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ABSTRACT
Using the number and sizes of observed gravitational lenses, I derive upper limits on the dark matter

content of elliptical galaxies. On average, dark matter can account for no more than 33% of the total
mass within one e†ective radius of elliptical galaxies or 40% of the mass within (95% con-(R

e
) 2R

eÐdence upper limits). I show that galaxies built from cold dark matter (CDM) mass distributions are too
concentrated to comfortably satisfy these limits ; a high-density CDM cosmology is ruled out at()

M
\ 1)

better than 95% conÐdence, while a low-density, Ñat cosmology is only marginally consistent with the
lens data. Thus, lensing adds to the evidence from spiral galaxy dynamics that CDM mass distributions
are too concentrated on kiloparsec scales to agree with real galaxies and extends the argument to ellip-
tical galaxies. Lensing also provides a unique probe of the very inner regions of galaxies, because images
are predicted to form near the centers of lens galaxies but are not observed. The lack of central images
in deep maps of radio lenses places strong lower limits on the central densities of galaxies. The central
densities of CDM galaxies are too low on D10 pc scales. Supermassive black holes can help suppress
central images, but they must lie well o† the observed black holeÈbulge mass correlation in order to
satisfy current limits on central images. Self-interacting dark matter, or any other modiÐcation to regular
cold dark matter, must simultaneously reduce the densities on kiloparsec scales and increase the densities
on parsec scales in order to satisfy the unique constraints from lensing.
Subject headings : dark matter È galaxies : elliptical and lenticular, cD È galaxies : halos È

gravitational lensing

1. INTRODUCTION

Cuspy mass distributions are a robust prediction of the
popular cold dark matter (CDM) paradigm. Numerical
simulations of collisionless cold dark matter predict density
proÐles with o P r~a and a ^ 1.0È1.5 at small radii (e.g.,
Navarro, Frenk, & White 1996, 1997 [NFW]; Moore et al.
1998, 1999 ; Jing & Suto 2000 ; Klypin et al. 2001), and this
prediction does not depend on particular cosmogonies or
initial conditions (Huss, Jain, & Steinmetz 1999a, 1999b) or
on the speciÐc form of the dark matter power spectrum
(Eke, Navarro, & Steinmetz 2001). Adding dissipative
baryons makes mass distributions even more concentrated
(e.g., Blumenthal et al. 1986 ; Dubinski 1994). It is important
to compare the predicted mass distributions with real gal-
axies to test the CDM paradigm as the explanation for the
formation and growth of structure in the universe.

The dynamics of spiral galaxies have provided the most
extensive observational tests of CDM. Salucci (2001 ; also
see Salucci & Burkert 2000 and references therein) suggests
that normal spiral galaxies have dark matter halos with
large constant-density cores as opposed to cusps. Debat-
tista & Sellwood (1998) and Weiner, Sellwood, & Williams
(2001) argue that fast-rotating bars require dark matter den-
sities lower than predicted by CDM. The slowly rising rota-
tion curves of dwarf galaxies and low surface brightness
galaxies also seem to imply constant-density cores (e.g.,
Flores & Primack 1994 ; Moore 1994 ; McGaugh & de Blok
1998 ; Blais-Ouellette, Amram, & Carignan 2001 ; de Blok et
al. 2001). However, several authors have argued that the H I

rotation curves may have appeared artiÐcially shallow
because of beam smearing and that better data are actually
consistent with cuspy CDM mass distributions (van den
Bosch et al. 2000 ; van den Bosch & Swaters 2001 ; Swaters,
Madore, & Trewhella 2000). In rebuttal, McGaugh & de
Blok (1998) and de Blok et al. (2001) claim that beam smear-

ing does not a†ect their conclusions, and Moore (2001)
argues that only two of the 19 galaxies analyzed by van den
Bosch & Swaters (2001) are actually consistent with CDM.
To summarize, many argue that CDM mass distributions
are too concentrated to agree with the dynamics of spiral
galaxies, but the conclusions are still subject to some vigor-
ous debate.

Other tests of CDM mass distributions should not be
a†ected by beam smearing. Navarro & Steinmetz (2000)
and Eke et al. (2001) consider the global dynamical proper-
ties of spiral galaxies in terms of the Tully-Fisher (TF) rela-
tion between luminosity and circular velocity. They Ðnd
that CDM can reproduce the slope and scatter of the TF
relation but has some trouble with the zero point. In a
high-density cosmology, CDM model galaxies are()

M
\ 1)

too concentrated to agree with the TF zero point, while in a
low-density cosmology the models are marginally consis-
tent with the data. Taking an entirely di†erent approach,
Rix et al. (1997) study the line-of-sight velocity proÐle of the
elliptical galaxy NGC 2434 using detailed dynamical
models. They Ðnd that the galaxy is consistent with CDM
models, but the strength of the conclusion is limited by
systematic uncertainties such as the orbital anisotropy.
These tests do not indicate a fundamental problem with
CDM mass distributions, but they do not strongly favor the
CDM models either.

The dynamical tests are fundamentally limited by the
need to interpret data from luminosity distributions before
drawing conclusions about mass distributions. Given the
importance of the CDM paradigm in modern cosmology, it
is desirable to develop additional tests that are independent
of, and hopefully less ambiguous than, the dynamical tests.
One excellent possibility is gravitational lensing, because it
o†ers a direct probe of mass distributions. Individual gravi-
tational lenses robustly determine the masses of individual
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galaxies, and the statistical properties of the lens sample
constrain properties of the galaxy population (e.g., Maoz &
Rix 1993 ; Kochanek 1993, 1995, 1996 ; Cohn et al. 2001).
Individual lenses and lens statistics both imply that ellip-
tical galaxies (which dominate the mass-selected sample of
lens galaxies ; e.g., Kochanek et al. 2000) have approx-
imately isothermal mass distributions out to several kilo-
parsecs, in agreement with the evidence from dynamics (e.g.,
Rix et al. 1997) and X-ray elliptical galaxies (e.g., Fabbiano
1989).

It is not clear whether the mass distributions implied by
lensing are consistent with the predictions of CDM. Most
lensing studies, even those that consider a wide range of
density proÐles (e.g., Kochanek 1995 ; Barkana 1998 ; Chae,
Khersonsky, & Turnshek 1998 ; Cohn et al. 2001 ; Mun8 oz,
Kochanek, & Keeton 2001), consider only single-
component mass models. However, lens galaxies are likely
to have at least two components (a stellar galaxy and a dark
matter halo), which may contribute comparable amounts of
mass (e.g., Rix et al. 1997). Both components are necessary
to explain the distribution of lensed image separations and
the fact that galaxies are much better lenses than more
massive groups of galaxies (Keeton 1998 ; Porciani &
Madau 2000 ; Kochanek & White 2001). Only by allowing
two components can we use lensing to directly test whether
real galaxies are consistent with CDM mass distributions.

The goal of this paper is to use two-component
star]halo models for lensing to test the CDM paradigm.
The focus is on elliptical galaxies because they dominate
lens statistics. The outline of the paper is as follows : Section
2 deÐnes the models, and ° 3 reviews the lensing calcu-
lations. In ° 4, the observed number and sizes of lenses are
used to evaluate the global properties of the models. In ° 5,
lensing is used to examine the very inner regions of galaxies.
Finally, ° 6 o†ers a discussion and conclusions.

