Lecture 16

Decorrelated Classifiers

Suppose we have a binary classifier \(\hat{X} \rightarrow \hat{f}_{cl}(\hat{X}) \) that we want \(f_{cl} \) to be statistically independent of.

Suppose we have a "protected" feature \(m \) that we want \(f_{cl} \) to be statistically independent of.

How to accomplish this?

Cannot in general just "exclude" \(m \) from training features \(\hat{X} \).

Motivation: want use \(m \) for sideband by estimation.

Before classifier

\(\hat{f}_{cl}(\hat{X}) \)

\(m \)

\(\hat{m}_{top} \)

\(\hat{m}_{bot} \)
Metrics for decorrelation:

\[JSO(p, q) = \frac{1}{2} \left(KL(p \| \frac{p+q}{2}) + KL(q \| \frac{p+q}{2}) \right) \]

\[KL(p \| m) = \int dx \, p(x) \log \frac{p(x)}{m(x)}. \]

Measure of similarity between two distributions

\[0 \leq JSO \leq 1 \leftarrow \text{if } JSO \text{ computed by } \log_2 p \]

\[p = q \quad \text{more similar} \quad p \text{ and } q \text{ no overlap at all} \]

Choose a cut \(\rightarrow \) e.g., cut at 50% signal efficiency. JSO50.

\(\text{Fpr} \cdot \text{Tpr} = R50 \)

\[R50 \rightarrow \] more decorrelation

More classification