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Introduction
Chiral fields are very familiar to practitioners of 
2d conformal field theory and 3d Chern-Simons theory

I will describe certain generalizations of this mathematical structure, 
for the case of abelian gauge theories involving differential forms 
of higher degrees,  defined in higher dimensions, and indeed  valued
in (differential) generalized cohomology theories. 

These kinds of theories arise naturally in supergravity and superstring theories, 
and play a key role in the theory of  D-branes and in the claims of moduli
stabilization in string theory that have been made in the past few years. 



A Simple Example
U(1)  3D Chern-Simons theory

N ∈ Z

What about the odd levels?  In particular what about k=1 ? 

exp

∙
2πiN

Z
Y

AdA

¸
F ∈ Ω2Z(Y ) A→ A+ ω, ω ∈ Ω1Z(Y )
Quantization on Y = D × R gives
H(D) = basic representation of \LU(1)2N



Spin-Chern-Simons

But we can make it well-defined if we introduce a  spin structure  α

Z = Spin bordism of Y. 

Problem: Not well-defined. 

Depends on spin structure:  

exp

∙
2πi
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¸

e2πiqα(A) = exp

∙
iπ

Z
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AdA

¸
= exp

∙
2πi

Z
Z
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F 2
¸

² ∈ H1(Y ;Z/2Z)qα+²(A) = qα(A) +
1

2

Z
Y

² ∧ F



The Quadratic Property

We can only write 

as a heuristic formula, but it is rigorously true that

qα(A+ a1 + a2)− qα(A+ a1)− qα(A+ a2) + qα(A)

qα(A) =
1
2

R
Y
AdA mod Z

=

Z
Y

a1da2 mod Z



Quadratic Refinements
Let A, B be abelian groups, together with a bilinear map  

b : A× A→ B

A quadratic refinement is a map q : A→ B

q(x1 + x2)− q(x1)− q(x2) + q(0) = b(x1, x2)
does not make sense when  B  has 2-torsionq(x) = 1

2b(x, x)

As is the case for B = R/Z

So it is nontrivial to define qα(A)



General Principle

An essential feature in the formulation of 
self-dual theory always involves a choice 
of certain quadratic refinements.



Holographic Dual  

Holographic dual = ``chiral half’’ of the Gaussian model 

φ ∼ φ+ 1

Conformal blocks for R2 = p/q
= CS wavefunctions for N = pq

The Chern-Simons wave-functions Ψ(A|M) are the conformal 
blocks of the chiral scalar coupled to an external current = A:

Chern-Simons Theory on Y 2D RCFT on M = ∂Y

πR2
R
M
dφ ∗ dφ

∼=

Ψ(A) = Z(A) = hexp
Z
M

Adφi



Holography & Edge States
Quantization on Y = D × R
quantization of the chiral scalar on ∂Y = S1 × R

is equivalent to 

What about the odd levels?  In particular what about k=1 ? 

Gaussian model for R2 = p/q has level 2N = 2pq current algebra. 

When  R2=2 we can define a ``squareroot theory’’

This is the theory of a self-dual scalar field.

Quantization on S1 × R gives
H(S1) = representations of \LU(1)2N



The Free Fermion
Indeed, for R2 =2  there are four reps of the chiral algebra:  

1, e±
i
2φ, eiφ

From this viewpoint, the dependence on spin structure is obvious.

Free fermion: ψ = eiφ

Self-dual field is equivalent to the theory of a chiral free fermion. 

A spin structure on a Riemann surface Μ  is a quadratic refinement of 
the intersection form modulo 2 on                .      This is how the notion of 
spin structure will generalize. 

Note for later reference:

H1(M,Z)



General 3D Spin Abelian
Chern-Simons 

3D classical Chern-Simons with compact gauge group G classified by 

k ∈ H4(BG;Z)
3D classical spin Chern-Simons with compact gauge group classified by 
a different generalized cohomology theory

0→ H4(BG;Z)→ E4(BG;Z)w2→H2(BG;Z2)

Gauge group G = U(1)r

E4(BG;Z)

H4(BG;Z) Even integral lattices of rank r 

Integral lattices Λ of  rank r.