2. STAR]HALO MODELS

This section deÐnes star]halo models for elliptical gal-
axies in the context of the CDM paradigm. Section 2.1
discusses models for the stellar and dark matter com-
ponents, and ° 2.2 gives normalizations for the models. Only
spherical models are considered, because they are sufficient
for calculations of the number and sizes of lenses. Depar-
tures from spherical symmetry mainly a†ect the relative
numbers of two-image and four-image lenses (see Keeton,
Kochanek, & Seljak 1997 ; Rusin & Tegmark 2001).

2.1. Model Components
A simple model for the stellar components of elliptical

galaxies is the Hernquist (1990) model, which has a density
proÐle
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lare angular diameter distances to the lens and source,D
srespectively, and is the angular diameter distance fromD

lsthe lens to the source (e.g., Schneider, Ehlers, & Falco 1992).
The gravitational deÑection for a Hernquist model is (see
eq. [14] below)
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Navarro et al. (1996, 1997) have argued that dark matter
halos found in cosmological N-body simulation of colli-
sionless dark matter have a ““ universal ÏÏ density proÐle of
the form

o(r)\ o
s
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s
)2 , (5)

where is a scale radius and is a characteristic density. Itr
s

o
sis convenient to replace the scale radius with a

““ concentration ÏÏ parameter where is theC\ r200/rs, r200radius within which the mean density of the halo is 200
times the critical density of the universe, which is often
taken to mark the boundary of a relaxed halo (e.g., Crone,
Evrard, & Richstone 1994 ; Cole & Lacey 1996 ; Navarro et
al. 1996, 1997). The characteristic density is then

o
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where is the critical density of the universe at theocrit(z)redshift of the halo. The lensing properties of an NFW
model are given by Bartelmann (1996).

More recently, Moore et al. (1998, 1999 ; also see Jing &
Suto 2000 ; Klypin et al. 2001) have argued that the central
regions of simulated halos are steeper than the NFW
proÐle. They advocate a density of the form

o(r)\ o
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s
)1.5] . (7)

For Moore halos, I deÐne a concentration parameter C\
in terms of the radius at which the logarith-r200/r(~2) r(~2)mic slope of the density is [2. This deÐnition is equivalent

to the deÐnition of the concentration for NFW halos, and
Keeton & Madau (2001 ; also see Wyithe, Turner, & Spergel
2001) argue that it is the best generalization of the concen-
tration. The radius is related to the scale radius inr(~2) r

sequation (7) by The characteristic density ofr(~2)\ 0.630r
s
.

a Moore halo is

o
s
\ 25ocrit(z)
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The dark matter halo models were derived from studies
of collisionless dark matter. They do not hold in the pres-
ence of dissipative baryons, because as the baryons cool and
condense into a galaxy they modify the gravitational poten-
tial and thus the dark matter distribution (e.g., Blumenthal
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et al. 1986 ; Dubinski 1994). Fortunately, there is a simple
analytic prescription called ““ adiabatic contraction ÏÏ for
computing the changes to the dark matter distribution ; it
seems to agree well with gasdynamical simulations (e.g.,
Blumenthal et al. 1986 ; Flores et al. 1993), even for merger
scenarios thought to produce elliptical galaxies (Gottbrath
2000). Appendix A gives an analytic solution for adiabatic
contraction of an arbitrary dark matter halo by a Hernquist
galaxy. Adiabatic contraction depends on the mass ratio of
the cooled galaxy component to the total virial mass,

which is presumably no larger than thefcool \Mgal/Mtot,global baryon fraction of the system, fbar\ Mbar/Mtot\(There may be baryons that remain hot and distrib-)
b
/)

M
.

uted throughout the halo, so The virial massfcool ¹ fbar.)and radius of the system factor out to provide overall scal-
ings, so the solution also depends on the fraction of thefcoolconcentration C of the initial halo and the e†ective radius of
the galaxy (speciÐcally R

e
/r200).To illustrate the star]halo models, Figure 1 shows rota-

tion curves for various values of the parameters. For a Ðxed
stellar component, decreasing increases the total massfcoolof the halo which raises the rotation(Mtot\ f cool~1 ] Mgal),curve. Increasing the concentration of the initial halo packs
more of the dark matter into the inner regions of the system,

which also raises the inner rotation curve. In other words,
changing either parameter a†ects the amount of mass con-
tained within a few e†ective radii of the galaxy. Lensing can
distinguish between the two parameters only if it is sensitive
to the detailed shape of the galaxy mass proÐle inside a few
R

e
.
Figure 1 o†ers two important qualitative results. First,

the galaxy and halo components can easily combine to
produce a rotation curve that is relatively Ñat from D0.5R

eto several In other words, star ] halo models can natu-R
e
.

rally produce net mass distributions that are fairly close to
o P r~2 throughout much of the galaxy. Second, comparing
the rotation curves of the halo before and after adiabatic
contraction illustrates that the modiÐcation by the baryons
can signiÐcantly increase the halo mass within a few R

e
,

especially for less concentrated halos. Figure 2 also shows
that adiabatic contraction a†ects NFW proÐles more dra-
matically than Moore proÐles, especially for large fcool,which tends to reduce the di†erences between NFW and
Moore model galaxies.

2.2. Normalizations
The CNOC2 Ðeld galaxy redshift survey (Lin et al. 1999 ;

H. Lin et al. 2001, in preparation) gives the luminosity func-

FIG. 1.ÈRotation curves for sample star ] halo models with NFW halos. Each panel has the speciÐed values of the concentration C of the initial halo
and the cooled mass fraction all models have The solid curves show the total rotation curves, while the dotted and dashed curves showfcool ; R

e
/r200\ 0.03.

the contributions from the galaxy and halo, respectively. For comparison, the long-dashed curves show the rotation curves of the initial NFW halos before
adiabatic contraction. The velocities are scaled by the peak velocity of the galaxy component.
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FIG. 2.ÈComparison of rotation curves for NFW and Moore models.
The four panels show the various components of the rotation curve. The
solid curves indicate NFW models, and the dotted curves show Moore
models. Results are shown for C\ 5, andfcool\ 0.15, R

e
/r200\ 0.03.

tion of early-type galaxies at redshifts 0.12 \ z\ 0.55. The
luminosity function is parameterized as an evolving Schech-
ter (1976) function, and H. Lin et al. (2001, in preparation)
give parameter values for two cosmologies : a high-density,
Ñat universe with matter density and a low-density,)

M
\ 1

Ñat universe with matter density and cosmo-)
M

\ 0.2
logical constant I use a Hubble constant)" \ 0.8. H0\ 50
km s~1Mpc~1 for the cosmology to mimic the)

M
\ 1

standard cold dark matter cosmology and H0\
65 km s~1Mpc~1 for the Ñat cosmology. I convert)

M
\ 0.2

the luminosity of the stellar component into a mass using
population synthesis models by Bruzual & Charlot (1993),
modeling early-type galaxies with an old coeval stellar
population.

I place a dark matter halo around each galaxy and use
empirical correlations to normalize the galaxies and halos.
Bright early-type galaxies are observed to populate a
““ fundamental plane ÏÏ in the space of surface brightness,
e†ective radius, and velocity dispersion, with very little
scatter away from this plane (e.g., Djorgovski & Davis
1987 ; Dressler et al. 1987). Projecting out the velocity dis-
persion yields a correlation between luminosity and e†ec-
tive radius that has somewhat larger scatter but is easier to
use. Schade, Barrientos, & (1997) Ðnd that atLo� pez-Cruz
z\ 0 the relation isM(B)Èlog R

e
M

AB
(B)[ 5 log h \ [ 3.33 log (R

e
/h~1 kpc)

[ 18.15^ 0.06 , (9)

and the relation evolves with redshift in a way that is consis-
tent with the fading of stellar populations due to passive
evolution. Early-type dwarf galaxies, on the other hand,
appear to form a population that is disjoint from giant
galaxies. Binggeli & Cameron (1991, 1993) demonstrate this

e†ect in the Virgo cluster, and a Ðt to their data yields

M
AB

(B)\ [ 13.1 log (R
e
/kpc) [ 13.7 , (10)

although with signiÐcant scatter. The break between giant
and dwarf galaxies occurs somewhere around an absolute
magnitude of [16 or [18, but it is not sharp. The exact
location of the break has little e†ect on lens statistics
because these low-mass galaxies contribute little lensing
optical depth.

