Here is a list of topics I will aim to cover in the course. This list is incomplete and approximate. Note it is not a syllabus! In particular the order of topics might be different in the course.

- Collider physics basics
 - Detector components
 - Coordinates (pT, eta, phi)
 - Objects (tracks vs towers; electrons, photons, muons, jets, ...)
 - Events

- Some stats basics:
 - Maximum likelihood estimation
 - Likelihood ratio
 - Neyman-Pearson lemma
 - Bayesian statistics

- What is Machine Learning

- What are common problems solved by Machine Learning
 - Classification
 - Regression
 - Generation
 - Anomaly Detection
 - ...

- Why Neural Networks
 - Universal approximation theorem

- What are Neural Networks
 - Hidden layers
 - Activations
 - ...
• How do we train Neural Networks
 – SGD
 – Backprop
 – Differentiable programming
 – GPUs
 – Overfitting
 – Validation
 – ...

• Some popular Neural Network architectures
 – DNN
 – CNN
 – RNN, LSTM, ...
 – GAN
 – Autoencoder, VAE, ...
 – Flows (density estimation)

• Some important applications to HEP:
 – Classification: CNNs, RNNs, ...
 – Decorrelation: Adversarial, DisCo, ...
 – Generation: CaloGAN
 – Anomaly Detection: CWoLa, ANODE, Autoencoders, ...
 – Regression:
 – ...

 2