D. Freed 

exp[iπ
R
kijA

idAj ]



Classification of quantum spin 
abelian Chern-Simons theories

Theorem (Belov and Moore)  For G= U(1)r let Λ be the integral lattice 
corresponding to the classical theory. Then the quantum theory only depends
on

a.) σ(Λ) mod 24

|D|−1/2
X
γ∈D

e2πiq(γ) = e2πiσ/8

of the bilinear form on D = Λ∗/Λ so that
b.) A quadratic refinement q : D → R/Z



Higher Dimensional 
Generalizations

Our main theme here is that there is a generalization of this story to higher 
dimensions and to other generalized cohomology theories. 

This generalization plays an important role in susy gauge theory, 
string theory, and M-theory 

Main Examples: 

• Self-dual (2p+1)-form in (4p + 2) dimensions.  (p=0: Free fermion & p=1: M5 brane)

• Low energy abelian gauge theory in Seiberg-Witten solution of d=4,N=2 susy

• RR fields of type II string theory

• RR fields of type II ``orientifolds’’



Generalized Maxwell Field 
Spacetime = M, with dim(M) =n

All encoded in the holonomy function 

Gauge invariant information: 

Maxwell 

Dirac

Bohm-Aharonov-
Wilson-’t Hooft:

a ∈ H`(M ;Z)

H`−1(M ;R/Z)

Fieldstrength

Characteristic class

Flat fields

F ∈ Ω`(M)

χ : Z`−1(M)→ R/Z



Differential Cohomology
a.k.a.   Deligne-Cheeger-Simons Cohomology

To a manifold M and degree l we associate an infinite-
dimensional abelian group of characters with a fieldstrength: 

Simplest example:  

Next we want to get a picture of the space Ȟ`(M) in general

Ȟ`(M)

χ(Σ) = exp[2πi
R
B
F ]Σ = ∂B

F = dφȞ1(M) =Map(M,U(1))



Structure of the Differential 
Cohomology Group - I

Fieldstrength exact sequence:

Characteristic class exact sequence:

F

A

0→
flatz }| {

H`−1(M ;R/Z)→ Ȟ`(M)
fieldstrength−→ Ω`Z(M)→ 0

Connected!

0→ Ω`−1(M)/Ω`−1Z (M)| {z }
Topologically trivial

→ Ȟ`(M)
char.class−→ H`(M ;Z)| {z }

Topological sector

→ 0



Structure of the Differential 
Cohomology Group - II

V : Infinite-dimensional vector space of “oscillator modes.” V ∼= Imd†.

H`(M,Z)

T : Connected torus of topologically trivial flat fields:

Γ: Discrete (possibly infinite) abelian group of topological sectors: H`(M,Z).

W`−1(M) = H`−1(M,Z)⊗ R/Z

Ȟ` = T × Γ× VThe space of differential characters has the form: 

W`−1

V



Example 1: Loop Group of U(1) 

Ȟ1(S1) =Map(S1, U(1)) = LU(1)

w ∈ H1(S1,Z) ∼= Z

Configuration space of a periodic scalar field on a  circle:

Topological class = Winding number: 

H0(S1,R/Z) ∼= R/ZFlat fields = Torus              of  constant maps: T

V = Ω0/R
Ȟ1(S1) = T× Z× V

Vector Space: 

ϕ(σ) = exp

∙
2πiφ0 + 2πiwσ +

X
n6=0

φn
n
e2πinσ

¸
Loops admitting a logarithm.

This corresponds to the explicit decomposition:



More Examples

Ȟ2(M) Group of isomorphism classes of line bundles with 
connection on M. 