Simulated dark matter halos do not all have the same
proÐle. Halos of a given mass have a range of concentra-
tions, and cluster-mass halos are systematically less concen-
trated than galaxy-mass halos (e.g., Jing & Suto 2000 ;
Bullock et al. 2001). Bullock et al. (2001) characterize the
scatter by Ðtting NFW proÐles1 to simulated halos and
obtaining a set of concentration parameters consistent with
the lognormal distribution

p(log C oM, z)\ 1

J2np
C

exp
A
[ Mlog [C/Cmed(M, z)]N2

2p
C
2

B
,

(11)

where and the median concentration variesp
C
\ 0.18

systematically with mass and redshift as Cmed(M, z)P
M~1@9(1 ] z)~1. The scatter in halo properties is important
for lensing because more concentrated halos are much
better lenses. To include this e†ect, I use halos drawn ran-
domly from equation (11). I normalize the distribution in
terms of the parameter deÐned to be the median concen-CŒ
tration of 1012 h~1 halos at redshift z\ 0. The value ofM

_is predicted by simulations (see ° 4.2), but I take it to be aCŒ
free model parameter.

3. LENSING METHODS

The adiabatic contraction solution gives the mass proÐle
M(r) of the Ðnal system. The systemÏs projected surface
density and lensing deÑection can theni(R)\ &(R)/&cr /

Rbe written as (see Keeton 2001)
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where the radii are written in units of the mass m(r)\r200,is written in units of the total mass insideM(r)/M200 r200,and m@(r)\ dm(r)/dr. Equations (13) and (15) represent vari-
able transformations that give the integrals a Ðnite range,
which is useful for numerical integration. The strength of
the system as a gravitational lens is measured by the dimen-

1 Bullock et al. (2001) remark that it would be possible to Ðt other
proÐles to halos but argue that eq. (11) captures the full range of halo
properties seen in their simulations.
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where is the Hubble distance. This parameter isr
H

\ c/H0the mean projected surface density of the system in units of
the critical density for lensing. In general, is consider-i200ably less than unity because most halos can act as strong
gravitational lenses only in a high-density region near the
core, not all the way out to the virial radius.

The images corresponding to a given source are found by
solving the lens equation,

u \ R[ /
R
(R) , (17)

where u is the angular position of the source relative to the
lens (see Schneider et al. 1992 for a full discussion). The
magniÐcation of an image at position R is

k(R)\ (1 [ /
R
/R)~1(1 [ /

RR
)~1 . (18)

Here which can be computed efficiently/
RR

\ d(/
R
)/dR,

using the identity In general, a spher-R~1/
R

] /
RR

\ 2i.
ical lens has two radii at which the magniÐcation is inÐnite.
These radii correspond to ““ critical curves ÏÏ in the image
plane, which map to ““ caustics ÏÏ in the source plane. The
outer or tangential critical curve lies at the Einstein ring
radius of the lens ; a source directly behind the lens pro-rEduces a ring image with radius The inner or radial criti-rE.cal curve lies at a small radius The source positionrcr.corresponding to an image at which I label marksrcr, uout,the boundary of the region where lensing yields multiple
images. (The equations for and are given in Appen-rcr uoutdix B.) A source with has three images, one outsideu \ uoutone between and and one inside the innermostrE, rE rcr, rcr ;image is usually demagniÐed and undetected (see ° 5). A
source with has a single image, which is outsideu [ uout rE.Computing the statistics of gravitational lenses requires
summing over populations of lenses and sources and
accounting for ““ magniÐcation bias,ÏÏ or the fact that a Ñux-
limited survey may include lenses where the source is intrin-
sically fainter than the Ñux limit but lensing magniÐcation
brings the object into the sample (e.g., Turner 1980 ; Turner,
Ostriker, & Gott 1984). The number of lenses with a total
Ñux greater than S expected to be found in a survey with
lensing selection functions described by F is
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dz

s
, (19)

where is the source redshift, dV is the comoving volumez
selement (see, e.g., Carroll, Press, & Turner 1992), and dn/dM

is the mass function of halos that can serve as lenses. The
integral over C incorporates the scatter in halo properties
deÐned in equation (11). The factor F(u) indicates whether
a lens associated with a source at u would be detected given
the selection functions. The volume, mass, and concentra-
tion integrals sum over the population of possible lens gal-
axies. The integral allows for a distribution of sourcez

s

redshifts, where is the number of[dNsrc([S)/dz
s
] dz

ssources brighter than Ñux S that lie in the redshift range z
sto Finally, the distribution of image separations isz

s
] dz

s
.

found by computing and mean quantities aredNlens/dh,
found by averaging over the predicted lens population.

4. THE NUMBER AND SIZES OF LENSES

In this section, the global properties of the star]halo
models are evaluated using two quantities from lens sta-
tistics : the number of lenses, or more speciÐcally, the frac-
tion of sources that are multiply imaged, and the
distribution of lensed image separations.2 Section 4.1
reviews the data. Section 4.2 presents results for a Ðducial
set of models, while ° 4.3 considers systematic e†ects includ-
ing the source redshift distribution, the galaxy formation
redshift, and the density proÐle.

4.1. Data
More than 50 galaxy-mass lenses are known, and their

properties have been compiled by the CfA/Arizona Space
Telescope Lens Survey (CASTLES).3 This sample includes
lenses from a variety of surveys as well as serendipitous
discoveries ; thus, the parent (or source) population is
unknown, and the CASTLES sample cannot be used to test
the number of lenses. By contrast, the distribution of image
separations in the sample probably can be used, because it
is insensitive to the size of the source population.

The largest homogeneous statistical survey for lenses is
the Cosmic Lens All-Sky Survey (CLASS; Helbig 2000 ;
Browne 2001). The sample comprises 10,499 Ñat-spectrum
radio sources with Ñux S [ 30 mJy at 5 GHz, and the Ñux
distribution can be described as a power law dNsrc/dS P Sl
with lB [2.1 (see Rusin & Tegmark 2001). The survey
includes 18 lenses, all of which have image separations
h \ 3A, and the survey is believed to be complete at image
separations (Helbig 2000 ; Phillips et al.0A.3 \ h \ 15A
2001). Because this paper focuses on lensing by elliptical
galaxies, I omit two CLASS lenses that are known to be
produced by spiral galaxies (B0218]357 and B1600]434).
For the CLASS lenses where the lens galaxy type is not
known, I assume an elliptical galaxy because most lens gal-
axies are ellipticals (e.g., Kochanek et al. 2000) and because
this is the conservative approach (as shown below). In the
CLASS survey both the source and lens populations are
known, so the sample can be used to test both the number
of lenses and the distribution of image separations.

