However, one can show that the product only depends on these positions up to homotopy

equivalence. The proof, which is somewhat long involves developing a theory of webs

which are time-dependent. Similarly, one can prove that the composition is associative, up

to homotopy equivalence. All the details are in
AlgebraicStructures
[8].

The net result of this is that we have what might be called an “A∞-2-category” struc-

ture:

1. The objects, or 0-morphisms are the Theories.

2. The 1-morphisms between two Theories are Interfaces I−,+.

3. The 2-morphisms between two 1-morphisms are the boundary-changing operators on

the Interface.

This is illustrated in Figure
fig:TwoCategoryInterfaces
38:

Figure 38: Illustrating the two category of Theories, Interfaces, and boundary operators. fig:TwoCategoryInte

3.4 An example of categorical transport

We will now sketch how one can actually construct a parallel transport interface for a tame

vacuum homotopy:

℘ : x 7→ {zi(x)} ∈ CN − E (3.26) eq:SpinningWeights

which does not cross the exceptional walls E. We assume ℘(x) only varies on a compact

set [xℓ, xr].

Our goal is to define an Interface

I[℘] ∈ Br(T ℓ,T r) (3.27)
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so that if ℘1(x) ∼ ℘2(x) give homotopic paths of vacuum weights with fixed endpoints

then I[℘1] and I[℘2] are homotopy-equivalent Interfaces, and such that if we compose two

paths then

I[℘1] ⊠ I[℘2] ∼ I[℘1 ∗ ℘2] (3.28) eq:trspt-1

where ∼ means homotopy equivalence.

The key is to construct an analogous theory of curved webs where the ij edges have

tangents at (x, τ) parallel to zi(x) − zj(x). One crucial new feature emerges for curved

webs. Following the tangent vectors, sometimes the edges are forced to go to infinity at

finite values of x. These special values of x are known as binding points. We can have

“future stable” binding points as in Figure
fig:FUTURESTABLE-1
39 or “past stable” binding points as in Figure

fig:PASTSTABLE-1
40.

Figure 39: Near a future stable binding point x0 of type ij the edges of type ij and of type ji

asymptote to the dashed green line x = x0. Figure (a) shows the behavior of edges of type ij and

Figure (b) shows the behavior of edges of type ji. fig:FUTURESTABLE-1

Figure 40: Near a past stable binding point x0 of type ij the edges of type ij and of type ji

asymptote to the dashed green line x = x0. Figure (a) shows the behavior of edges of type ji and

Figure (b) shows the behavior of edges of type ij. fig:PASTSTABLE-1

The binding points x0 are characterized as the values of x for which

zij(x0) ∈ iR+ (3.29) eq:Sij-Ray-def

The future/past stability is determined by the sense in which Re (zij(x)) passes through

zero as x passes through x0:

1. Future stable binding point : As x increases past x0 zij(x) goes through the positive

imaginary axis in the counter-clockwise direction.
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2. Past stable binding point : As x increases past x0 zij(x) goes through the positive

imaginary axis in the clockwise direction.

Now we define Chan-Paton data of the desired Interface. For each binding point x0
of type ij introduce a matrix with chain-complex entries. It depends on whether x0 is

future-stable or past stable:

Sij(x0) := Z · 1 + Rijeij future stable (3.30) eq:SijFactor-def-fs

Sij(x0) := Z · 1 + R∗
jieij past stable. (3.31) eq:SijFactor-def-ps

We will refer to Sij(x0) as a categorified Sij-factor, or just as an Sij-factor, for short. Then

we define the Chan-Paton factors of the Interface to be:

⊕j,j′∈VEj,j′ej,j′ :=
⊗

i 6=j

⊗

x0∈gij ∪fij

Sij(x0) (3.32) eq:TautCurvedCP

where the tensor product on the RHS of (
eq:TautCurvedCP
3.32) is ordered from left to right by increasing

values of x0. The amplitudes for the Interface are simply given by evaluating the taut curved

web on the interior amplitude: ρ(tcurved)(eβ). (This formula needs some interpretation. See
AlgebraicStructures
[8] for details.) In this way we get an Interface

I[℘] ∈ Br(T ℓ,T r). (3.33) eq:defIth

associated to the tame vacuum homotopy ℘(x). It satisfies the desired properties for

parallel transport.

In particular, thanks to the composition property (
eq:trspt-1
3.28) we can break up I[℘] as a

product of Interfaces as in Figure
fig:ElementaryInterfaces
41:

Figure 41: Breaking up the path ℘ into elementary paths we need only produce special interfaces

for “trivial” transport, and for transport across S-walls. fig:ElementaryInter

We need only construct then the Interfaces for crossing the Sij walls. These are denoted

S
p,f
ij for past and future stable crossings, respectively. The amplitudes can be described

quite explicitly. See
AlgebraicStructures
[8]. The functors (·) ⊠S

p,f
ij are closely related to mutations.