Ȟ3(M) Group of isomorphism classes of gerbes with connection
on M:  c.f. B-field of type II string theory 

Ȟ4(M) Home of the abelian 3-form potential of 11-dimensional 
M-theory. 

Ȟ0(pt) = Z Ȟ1(pt) = R/Z



Multiplication and Integration

Ȟ`1(M)× Ȟ`2(M)→ Ȟ`1+`2(M)

There is a ring structure: 

Fieldstrength and characteristic class multiply in the usual way. 

Ms → X
↓ ↓
s ∈ S

Family of compact oriented n-folds Z
X/S

: Ȟ`(X )→ Ȟ`−n(S)

Recall:  Ȟ1(pt) = R/Z



Poincare-Pontryagin Duality
M is compact, oriented,  dim(M) = n

There is a very subtle PERFECT PAIRING on differential cohomology:

Ȟ`(M)× Ȟn+1−`(M)→ R/Z

h[Ǎ1], [Ǎ2]i :=
Z Ȟ

M

[Ǎ1] ∗ [Ǎ2]

On topologically trivial fields:

h[A1], [A2]i =
Z
M

A1dA2 mod Z



Example:Cocycle of the Loop Group 
Recall Ȟ1(S1) = LU(1):

ϕ = exp(2πiφ) φ : R→ R

hϕ, ϕ̃i =??

φ(s+ 1) = φ(s) + w w ∈ Z is the winding number.

hϕ, ϕ̃i =
Z 1

0

φ
dφ̃

ds
ds− wφ̃(0) mod Z

Note! This is (twice!) the cocycle of the basic central extension of LU(1).



QFT Functor
For generalized Maxwell theory  the physical theory is a 
functor from a geometric bordism category to the category 
of Hilbert spaces and linear maps. 

To get an idea of the appropriate bordism category consider 
the  presence of electric and magnetic currents (sources):

dF = jm ∈ Ω`+1(M)
d ∗ F = je ∈ Ωn−`+1(M)

Action = πR2
R
M
F ∗ F + sources



Bordism Category
Objects: Riemannian (n-1)-manifolds equipped 
with electric and magnetic currents

ǰm ∈ Ȟ`+1(M) ǰe ∈ Ȟn−`+1(M)

Morphisms are bordisms of these objects. 

Not that for fixed                 the generalized 
Maxwell  field lies in a torsor for Ȟ`(M)

ǰm, ǰe



Partition Functions

Family of closed 
spacetimes:

Ms → X
↓ ↓
s ∈ S

Partition functions

Z(ǰm, ǰe;Ms)

The theory is anomalous in the presence of both electric and 
magnetic current: The partition function is a section of a  line
bundle with connection:Z

X/S
ǰe · ǰm ∈ Ȟ2(S) Freed

ǰm ∈ Ȟ`+1(M) ǰe ∈ Ȟn−`+1(M)



Hilbert Spaces

Similarly, for families of 
spatial (n-1)-manifolds: 

Xs → X
↓ ↓
s ∈ S

We construct a bundle of projective Hilbert spaces with connection over 
S. Such bundles are classified by gerbes with connection. In our case:  Z

X/S
ǰe · ǰm ∈ Ȟ3(S)



Self-Dual Case 

We can impose a (Lorentzian) self-duality condition F = *F.

Self-duality implies

anomalous line bundle for partition function  is heuristicallyR
ǰ1 · ǰ2 ∈ Ȟ2(S)

1
2 ǰ · ǰ

Now suppose dimM = 4p+ 2, and ` = 2p+ 1.