The number of lenses can be tested (the ““ N-test ÏÏ) by
using Poisson statistics to compare the CLASS sample with
predictions from the models. The image separations can be
tested (the ““ h-test ÏÏ) by using a Kolmogorov-Smirnov, or
K-S, test (e.g., Press et al. 1992) to compare the observed
and predicted distributions of image separations. The
CLASS and CASTLES samples can both be used for the
h-test, although the tests are not independent because the
CASTLES sample contains the entire CLASS sample. The
two samples are consistent in the sense that a K-S test does
not reveal a signiÐcant di†erence between their separation
distributions. The CASTLES sample is larger and thus less

2 A third interesting quantity is the ratio of four-image lenses to two-
image lenses, which can be used to constrain the angular shape of lensing
mass distributions (e.g., Kochanek 1996 ; Rusin & Tegmark 2001). This test
requires nonspherical lens models, and it is not very sensitive to the mass
proÐle of lensing halos.

3 Kochanek, C. S., Falco, E. E., Impey, C. D., J., McLeod, B. A.,Leha� r,
& Rix, H.-W. CfA/Arizona Space Telescope Lens Survey World Wide Web
site, http ://cfa-www.harvard.edu/castles.
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sensitive to statistical peculiarities (such as the lack of
CLASS lenses with h [ 3A, perhaps). The CLASS sample,
however, has better information about source Ñuxes and
redshifts. In an attempt to compromise between the two
samples, I perform the h-test with both samples and conser-
vatively adopt the weaker of the two results.

The largest uncertainty in the models arises from the
source redshift distribution, which is not known for the full
CLASS sample. Marlow et al. (2000) report redshifts for a
small subsample of 27 sources from the CLASS sample.
They Ðnd a mean redshift of SzT \ 1.27, which is compara-
ble to that found in other radio surveys at comparable
Ñuxes (Drinkwater et al. 1997 ; Henstock et al. 1997 ; Falco,
Kochanek, & 1998). They also Ðnd evidence for aMun8 oz
di†erence between the galaxy and quasar populations in the
sample, with for eight galaxies andSzgalT \ 0.18 SzQSOT \
1.72 for 19 quasars. It is not clear at this point whether the
subsample fairly represents the full sample. To examine pos-
sible systematic e†ects, I consider a set of models with all
sources placed at the mean redshift of the subsample, and
an alternate set of models with source redshifts distributed
according to the subsample.

4.2. Basic Results
Consider a Ðducial set of models in which the halos

before adiabatic contraction are modeled with NFW pro-
Ðles, the galaxies have old stellar populations that formed at
redshift and all the sources are placed at the meanz

f
\ 5,

redshift of the CLASS spectroscopic subsample, z
s
\ 1.25.

Figure 3 compares model predictions with the data from the
CLASS sample. As the median4 concentration increasesCŒ
or the cooled mass fraction decreases, the number offcoollenses increases and the distribution of image separations

4 Recall that the calculation explicitly includes scatter in the halo
properties (see eq. 11), so the models are characterized by the median
concentration.

shifts to higher values. Physically, increasing or decreas-CŒ
ing raises the amount of dark matter in the inner partsfcoolof halos (see ° 2.1), leading directly to more and larger
lenses.

Comparing the models to the data using the N and h
statistical tests yields conÐdence limits on the model param-
eters, as shown in Figure 4. There is a band in the upper left
of the where the models are consistent with(CŒ , fcool)-plane
both the number of lenses and the distribution of image
separations. Moving to larger or smaller increasesCŒ fcoolthe number and sizes of predicted lenses. In the hatched
region, the predicted lenses are generally too big, and the
models are ruled out (at 95% conÐdence) by the h-test. In
the crosshatched region, the models are further excluded
because they predict too many lenses (the N-test).5 The con-
tours from the N-test are based on the assumption that 16
CLASS lenses are produced by elliptical galaxies. If the
number of CLASS lenses with elliptical galaxies turns out to
be smaller than 16, the N-contours will move further up and
to the left, strengthening the constraints from lensing.

There is little di†erence between the lensing constraints in
the two cosmologies shown in Figure 4, which seems sur-
prising because it is traditionally argued that lens statistics
are quite sensitive to a cosmological constant " (e.g., Turner
1990 ; Kochanek 1996). The traditional argument is based
on models where the lens galaxy population is obtained by
taking the local comoving number density of galaxies and
assuming that it holds out to redshift zD 1 in all cosmol-
ogies ; in this case, the number of lenses is very sensitive to
the volume of the universe to zD 1, and hence to ". By
contrast, my models are based on counts of galaxies at
zD 0.5 from the CNOC2 Ðeld galaxy redshift survey (Lin et
al. 1999 ; H. Lin et al. 2001, in preparation). In these models,

5 At small and large the models predict too few lenses that are tooCŒ fcool ,small compared with the data. These constraints apply beyond the upper
left corner of the in Fig. 4.(CŒ , fcool)-plane

FIG. 3.ÈImage separation histograms for the CLASS data (solid lines) and for sample models (dotted lines). Model results are shown for the Ðducial
models in an Ñat cosmology. The model parameters are indicated in each panel.)

M
\ 0.2
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FIG. 4.ÈConÐdence regions in the for the Ðducial models. The shaded regions below the diagonal curves are excluded at 95% conÐdence(CŒ , fcool)-plane
by the lens data ; the lower and upper curves correspond to the N and h tests, respectively. The shaded regions above the horizontal lines are excluded by
measurements of the cosmic baryon density The lower curve corresponds to from measurements of deuterium (Tytler et al. 2000),)

b
. )

b
h2\ 0.019 ^ 0.0024

and the upper curve corresponds to (95% conÐdence) from the cosmic microwave background (Tegmark et al. 2001). The arrows on the x-axes)
b
h2\ 0.037

indicate concentrations predicted by CDM simulations (see text). Results are shown for two cosmologies.

the volume factor required to convert from number counts
to number density (or luminosity function) essentially
cancels the volume factor that appears in the lensing
analysis ; the number of lenses is roughly proportional to
the number counts of galaxies and is not very sensitive to ".
In other words, using models normalized by number counts
of galaxies at zD 0.5 makes lens statistics only weakly sen-
sitive to cosmology.

CDM simulations make speciÐc predictions about the
concentration : in a cosmology with for)

M
\ 1, CŒ ^ 11

standard CDM or for tilted CDM where the powerCŒ ^ 7
spectrum has shape parameter !\ 0.2, and in an )

M
\ 0.2

Ñat cosmology, (Navarro et al. 1997). These valuesCŒ ^ 8
are indicated by arrows on the x-axes in Figure 4. Cosmic
baryon censuses give limits on Because gives thefcool. fcoolfraction of a systemÏs mass that has cooled into the baryonic
galaxy, it is a lower limit on the baryonic content of the
system and hence should not exceed the cosmic baryon
fraction, (e.g., White et al. 1993). The upper limits on)

b
/)

Mderived from measurements of using the cosmicfcool )
bmicrowave background (e.g., Tegmark, Zaldarriaga, &

Hamilton 2001) and the deuterium/hydrogen ratio and big
bang nucleosynthesis (e.g., Tytler et al. 2000) are indicated
by horizontal lines in Figure 4. Some elliptical galaxies
contain hot, X-rayÈemitting gas that is probably primordial
gas that never cooled ; the cool stellar component may
contain as little as half of the baryons (e.g., Brighenti &
Mathews 1998). The presence of hot gas would reduce the
upper limit on to something below but becausefcool )

b
/)

M
,

the actual amount of gas and its presence across the galaxy
population are not well understood, I focus on the conser-
vative upper limit from )

b
.