3.4.1 Categorified S-Wall-Crossing
subsubsec:Cat-S-Wall

We now return to one of our motivations from Lecture 1.
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Given an Interface I−,+ associated with a path of theories the framed BPS degeneracies

are, by definition:

Ω(I−,+, ij′) := TrE(I−,+)ij′
(−1)F (3.34) eq:FramedBPS-def

If we consider a path ℘x whose endpoint terminates with z(x), which crosses an ij

binding point as x increases past x0 (and hence z(x) crosses an Sij-wall) then the matrix

of Witten indices

F [℘x] :=
∑

k,ℓ

Ω(I[℘x], k, ℓ)ek,ℓ. (3.35)

jumps by

F 7→

{
F · (1 + µijeij) xij ∈ fij

F · (1− µjieij) xij ∈ gij

(3.36)

This is the framed wall-crossing. Now, since the Witten index of Rij is µij we recognize

the formula for the change of the Interface

I[℘x] → I[℘x] ⊠S
p,f
ij (3.37)

as x crosses the binding point as a categorification of the S-wall crossing formula.

Example: Consider the Theory T N=2 above, that is W ∼ φ3 − zφ. The family is

parametrized by z ∈ C with C = C∗. There are two massive vacua at φ± = ±z1/2. We

choose a path ℘ defined by z(x) in C∗ where x ∈ [ǫ, 1−ǫ] for ǫ infinitesimally small and pos-

itive with z(x) = ei(1−2x)π. There are two binding points of type +− at x = 1/3−0+, 1−0+

and one binding point of type −+ at x = 2/3 − 0+. They are all future stable. The wall-

crossing formula for the framed BPS indices amounts to a simple matrix identity:
(

1 0

1 1

)(
1 −1

0 1

)(
1 0

1 1

)
=

(
0 −1

1 0

)
(3.38) eq:Spl-Fr-WC

where the three factors on the LHS reflect the wall-crossing across the three Sij-rays, and

the matrix on the right accounts for the monodromy of the vacua. The categorification of

the wall-crossing identity (
eq:Spl-Fr-WC
3.38), at least at the level of Chan-Paton complexes, is obtained

by generalizing the left-hand-side of (
eq:Spl-Fr-WC
3.38) to:

(
Z 0

Z[f2] Z

)(
Z Z[f1]

0 Z

)(
Z 0

Z[f2] Z

)
=

(
E−− E−+

E+− E++

)
(3.39) eq:CP-prod

Here E−+ = Z[f1], while

E−− = E++ = Z⊕ Z[f1 + f2] (3.40)

is a complex with a degree one differential (note that f1 + f2 = 1) and

E+− = Z[f2] ⊕ Z[f2] ⊕ Z[f2 + 1] (3.41)

is another complex with a degree one differential. The matrix of complexes (
eq:CP-prod
3.39) is quasi-

isomorphic to the categorified version of the monodromy:
(

0 Z[1 − f2]

Z[f2] 0

)
. (3.42)
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3.5 Categorified Wall-Crossing Ror 2d Solitons

The standard wall-crossing formula for BPS indices of 2d solitons was studied by Cecotti

and Vafa in
Cecotti:1992qh
[2]. It is associated with a homotopy of vacuum weights so that the cyclic

orders of the central charges gets reversed, as in Figure
fig:CAT-CVWC-BPSRAYS
42:

Figure 42: For the path of vacuum weights in Figure [fig:CAT-CVWC-1] we have BPS rays crossing

as in the standard marginal stability analysis of the two-dimensional wall-crossing formula. fig:CAT-CVWC-BPSRAY

We can realize this by the explicit homotopy of vacuum weights shown in Figures
fig:CAT-CVWC-1
43

and
fig:CAT-CVWC-2
44:

Figure 43: An example of a continuous path of vacuum weights crossing a wall of marginal

stability. Here zk = a and zi = b with a, b real and a < 0 < b. They do not depend on x, while

zj(x) = ix. We show typical vacuum weights for negative and positive x and the associated trivalent

vertex. All other vacuum weights are assumed to be independent of x. As x passes through zero

the vertex degenerates with zjk(x) and zij(x) becoming real. Note that with this path of weights

the {i, j, k} form a positive half-plane fan in the negative half-plane, while {k, j, i} form a negative

half-plane fan in the positive half-plane. If we choose xℓ < 0 < xr there is an associated interface

I<>. (We suppress the dependence on xℓ, xr in the notation.) The only vertices are divalent

vertices. These are all the standard amplitude K−1 familiar from the identity Interface Id, except

for α−−

<> ∈ R
(2)
ik ⊗R

(1)
ki . fig:CAT-CVWC-1

The wall-crossing of the BPS indices is a special case of the famous Kontsevich-

Soibelman wall-crossing formula:

(1 + µ
(1)
ij eij)(1 + µ

(1)
ik eik)(1 + µ

(1)
jk ejk) = (1 + µ

(2)
jk eij)(1 + µ

(2)
ik eik)(1 + µ

(2)
ij ejk) (3.43) eq:CV-KS-WC

which gives:

µ
(2)
ij = µ

(1)
ij

µ
(2)
jk = µ

(1)
jk

µ
(2)
ik = µ

(1)
ik + µ

(1)
ij µ

(1)
jk .