ǰe = ǰm ∈ Ȟ2p+2(M)

Self-dual theory is a ``square-root’’ of the non-self-dual theory so   

Interpret this as a quadratic refinement of 



Hopkins-Singer Construction

Family of manifolds of relative dimension 4p+4-i ,  i=0,1,2,3

Family comes equipped with ǰ = ǰe = ǰm ∈ Ȟ2p+2(X )
H&S construct a quadratic map (functor) which refines the bilinear  map (functor)R

ǰ1 · ǰ2 ∈ Ȟi(S)

depending on an integral lift λ  of a Wu class  (generalizing spin structure)

Fs → X
↓ ↓
s ∈ S



Physical Interpretation
q(ǰ) ∈ Ȟi(S)

Basic topological invariant: The signature of 

Chern-Simons action

Anomaly line bundle for partition function 

Gerbe class for Hilbert space

Important subtlety: Actually q(ǰ) ∈ Ǐi(S)

i = 0,. dimFs = 4p+ 4:

i = 1, dimFs = 4p+ 3:
i = 2, dimFs = 4p+ 2:

i = 3, dimFs = 4p+ 1:
H(Fs)

Fs

Z(ǰ)

q(ǰ):



Example: Construction of the 
quadratic function for i=1 

Hopkins & SingerλZ lift of the Wu class ν2s+2(Z)

Extend ǰ ∈ Ȟ2p+2(Fs) to Ȟ2p+2(Zs)

∂Zs = Fs dimZs = 4p+ 4

e2πiqλ(ǰ) := exp
£
2πi 12

R
Z
F (ǰ) ∧ (F (ǰ)− λZ)

¤



Construction of the 
Self-dual Theory

We now explain to what extent the theory has been constructed. 

• (Partial) construction of the Hilbert space.

• (Partial) construction of the partition function.

That’s where the Hilbert space and partition function should live….



Hamiltonian Formulation of 
Generalized Maxwell Theory

Spacetime: M = X × R.
Generalized Maxwell fields: [Ǎ] ∈ Ȟ`(M).

Above formulation breaks manifest electric-magnetic duality.

There is a better way to characterize the Hilbert space.

H(X) = L2(Ȟ`(X))Canonical quantization: 

Action = πR2
Z
M

F ∗ F



Group Theoretic Approach

But!

Let K  be any (locally compact) abelian group (with a measure)

Let       be the Pontryagin dual group of characters of K

So                         is a representation of the Heisenberg group central extension: 

H = L2(K) is a representation of K: ∀k0 ∈ K

(Tk0ψ)(k) := ψ(k + k0).

H = L2(K) is also a representation of K̂: ∀χ ∈ K̂

(Mχψ)(k) := χ(k)ψ(k)

Tk0Mχ = χ(k0)MχTk0 .

1→ U(1)→ Heis(K × K̂)→ K × K̂ → 1

H = L2(K):

K̂



Heisenberg Groups
Theorem A Let G be a topological abelian group. Central extensions, G̃, of
G by U(1) are in one-one correspondence with continuous bimultiplicative maps
s : G×G→ U(1) which are alternating (and hence skew).

Theorem B: (Stone-von Neuman theorem). If G̃ is a Heisenberg group then
the unitary irrep of G̃ where U(1) acts canonically is unique up to isomorphism.

Definition: If s is nondegenerate then G̃ is a Heisenberg group.

s(x1 + x2, y) = s(x1, y)s(x2, y) & s(x, y1 + y2) = s(x, y1)s(x, y2)

• s is  alternating:    s(x,x) = 1

•s is skew:   s(x,y) = s(y,x) -1

If x ∈ G lifts to x̃ ∈ G̃ then s(x, y) = x̃ỹx̃−1ỹ−1.

• s is bimultiplicative: 



Heisenberg group for generalized 
Maxwell theory

G̃ := Heis
¡
Ȟ`(X)× Ȟn−`(X)

¢
via the  group commutator:

s
¡
([Ǎ1], [Ǎ

D
1 ]), ([Ǎ2], [Ǎ

D
2 ])
¢
= exp

∙
2πi
¡h[Ǎ2], [ǍD1 ]i− h[Ǎ1], [ǍD2 ]i¢¸.