The lens data reject models where concentrated, massive
dark matter halos make elliptical galaxies overly efficient

lensesÈa large portion of the At the concen-(CŒ , fcool)-plane.
trations found in CDM simulations, lensing requires
baryon fractions that are incompatible with a high-density
universe. The lens data are formally compatible with a low-
density universe, but only in a narrow corner of parameter
space where galaxy-mass halos must be very efficient at
cooling their baryons. The general conclusion, then, is that
galaxies constructed from CDM mass distributions are too
concentrated to agree with lens statistics, especially in a
high-density CDM cosmology.

There is clearly a degeneracy between and inCŒ fcoolFigure 4, which is not surprising because both parameters
a†ect the central mass that determines the lensing proper-
ties. It is therefore interesting to deÐne an integral quantity,

M(r)4
TMhalo(r)

Mgal(r)
U

, (20)

which is the ratio of halo mass to galaxy mass inside some
radius r, where the average is over the lens population. Note
that M is deÐned using the mass in spheres. The mass ratio
allows model-independent statements about the dark
matter distribution in early-type galaxies, which are sum-
marized in Table 1. In the Ðducial models, dark matter can
account for up to 29%È33% of the mass inside (95%R

econÐdence upper limit) and up to 35%È40% of the total
mass inside In other words, dark matter can contribute2R

e
.

a moderate fraction of the mass in the inner regions of
elliptical galaxies, but it is not the dominant mass com-
ponent at small radii. These interesting upper limits result
from the distribution of image separations ; observed lenses
are too small to be consistent with larger dark matter con-
tributions. The lensing limits are similar to but stronger
than those derived from a dynamical analysis of the nearby
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TABLE 1

HALO/GALAXY MASS RATIO

Case Radius )
M

\ 1 )
M

\ 0.2 Flat

1 . . . . . . R
e

M\ 0.50 M\ 0.41
2R

e
M\ 0.66 M\ 0.55

2 . . . . . . R
e

M\ 0.43 M\ 0.27
2R

e
M\ 0.57 M\ 0.35

3 . . . . . . R
e

M\ 0.50 M\ 0.44
2R

e
M\ 0.68 M\ 0.60

4 . . . . . . R
e

M\ 0.50 M\ 0.41
2R

e
M\ .065 M\ 0.52

NOTES.ÈThe 95% conÐdence upper limits on the
halo/galaxy mass ratio, deÐned in eq. (20), computed
at two radii for two cosmologies. The four di†erent
cases are deÐned in the text.

elliptical galaxy NGC 2434 (Rix et al. 1997). They are con-
sistent with the lower limits on dark matter in ellipticals
derived from the relationship between X-ray temperature
and stellar velocity dispersion (Loewenstein & White 1999).

4.3. Systematic E†ects
There are three systematic e†ects that may be important

for the models. Figure 5 shows how the results from the
Ðducial models (case 1, Fig. 5a) are changed by each e†ect,
and Table 1 gives the updated constraints on the halo/
galaxy mass ratio M. In case 2 (Fig. 5b), the Ðxed source
redshift is replaced by a redshift distribution to match the
CLASS spectroscopic subsample (Marlow et al. 2000). The
new models predict larger image separations, so the region
excluded by the h-test stretches up and to the left. While the
entire is now formally excluded either by(CŒ , fcool)-plane

FIG. 5.ÈConÐdence regions in the shown for the four cases deÐned in the text, in an Ñat cosmology. Panel a is the same as Fig. 4b(CŒ , fcool)-plane, )
M

\ 0.2
but is included here for completeness.
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lensing or by it is not clear how strongly to interpret this)
b
,

result, because the CLASS spectroscopic subsample may
not fairly represent the full CLASS sample. The strength of
the conclusions will ultimately be limited by the extent to
which the redshift distribution of the full CLASS sample
can be determined. Nevertheless, it is important to discover
that the redshift distribution may actually worsen the dis-
crepancy between the data and the models.

In case 3 (Fig. 5c), the redshift at which the stellar popu-
lations formed is reduced from to Thez

f
\ 5 z

f
\ 3.

younger stellar populations have smaller mass-to-light
ratios, so the galaxies are poorer lenses (because the lumi-
nosity function is held Ðxed). Thus, the models predict fewer
and smaller lenses, and the regions excluded by lensing
move down and to the right in the Neverthe-(CŒ , fcool)-plane.
less, the changes in the lensing constraints are small ; lens
statistics are not very sensitive to the galaxy formation red-
shift, provided that the stellar populations of elliptical gal-
axies are old. The fundamental plane of elliptical galaxies in
rich clusters out to z\ 0.83 (e.g., van Dokkum et al. 1998)
and of elliptical lens galaxies in low-density environments
out to zD 1 (Kochanek et al. 2000) indeed implies old
stellar populations, z

f
Z 2.

Finally, in case 4 (Fig. 5d), the initial NFW proÐles are
replaced by steeper Moore proÐles. Moore halos have more
mass in the central regions than NFW halos, even for a
Ðxed concentration parameter, and thus yield better lenses.
Hence, the models predict more and larger lenses, and the
excluded regions move up and to the left in the (CŒ , fcool)-The change is not very dramatic, however, because ofplane.
the e†ects of adiabatic contraction. Moore halos, which are
denser than NFW halos to begin with, experience a smaller
density enhancement under adiabatic contraction (see Fig.
2). In other words, adiabatic contraction tends to erase
some of the di†erences between NFW and Moore models.

These results suggest that systematic e†ects do not
weaken the discrepancy between models and data and may
even strengthen it. CDM star]halo models are at best mar-
ginally consistent with the statistics of strong lenses and
may be quite inconsistent depending on the distribution of
source redshifts in the full CLASS sample. As a relatively
model-independent conclusion, the lensed image separa-
tions imply that dark matter can contribute no more than
about 33% of the total mass inside or about 40% of theR

emass inside (95% conÐdence ; see Table 1). CDM halos2R
eappear to be too concentrated to agree comfortably with

this constraint.

5. ODD IMAGES

In this section, the very inner regions of star]halo
models are evaluated with lensing. The fact that most lenses
do not show the expected central or ““ odd ÏÏ images places
strong lower limits on the central densities of galaxies.
Section 5.1 reviews the data, ° 5.2 presents results, and ° 5.3
o†ers a discussion.

5.1. Data
It can be proved mathematically that a single thin lens

with a smooth (i.e., nonsingular) projected mass density and
a Ðnite mass always produces an odd number of images
(Burke 1981 ; also see Schneider et al. 1992). In other words,
lenses are generally expected to have three or Ðve images,
but are usually observed to have two or four. The apparent
paradox is resolved by noting that for lenses with high

central densities, one of the images is close to the center of
the lens and demagniÐed.6 If the central density is high
enough, the central image may be highly demagniÐed and
therefore very difficult to detect. For example, Appendix B
shows that for an isothermal sphere with a small core radius
or for a power-law density o P r~a with a B 2, the mean
magniÐcation of central or odd images can be quite small.
Every two- or four-image lens may therefore be a three- or
Ðve-image system where one of the images remains unde-
tected.

Odd images are expected to be rare in optical obser-
vations, because they would be swamped by light from the
lens galaxies. The only lens with an odd number of optical
images is APM 08279]5255 (Ibata et al. 1999) ; the third
image is either a standard odd image, in which case it
requires a shallow density cusp for o P r~aa [ 0.4 (Mun8 oz
et al. 2001), or else it represents a special image conÐgu-
ration produced by an edge-on disk (Keeton & Kochanek
1998). Radio observations should be much more sensitive to
odd images, because the lens galaxies (as opposed to the
sources) are rarely radio loud. The only candidate odd
image detected in the radio is in MG 1131]0456 (Chen &
Hewitt 1993), although the possibility that the lens galaxy is
radio loud cannot be ruled out in this case.