(3.44) eq:W-indx-wc
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Figure 44: In this figure the path of weights shown in Figure [fig:CAT-CVWC-1] is reversed.

Again, zk = a and zi = b with a, b real and a < 0 < b, but now zj(x) = −ix. We show typical

vacuum weights for negative and positive x and the associated trivalent vertex. All other vacuum

weights are assumed to be independent of x. Note that with this path of weights the {i, j, k} form

a positive half-plane fan in the positive half-plane, while {k, j, i} form a negative half-plane fan in

the negative half-plane. In order to define an interface we choose initial and final points for the

path −xr < 0 < −xℓ so that, after translation, it can be composed with the path defining I<>.

The interface I>< has several nontrivial vertices. See Figure [fig:CAT-CVWC-8]. fig:CAT-CVWC-2

To categorify this we seek to define Interfaces:

I<> ∈ Br(T ℓ,T r) & I>< ∈ Br(T r,T ℓ) (3.45)

(where the notation is meant to remind us how the half-plane fans are configured in the

negative and positive half-planes). Now, the essential statement constraining these In-

terfaces is that the composition of the Interfaces should be homotopy equivalent to the

identity Interface:

I<> ⊠ I>< ∼ IdT ℓ & I>< ⊠ I<> ∼ IdT r . (3.46) eq:Cat-WC-Form1

In
AlgebraicStructures
[8] we construct such Interfaces I>< and I<> and show that the construction re-

quires the relation:

R
(2)
ij = R

(1)
ij

R
(2)
jk = R

(1)
jk

R
(2)
ik −R

(1)
ik = (Rij ⊗Rjk)+ − (Rij ⊗Rjk)−

=
(
R+

ij −R−
ij

)
⊗
(
R+

jk −R−
jk

)
(3.47) eq:Cat-2dwc

where the superscript ± on the right hand side refers to the sign of (−1)F . Although

the categorified spectrum generator will jump, in general, the equation (
eq:Cat-2dwc
3.47) is clearly a

categorification of the wall-crossing formulae (
eq:W-indx-wc
3.44).

3.6 Potential application to knot homology

To conclude, let us return to the motivation from knot homology. We consider the presen-

tation of a tangle in M3 = R×C, with C = C, and G = SU(2) or G = SO(3) as in Figure
fig:KNOT-HOM-4
8. As we explained, when the za are constant the Morse complex proposed by Witten

is related to that of a Landau-Ginzburg theory called the Yang-Yang theory, described
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by superpotential (
eq:YangYangW-1
1.45). As the za(x1) evolve we have, by the ideas of Section §

subsec:LG-Interface
3.1 an

interface between LG theories.

In fact, the original theory at large negative x1 corresponds to an oper with no sin-

gularities and is the trivial theory. Likewise, the final theory at large positive x1 also

corresponds to an oper with no singularities and is again the trivial theory. Recall that an

Interface between the trivial theory and itself is nothing other than a chain complex. To

construct this complex we can proceed by breaking up the path into elementary paths for

which we compute elementary Interfaces as in Figure
fig:ElementaryInterfaces
41.

It is clear that there will be three kinds of elementary Interfaces we must understand:

Let us denote the YY theory appropriate to a fixed value of x1 by T ({za}, {ka}). (It turns

out that boundary conditions at infinity forces the number q of chiral fields wi to be given

by q = 1
2

∑
a ka, so there is no need to indicate q.)

1. If the path ℘±
a1,a2 braids two points za1(x) and za2(x) while all other points za(x),

for a 6= a1, a2 are fixed (on some small interval in x) then there will be braiding

Interfaces I±(℘±
a1,a2) between the theory T ({za}, {ka}) and itself. The superscript

indicates whether the braiding is clockwise or counterclockwise. These will be very

similar to the S-wall interfaces discussed above.

2. If two points za1(x) and za2(x) annihilate (and then necessarily ka1 = ka2) then there

will be a fusing Interface between T ({za}, {ka}) and the theory with za1 and za2
eliminated. Let us denote it by I<(a1, a2) These can probably be constructed using

a theory of cluster webs described in
AlgebraicStructures
[8], but the full details have not been worked

out yet.

3. The creation Interface I>(a1, a2) will just be the time reverse of the fusing Interface.

Now, a tangle such as shown in Figure
fig:KNOT-HOM-4
8 is an x1-ordered instruction of creation of

pairs of points, braidings of points, and annihilations of pairs of points. Let us denote the

corresponding ordered set of Interfaces for the tangle as I1, . . . ,IN for some N where each

Is is one of the four types of interfaces described above. Then we can use the interface

product ⊠ described above to construct

I(Tangle) := I1 ⊠ · · ·⊠ IN . (3.48)

This is an Interface between the trivial theory and itself. As just mentioned, it is therefore a

chain complex. Let us call it K̂(L). We conjecture that the chain complexes so constructed

define a knot homology theory. The required double-grading comes about as follows: The

Rij and Chan-Paton data have the usual grading by (−1)F . The second grading comes

from integrating dW on cycles. ♣Need to add

acknowledgements.

♣
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