The Hilbert space of the generalized Maxwell theory
is the unique irrep of the Heisenberg group  

N.B! This formulation of the Hilbert space is  manifestly 
electric-magnetic dual.

G̃

If K = Ȟ`(X), then PP duality ⇒ K̂ = Ȟn−`(X):



Flux Sectors from Group Theory
Electric flux sectors diagonalize the flat fields

Magnetic flux sectors diagonalize dual flat fields

These groups separately lift to commutative subgroups of

However they do not commute with each other!

UE(ηe) := translation operator by ηe ∈ H`−1(X,R/Z)
UM (ηm) := translation operator by ηm ∈ Hn−`−1(X,R/Z)

[Ue(ηe),Um(ηm)] = T (ηe, ηm) = exp
µ
2πi

Z
X

ηeβηm

¶

H`−1(X,R/Z)

Hn−`−1(X,R/Z)

G̃ := Heis(Ȟ` × Ȟn−`).

Electric flux = dual character: e ∈ Hn−`(X;Z)

Magnetic flux = dual character: m ∈ H`(X;Z)

T : torsion pairing, β= Bockstein: β(ηm) ∈ Tors(Hn−`(X,Z)).



Example: Maxwell theory on a 
Lens space

Acting on the Hilbert space the flat fields generate a Heisenberg group 
extension

0→ Zk → Heis(Zk × Zk)→ Zk × Zk → 0

This has unique irrep P =  clock operator, Q = shift operator

PQ = e2πi/kQP

States of definite electric and magnetic flux |ei = 1√
k

X
m

e2πiem/k|mi

This example already appeared in string theory in  Gukov, Rangamani, and Witten, 
hep-th/9811048.  They studied AdS5xS5/Z3   and in order to match  nonperturbative
states concluded that in the presence of a D3 brane one cannot simultaneously 
measure D1 and F1 number.

S3/Zk × R H1(Lk;R/Z) ∼= H2(Lk;Z) = Zk



An Experimental Test
Since our remark applies to Maxwell theory: Can we test it experimentally? 

Discouraging fact: No region in          has torsion in its cohomology

With A. Kitaev and K. Walker we noted that using arrays of Josephson 
Junctions, in particular a device called  a ``superconducting mirror,’’
we can ``trick’’ the Maxwell field into behaving as if 
it were in a 3-fold with torsion in its cohomology. 

To exponentially good accuracy the groundstates of the electromagnetic
field are an irreducible representation of   

R3

Heis(Zn × Zn)

See arXiv:0706.3410  for more details.

2

1
4

3



Hilbert Space for Self-dual fields 

For the non-self-dual field we represent Heis(Ȟ`(X)× Ȟ`(X))

Proposal: For the self-dual field we represent: Heis(Ȟ`(X))

Attempt to define this Heisenberg group via

strial([Ǎ1], [Ǎ2]) = exp 2πih[Ǎ1], [Ǎ2]i.
It is skew and and nondegenerate, but   not alternating!

Gomi 2005

Now return to dimM = 4p+ 2, and ` = 2p+ 1.

strial([Ǎ], [Ǎ]) = (−1)
R
X
ν2p a(Ǎ)



-graded Heisenberg groups
Theorem A’: Skew bimultiplicative maps classify          -graded Heisenberg groups.

grading in our case:

Theorem B’: A       -graded Heisenberg group has a  unqiue -graded 
irreducible representation.

Z2

Z2

Z2Z2

This defines the Hilbert space of the self-dual field

Z2

Example: Self-dual scalar: p = 0.
The Z2-grading is just fermion number!