The CLASS lens sample o†ers high-resolution and high-
dynamic range (noise level D50 kJy beam~1) radio maps of
lenses with compact radio sources and thus should be quite
sensitive to odd images. Consequently, the fact that no
CLASS lens shows an odd image leads to strong upper
limits on how bright the odd images can be. Rusin & Ma
(2001) tabulate the upper limits on six two-image CLASS
lenses. To factor out the unknown brightness of the source,
they quote upper limits in terms of the Ñux ratio deÐnedfoddto be the Ñux of the odd image relative to the Ñux of the
brightest image. The 5 p upper limits range from fodd\
0.0083 for B0739]366 (Marlow et al. 2001) to fodd\
0.00049 for B0218]357 (Biggs et al. 1999). Norbury et al.
(2001) give limits on odd images for CLASS lenses with
more than two images. When quantifying odd images rela-
tive to other lensed images, four-image lenses are much
more sensitive to asymmetry in the lens galaxy than two-
image lenses. Hence, I restrict attention to the two-image
CLASS lenses where spherical models are sufficient for
interpreting odd images.

5.2. Results
For power-law models with o P r~1.5 the mean magniÐ-

cation of odd images is unity, so odd images are not highly
demagniÐed (see eq. [B7] in Appendix B). This simple pre-
diction does not strictly apply to star]halo models,
because even in the initial halos the broken power laws
a†ect lensing via projection, and adiabatic contraction
increases the central density. However, it does suggest that
the odd images in star]halo models are worth investigat-
ing. The best way to draw conclusions from observational
limits on odd images is to use models of individual systems
that take into account not only the detection limits but also
constraints on the global lens model from the observed
images (e.g., Cohn et al. 2001 ; et al. 2001 ; Rusin &Mun8 oz
Ma 2001 ; Norbury et al. 2001). Instead, in this statistical

6 Alternatively, if the projected mass density is singular, the odd image
theorem formally breaks down. Odd images still appear, though, provided
the central density cusp is shallower than o P r~2 (see Appendix B).
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FIG. 6.ÈContours of the fraction of (two-image) lenses where the odd image is brighter than 1% of the brightest image Results are shown for( fodd º 0.01).
an Ñat cosmology. The left panel shows models with NFW halos (case 1), and the right panel show models with Moore halos (case 4).)

M
\ 0.2

analysis I examine the distribution of odd images predicted
by star]halo models to understand the general trends (see
Wallington & Narayan 1993).

The upper limits on odd images in the CLASS doubles
range from down to to be veryfodd\ 0.0083 fodd\ 0.0005 ;
conservative, we can simply say that no CLASS double has
an odd image brighter than In contrast, Figure 6fodd\ 0.01.
shows that star]halo models predict that more than 20%
of lenses should have odd images with and forfoddº 0.01,

the range of parameters allowed by the number and sizes of
lenses, the fraction is more like 30%. In other words,
star]halo models predict that detectable odd images
should be quite common, in conÑict with observations. This
result is not terribly sensitive to the model parameters. It is
surprisingly similar for NFW and Moore models, despite
the di†erences in the dark matter cusps. The explanation is
again adiabatic contraction : most of the mass in the cores
of the galaxies was pulled in by adiabatic contraction, which

FIG. 7.ÈCumulative fraction of (two-image) lenses where the ratio of the odd image to the brightest image is greater than Results are shown forfodd.models with and in an Ñat cosmology. The galaxy components are modeled as and each curve shows resultsCŒ \ 7.7 fcool\ 0.19, )
M

\ 0.2 o P r~a(r
s
] r)a~4,

for a particular value of a ; the Ðducial Hernquist model corresponds to a \ 1.0. The initial mass distribution is modeled with an NFW (left panel ) or Moore
(right panel ) proÐle. The heavy dashed curves show the upper limits derived from six two-image CLASS lenses (Rusin & Ma 2001).
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a†ects NFW halos more strongly than Moore halos and
thus tends to reduce the di†erences between the two models.
The fraction of lenses with detectable odd images is a strong
function of the detection threshold (see Figs. 7 and 8), so the
discrepancy between data and models grows as the upper
limit on is decreased.foddOdd images are sensitive to the density proÐle at small
radii, so the assumption of a Hernquist model galaxy with a
o P r~1 cusp should be examined. Faber et al. (1997),
Ravindranath et al. (2001), and Rest et al. (2001) Ðnd that
the surface brightness distributions I(R) of early-type gal-
axies have a range of cusps ; luminous early-type galaxies
have cores or shallow cusps (IP R~c with corre-c[ 0.3,
sponding to o P r~a with while fainter galaxiesa [ 1.3),
have steeper power-law cusps. Hence, the Hernquist model
seems reasonable for the massive galaxies that dominate
lensing. Still, for completeness I consider models where the
Hernquist galaxy is generalized to an arbitrary cusp using
the density proÐle Figure 7 shows theo P r~a(r

s
] r)a~4.

results for models with and (a pointCŒ \ 7.7 fcool\ 0.19
close to the h-boundary in Fig. 4). Steep cusps suppress odd
images, but only if they are considerably steeper than the
luminosity cusps in luminous early-type galaxies. As a
corollary, steep cusps also make galaxies more efficient
lenses and thus aggravate the discrepancy between the
models and the observed number and sizes of lenses. In
other words, cusps do not provide a very attractive
resolution to the odd image problem. These conclusions
apply to both NFW and Moore dark matter models.

The simple star ] halo models may not be sufficient for
this analysis, because many galaxies are observed to contain
central supermassive black holes (e.g., Magorrian et al.
1998 ; Gebhardt et al. 2000a, 2000b ; Ferrarese & Merritt
2000 ; Merritt & Ferrarese 2001). While black holes have
little e†ect on the number and sizes of lenses (they barely

a†ect the potential on kiloparsec scales), they may suppress
or even eliminate odd images (Mao, Witt, & Koopmans
2001). To understand their e†ects on lens statistics, I add
black holes to the star]halo models, where the mass of the
black hole is determined from the velocity dispersion of the
galaxy using the empirical correlation Mbh \ (1.30^ 0.36)
] 108 km s~1)4.72B0.36 (Ferrarese & MerrittM

_
(p/200

2000 ; Merritt & Ferrarese 2001).7 Figure 8 shows that black
holes normalized by this relation have little e†ect on odd
images down to Making the black holes sys-foddD 0.001.
tematically more massive increases the suppression, but
only for the faintest odd images. Black holes must lie o† the
Ferrarese & Merritt relation by at least a factor of 10 in
mass before they begin to a†ect odd images at the fodd\
0.01 level. These conclusions again apply with almost equal
strength to NFW and Moore models.

5.3. Discussion
When compared to the current limits from CLASS, the

star]halo models clearly predict too many detectable odd
images. The discrepancy is not easily resolved by changing
the density proÐle or invoking supermassive black holes. In
other words, galaxies constructed from CDM mass dis-
tributions have central densities that are too low. This con-
clusion is consistent with the result from Rusin & Ma (2001)
that the lack of odd images requires steep density proÐles,
o P r~a with a [ 1.8 at 90% conÐdence. Given that the
measurements of odd images are only upper limits, the con-

7 The correlation was derived for nearby galaxies, but for simplicity I
use it at all redshifts. This approach is conservative if black holes grow no
faster than their surrounding galaxies, as in the models by Haehnelt &
Kau†mann (2000) to explain the correlation.

FIG. 8.ÈSimilar to Fig. 7, but showing the e†ects of supermassive black holes. The dotted curves show results for star]halo models without black holes,
for NFW (left panel ) and Moore (right panel ) models. The solid curves show results when central black holes are added. For the curves labeled ““ BH,ÏÏ the
black hole masses are normalized by the empirical correlation between black hole mass and galaxy velocity dispersion (Ferrarese & Merritt 2000 ; Merritt &
Ferrarese 2001). In the curves labeled ““ BH ] N,ÏÏ the black holes are made systematically more massive by the factor N. (All galaxies have a \ 1.0.) The
heavy dashed curves again show the upper limits from six CLASS lenses.
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straints from odd images can only get strongerÈand
perhaps substantially, if more lenses turn out to have upper
limits as strong as in B0218]357.fodd\ 0.0005

The odd image problem stands in stark contrast to most
observational tests of CDM. Spiral galaxy dynamics are
said to imply that CDM halos are too concentrated to agree
with observed galaxies (e.g., Moore 1994 ; de Blok et al.
2001 ; Salucci 2001 ; Weiner et al. 2001), although there is
still substantial debate about whether beam smearing
a†ects this conclusion for low surface brightness galaxies
(van den Bosch et al. 2000 ; van den Bosch & Swaters 2001).
Independent of the dynamical arguments, the number and
sizes of observed lenses lead to a similar conclusion, as
shown in ° 4. Recent interest in modiÐcations to CDM, such
as self-interacting dark matter (e.g., Spergel & Steinhardt
2000 ; see Wandelt et al. 2001 for a review), has therefore
focused on making dark matter halos less concentrated.
However, the lack of odd images implies that galaxies built
from CDM halos are not concentrated enough, to a signiÐ-
cant degree. If self-interacting dark matter reduces densities,
it would only exacerbate the odd image problem.

It is clearly important to understand and resolve this
paradox. Perhaps it is a case of comparing di†erent
samples. Lensing intrinsically selects dense, massive gal-
axies, so most lenses are elliptical galaxies ; by contrast, the
dynamical arguments against CDM halos come primarily
from spiral galaxies and, in particular, low surface bright-
ness galaxies. However, the strongest limit on an odd image
actually comes from a lens produced by a face-on spiral
galaxy for B0218]357).( fodd\ 0.0005

More likely, it is a question of scales. Dynamical obser-
vations and observed lensed images probe scales from
several kiloparsecs down to D0.5 kpc, while odd images
probe scales more like tens of parsecs. The paradox could
be resolved if halos have high densities on D10 pc scales,
low mean densities at D1 kpc, and substantial dark matter
halos beyond several kiloparsecs. The star ] halo models
do not show the required small-scale structureÈbut they
are based on a questionable extrapolation of CDM proÐles
to scales much smaller than the resolution of numerical
simulations. On such small scales, other e†ects may be
important ; while supermassive black holes appear not to
suppress odd images at the required levels, self-interacting
dark matter may be a mechanism to steepen the central
cusp (Burkert 2000 ; Kochanek & White 2000 ; Moore et al.
2000) or simply to concentrate a lot of dark matter at very
small radii (Ostriker 2000). Regardless of what the correct
explanation turns out to be, it is clear that the odd image
problem provides a very interesting probe of galaxy mass
distributions in the inner tens of parsecs.

6. CONCLUSIONS

Star ] halo models of elliptical galaxies are a natural
outgrowth of the cold dark matter paradigm that can repro-
duce the quasi-isothermal mass distributions implied by
stellar dynamics, X-ray halos, and gravitational lensing.
When the stellar components are Ðxed by observed galaxy
populations, gravitational lens statistics can be used to con-
strain the dark matter components. The observed number
and sizes of lenses place important upper limits on the
amount of dark matter in the inner regions of elliptical
galaxies : on average, dark matter can account for no more
than about 33% of the total mass inside one e†ective radius

or about 40% of the mass inside (95% conÐdence(R
e
) 2R

e

upper limits). Lensed images typically appear at a few e†ec-
tive radii, so the stellar and dark matter components must
be comparably important for lensing.8

The dark matter limits are interesting when interpreted in
the context of the CDM paradigm. Galaxies built from
CDM mass distributions have signiÐcant amounts of
central dark matter, so they predict that lenses should be
more numerous and larger than observed. A high-density

CDM cosmology can therefore be ruled out at()
M

\ 1)
better than 95% conÐdence, while a low-density, Ñat cos-
mology is at best marginally consis-()

M
\ 0.2, )" \ 0.8)

tent with the lens data. By implying that CDM model
galaxies have too much mass on kiloparsec scales, lensing
independently supports the evidence against CDM from
spiral galaxy dynamics (e.g., Moore 1994 ; de Blok et al.
2001 ; Salucci 2001 ; Weiner et al. 2001). The evidence from
lensing is important because its only uncertainty is the
decomposition into stellar and dark matter components,
and lensing extends the argument to elliptical galaxies.
These conclusions may be invalid if simple adiabatic con-
traction models do not apply to elliptical galaxies, but the
models appear to agree well with simulated galaxies even in
merger scenarios (Gottbrath 2000).

Lensing o†ers a unique additional insight into galaxy
mass distributions. Star ] halo models predict that a
central or ““ odd ÏÏ image should be detectable in more than
30% of lenses, but such images are rarely observed. Equiva-
lently, the upper limits on the Ñuxes of odd images for
CLASS lenses lead to strong lower limits on the central
densities of lens galaxies, and star ] halo models fail to
satisfy the limits. The failure is perhaps not surprising,
because odd images are sensitive to the mass distribution on
scales of tens of parsecs, where simple CDM models may
break down. For example, supermassive black holes, which
appear to be common in the centers of galaxies (e.g.,
Magorrian et al. 1998 ; Gebhardt et al. 2000a, 2000b ; Fer-
rarese & Merritt 2000 ; Merritt & Ferrarese 2001), might
reconcile the models with the data by helping to suppress
odd images (see Mao et al. 2001). However, star]halo
models would need black holes that lie o† the observed
black holeÈbulge mass correlation by more than a factor of
10 in order to suppress odd images at the required level.
Alternatively, steeper central cusps could suppress odd
images, but only if mass cusps are considerably steeper than
luminosity cusps, only if steep cusps can survive merger
events (which is unlikely if the progenitors contain black
holes ; & Merritt 2001), and only at theMilosavljevic�
expense of aggravating the discrepancy in the number and
sizes of lenses.

The evidence from the number and sizes of lenses (and
from spiral galaxy dynamics) implies, then, that CDM mass
distributions have too much mass on kiloparsec scales, and
the odd image problem indicates too little mass on tens of
parsec scales. The problem may be the assumption that the
dark matter particles are collisionless. Allowing dark matter
self-interactions can lower the density on large scales (e.g.,
Spergel & Steinhardt 2000 ; Burkert 2000 ; et al. 2001),Dave�
although matching observations may require substantial

8 Dark matter mass fractions derived from individual lenses may di†er
somewhat from the limits just quoted. The quoted limits are statistical
averages and apply to the mass in spheres, while lens models give individ-
ual masses and involve the mass in cylinders.