²([Ǎ]) = 0 if

Z
ν2p a(Ǎ) = 0mod 2

²([Ǎ]) = 1 if

Z
ν2p a(Ǎ) = 1mod 2



Holographic Approach to 
the self-dual partition function 

Identify the self-dual current with the boundary 
value of  a Chern-Simons field in a 
dual theory in 4p+3 dimensions

Identify the ``spin’’ Chern-Simons action with the HS quadratic refinement: 

LCS → Ȟ2p+2(M)

So is the Chern-Simons path integral

e2πiqλ(ǰ) ∈ U(1) if ∂Y = ∅
If ∂Y =M , e2πiqλ(ǰ) is a section of

ǰ ∈ Ȟ2p+2(Y4p+3)



1. Groupoid of ``gauge fields’’ isomorphism classes give

2. ``Gauge transformations’’ gǍ · ǰ = ǰ + F (Ǎ)

Quantization on Y4p+3 =M4p+2 × R:
Two ways to quantize: Constrain, then quantize or Quantize, then constrain.

LCS
3.  A choice of Riemannian metric on M gives a Kahler structure on 

is the  pre-quantum  line bundle. 

4. Quantization:  Ψ(ǰ) a holomorphic section of LCS
5. Gauss law:   (gǍ ·Ψ)(ǰ) = Ψ(gǍ · ǰ)

(boundary values of bulk gauge modes are the dynamical fields !) 

Ȟ2p+2(Y )Ž2p+2(Y )

[Ǎ] ∈ Ȟ2p+1(Y )

Ž2p+2(M)



Quantizing the 
Chern-Simons Theory -II

7.  Nonvanishing wavefunctions satisfying the Gauss law only exist for  

and gives the self-dual partition function as a function of external current: 

8. On this component Ψ is unique up to normalization (a theta function), 

6. Lift of the gauge group to uses ∇CS and a quadratic refinement

(generalizes the spin  structure!)

q : H2p+1(M ;Z)→ R/Z

LCS
of 

a(ǰ) + μ = 0

R
M
a1a2 mod 2

Ψ(ǰ) = hexp[2πi
Z
M

ǰ · Ǎ]iself−dual theory



Partition Function and Action 

We thus recover Witten’s formulation of the self-dual partition function 
from this approach

Moreover, this approach solves two puzzles associated with self-dual theory: 

P1.   There is no action since Z
F ∗ F = 0F = ∗F

P2. F = ∗F Incompatible with F ∈ Ω2p+1Z (M)



The Action for the Self-Dual Field

ω(f1, f2) =
R
f1 ∧ f2

Bianchi dF=0 implies F in a Lagrangian subspace V1 =ker d 

Choose a transverse Lagrangian subspace

V := Ω2p+1(M) has symplectic structure

Vel ⊂ V = Vel ⊕ ∗Vel := Vel ⊕ Vmg
S =

R
F el ∗ F el + F elFmg

Equation of motion:  F = F el + ∗F eldF = 0



a torsor for 2-torsion points in H2p(X;Z)⊗ R/Z.

.
One can show that the nonself-dual field at a special  
radius,                   decomposes into

Hnsd
∼= ⊕αHsd,α ⊗Hasd,α

Relation to Nonselfdual Field

For the self dual scalar α labels R and NS sectors.

The subscript α is a sum over

The sum on α generalizes the sum on spin structures. 

Similarly: Znsd(Ms) =
P

q Zsd(q)Zasd(q)

R2 = 2,



Remark on Seiberg-Witten Theory

1. Witten discovered six-dimensional superconformal field theories 
CN  with ``U(N) gauge symmetry.’’

2. Compactification of CN on  R1,3 x C gives d=4,N=2 U(N) gauge theories

3. The IR limit of CN is the abelian self-dual theory on R1,3 x Σ

4. The IR limit of the d=4, N=2 theory is compactification of the abelian
self-dual theory on R1,3 x Σ.  

5. Σ is the Seiberg-Witten curve. 