58 KEETON Vol. 561

Ðne-tuning (e.g., Kochanek & White 2000 ; Moore et al.
2000 ; Yoshida et al. 2000). As an intriguing corollary,
Ostriker (2000) proposes that self-interactions could also
increase the dark matter density on very small scales. Self-
interacting dark matter models might therefore provide a
way to reconcile cosmological mass models with real gal-
axies over a wide range of spatial scales, although the
details remain to be worked out. In any case, it appears that
lensing will be a very important test of modiÐcations to
CDM through its ability to simultaneously test mass dis-
tributions on large scales (via observed images) and small
scales (via limits on, and eventually detections of, odd
images). These tests based on galaxy-scale lenses will com-
plement constraints on self-interacting dark matter from
giant arcs produced by cluster lenses (Meneghetti et al.
2001).

It would be interesting to apply star]halo models to
individual lenses, especially given the statistical limits
implying that the stellar and dark matter components are of
comparable importance in lensing. Comparing the halo/
galaxy mass ratios inferred for individual lenses with the
limits from statistics would be an important test of the
models. Using two independent components would make it
possible to examine whether the stellar and halo distribu-
tions have similar or di†erent ellipticities and orientations,
although the decomposition may not be unique. Finally,
using two components with di†erent ellipticities and/or
orientations would test whether single-component lens
models are sufficient or oversimpliÐed. In particular,
star]halo models might provide an internal reason why
most lenses cannot be Ðtted by a single ellipsoidal mass
distribution (e.g., Keeton, Kochanek, & Seljak 1997),
although internal e†ects may often be smaller than external
tidal perturbations from objects near the lens galaxy or
along the line of sight (e.g., Hogg & Blandford 1994 ;
Schechter et al. 1997).

The constraints on dark matter from lens statistics can be
strengthened with better data in at least three ways : First,
the strongest constraints come from the distribution of
image separations, where the model predictions are sensi-
tive to the redshift distribution of the CLASS sample. The
CLASS spectroscopic subsample (Marlow et al. 2000) pro-
vides a useful starting point, but the redshift distribution of
the full sample must be better constrained to make the
lensing analysis truly robust. Second, many of the current
constraints on odd images lie at the level (Rusinfodd^ 0.01
& Ma 2001). If the limits could be improved to the fodd^
0.003 level or better, they would make the models much
more sensitive to supermassive black holes, and lensing
would become a powerful probe of black holes in distant
galaxies out to redshift zD 1. Finally, this analysis is based
primarily on the sample of lenses from the CLASS survey,
which is the largest existing lens survey but still has only 18
lenses. Larger surveys, in particular the Sloan Digital Sky
Survey (SDSS; York et al. 2000), should increase the
number of lenses by well over an order of magnitude. The
SDSS lens sample will dramatically improve the constraints
from lensing, provided that selection e†ects are well under-
stood and that there is a subsample of radio-loud lenses
where useful limits on odd images can be obtained.
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of publication ; Janice Lee for help sorting through the
debate about rotation curves and beam smearing ; and
Chris Kochanek and Ann Zabludo† for comments on the
manuscript. This work has been supported by Steward
Observatory.

APPENDIX A

AN ANALYTIC SOLUTION OF ADIABATIC CONTRACTION

Blumenthal et al. (1986) give a simple analytic treatment of spherical adiabatic contraction that agrees remarkably well with
more detailed numerical simulations. Let be the initial mass proÐle as a function of the initial radius while andM

i
(r
i
) r

i
, M

g
(r)

are the Ðnal mass proÐles of the galaxy and halo, respectively. In the Blumenthal et al. (1986) prescription, the threeM
h
(r)

proÐles are related by two equations,

r[M
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(r)] M
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(r)]\ r

i
M
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i
) , (A1)

M
h
(r)\ (1 [ fcool)Mi

(r
i
) , (A2)

where is the fraction of the systemÏs mass contained in baryons that cool to form the galaxy. (There can befcool\ M
g,tot/Mi,totother baryons that remain hot and distributed throughout the halo, but they do not a†ect adiabatic contraction.)

This adiabatic contraction formalism has often been applied to the problem of a disk galaxy in an NFW halo. Rix et al.
(1997) have computed adiabatic contraction for elliptical galaxies numerically, but I Ðnd that with a Hernquist model (eq. [1]
in ° 2.1) the problem can be solved analytically. Each initial radius maps to a unique Ðnal radius r given by the solution ofr

ithe equation
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which is a cubic polynomial in r. Note that I have taken the galaxy scale radius from equation (1) and relabeled it as Also,r
s

s
g
.

is the initial mass proÐle normalized by the virial mass (the mass inside the virial radius In the limitm
i
(r
i
)\M
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)/M200 r200).

equation (A3) has the simple asymptotic solutionr ? s
g
,

r \ r
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)
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i
)
. (A4)

The full general solution can be also be found analytically, although it cannot be written quite so compactly. Following
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Abramowitz & Stegun (1981), solve a cubic equation of the form

z3] a2 z2] a1 z] a0\ 0 (A5)

by deÐning

p \ a1 a2[ 3a0
6

[ a23
27

, (A6)

q \ a1
3

[ a22
9

, (A7)

s1\ yp ] Jq3] p2 z1@3 , (A8)

s2\ yp [ Jq3] p2 z1@3 . (A9)

There is always a real solution of equation (A5) at

z1 \ (s1] s2)[
a2
3

. (A10)

There are two other roots that may be real or complex, but because the mapping under adiabatic contraction should ber
i
] r

one-to-one, only the single real root is relevant. Once the cubic equation has been solved to map to r, equation (A1) can ber
iused to write the total mass proÐle as

Mtot(r)4 M
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This solution of adiabatic contraction by a Hernquist galaxy can be used for any form of the initial halo, by simply inserting
the desired initial proÐle into equations (A3) and (A11).M

i
(r
i
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APPENDIX B

THE MEAN MAGNIFICATION OF ODD IMAGES

The mean magniÐcation of odd images can be computed analytically, at least for simple lens models. Neglecting magniÐ-
cation bias, the mean magniÐcation is deÐned to be

SkoddT \ / kodd(u)du
/ du

, (B1)

where the integrals extend over the multiply imaged region of the source plane. Changing variables in the numerator to
integrate in the image plane yields

SkoddT \ /odd dx
/ du

, (B2)

where the integral in the numerator extends over the region in the image plane where odd images are found. The result is so
simple because the factor in equation (B1) is exactly canceled by the Jacobian of the coordinate transformation.kodd(u)
Equation (B2) says that the mean odd image magniÐcation is simply the area where odd images occur in the image plane
divided by the area of the multiply imaged region of the source plane. This result is general and does not require speciÐc
symmetries in the lens model. It can be generalized to other types of images as well, provided that multiplicities are properly
counted.

Now focusing on spherical systems, where is the radial critical curve and is the boundary of theSkoddT \ (rcr/uout)2, rcr uoutmultiply imaged region (see ° 3). These radii are found as follows. The critical radius is the solution of the equation

d/
R

dR
K
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\ 1 , (B3)

where is the lensing deÑection. The boundary of the multiply imaged region is then/
R

uout\ (/
R

[ R) o
R/rcr

. (B4)

Consider two simple models : First, for a softened isothermal sphere with density o P (s2] r2)~1 with core radius s,

SkoddT \ 4s

yJ4rE ] s [ 3Js z2
, (B5)
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where is the Einstein ring radius of the model when the core radius is zero. Second, for a simple power-law density o P r~arE
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(with a [ 1 to ensure that the projected mass distribution is a decreasing function of radius),

SkoddT \ 4
5
6
0
0
[(2 [ a)/(a [ 1)]2 1 \ a \ 2 ,
0 a º 2 .

(B7)

Note that for a º 2 the model does not produce odd images (the density is singular, so the odd image theorem does not apply ;
see ° 5.1), so SkoddT 4 0.
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