6. So, the SW IR effective field theories are self-dual gauge theories. 

(D. Gaiotto, G. Moore, A. Neitzke)



Type II String Theory RR-Fields 

Type II  string theory has excitations in the RR sector which are bispinors

Ψ = gμν(k)α
μ
−1α̃

ν
−1|ki+ · · ·+ ψαβ(k)|k;αβi+ · · ·

Type II supergravity has fieldstrengths

F ∈ ⊕k=0Ω2k+²(M10) ² = 0(1) IIA(IIB)

Classical supergravity must be supplemented with 

• Quantization law
• Self-duality constraint 



Differential K-theory 
For many reasons, the quantization law turns out to use a generalized 
cohomology theory different from classical cohomology. Rather it is 
K-theory and the gauge invariant RR fields live in differential K-theory

0→
flatz }| {

K`−1(M ;R/Z)→ Ǩ`(M)
fieldstrength−→ Ω`(M ;R)→ 0

0→ Ω`−1(M ;R)/Ω`−1Z (M ;R)| {z }
Topologically trivial

→ Ǩ`(M)
char.class−→ K`(M)| {z }

Topological sector

→ 0

R = R[u, u−1]



Self-Duality of the RR field

Heis(Ǩ(X))

Hamiltonian formulation:

Define via a skew symmetric function: 

s([Č1], [Č2]) =
R Ǩ
X
[Č1] · [Č2]

Leading to a Heisenberg group with a unique Z2-graded Z2-graded irrep. 

Partition function: Formulate an 11-dimensional CS theory

ǰ ∈ Ǩ(Y ) CS(ǰ) =
R ǨO
Y

[ǰ] · [ǰ]&

Derive an action principle for type II RR fields. 



Twisted K-theory and Orientifolds
(with J. Distler and D. Freed.) 

Generalizing the story to type II string theory orientifolds

Key new features: 

1. RR fields now in the differential KR theory of a stack.   

2. The differential KR theory must be twisted. The B-field is the twisting: 
This organizes the  zoo of orientifolds nicely. 

3. Self-duality constraint leads to topological consistency condition on the 
twisting (B-field) leading to new topological consistency conditions for 
Type II orientifolds: ``twisted spin structure conditions.’’



The General Construction
Looking beyond the physical applications, there is a 
natural mathematical generalization of all these examples:

1.  We can define a generalized abelian gauge theory for 
any multiplicative generalized cohomology theory E. 

2. Self-dual gauge theories can only be defined for Pontryagin
self-dual generalized cohomology theories. These have the 
property that there is an integer s so that for any   E-oriented 
compact manifold M of dimension n:

Given by 
R E
M
x1x2 is a perfect pairing. 

En−s−j(M)⊗ Ej(M ;R/Z)→ R/Z



General Construction – II 

Conjecture (Freed-Moore-Segal): There exists a self-dual 
quantum field theory associated to these data with the current 

3. We require an isomorphism (for some integer d – the degree): 

θ : Ed(·)→ En+2−s−d(·)
which is the isomorphism between electric and magnetic currents.

4. Choose a quadratic refinement q, of 

b(x1, x2) =
R E
M
θ(x1)x2

ǰ ∈ Ěd(M)



Open Problems and 
Future Directions – I 

• We have only determined the Hilbert space up to isomorphism. 

• We have only determined the partition function as a function of 
external current. We also want the metric dependence. 

• A lot of work remains to complete the construction of the full theory

A second challenging problem is the construction of the 
nonabelian theories in six dimensions. These are the 
proper home for understanding the duality symmetries of 
four-dimensional gauge theories. On their Coulomb branch 
they are described by the above self-dual theory, which should therefore 
give hints about the nonabelian theory. 

For example: Is there an analog of the Frenkel-Kac-Segal construction?



Open Problems and 
Future Directions – II 

A third challenging open problem is to understand better the 
compatibility with M-theory. The 3-form potential of M-theory 
has a cubic ``Chern-Simons term’’R

M11
CdCdC

When properly defined this is a cubic refinement of the trilinear form 

Ȟ4(M)× Ȟ4(M)× Ȟ4(M)→ R/Z

Many aspects of type IIA/M-theory duality remain quite mysterious …
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