Dark Energy Models and Constraints

Supernova Legacy Survey

Astier, et al

Supernova Legacy Survey

- Use photometry to obtain light curves and detect possible SNe
 - Compare light curve to "past" image to find events
- Follow up with spectroscopy to find redshifts and natures of SNe

- Classify events as SN Ia or SN Ia*

91 SN Ia or SN Ia* detected

Sample Light Curves

z=0.358

z=0.91

Calibration

- Compare flux of SNe to "tertiary standards" → field stars in the image
- Use Vega as reference star to calibrate flux levels in bandpasses
- Survey done in SDSS bandpasses
 u, g, r, i, z

Cosmological Fits

Contours of 68.3%, 95.5%, and 99.7% CL

• Ω_M and Ω_Λ are free parameters

– Not necessarily $\Omega_{Tot} = 1$

• Flat cosmology, with Ω_M and w as free parameters

Uncertainties

Source	$\sigma(\Omega_{\rm M})$	$\sigma(\Omega_{\rm tot})$	$\sigma(w)$	$\sigma(\Omega_M)$	$\sigma(w)$
	(flat)			(with BAO)	
Zero-points	0.024	0.51	0.05	0.004	0.040
Vega spectrum	0.012	0.02	0.03	0.003	0.024
Filter bandpasses	0.007	0.01	0.02	0.002	0.013
Malmquist bias	0.016	0.22	0.03	0.004	0.025
Sum (sys)	0.032	0.55	0.07	0.007	0.054
Meas. errors	0.037	0.52	0.09	0.020	0.087
U - B color (stat)	0.020	0.10	0.05	0.003	0.021
Sum (stat)	0.042	0.53	0.10	0.021	0.090

"Survey Says..."

Flat Λ cosmology

 $\Omega_M = 0.263 \pm 0.042(stat) \pm 0.032(sys)$

Constant w cosmology $\Omega_M = 0.271 \pm 0.021(stat) \pm 0.007(sys)$ $w = -1.013 \pm 0.090(stat) \pm 0.054(sys)$

Exotic Cosmological Models

Davis, et al.

Data

- Use supernova searches

 ESSENCE
 SNLS
 - -HST
- Baryon acoustic oscillations

Selection Methods

- χ² analysis is not a good indicator of which model is the best
- Goodness-of-fit tests do not take into account the differences between models

So what can we use?

Information Criteria

Bayesian Information
 Criterion

 $BIC = -2\ln L + k\ln N$

Akaike Information
 Criterion

 $AIC = -2\ln L + 2k$

L = Maximum likelihood k = Number of parameters N = Number of data points

Let's Meet Our Contestants

TABLE 1

SUMMARY OF MODELS

Model	Abbreviation ^a	Parameters ^b	Section	
Flat cosmological constant	FA	Ω"	4.1.1	
Cosmological constant	Λ	Ω_m, Ω_Λ	4.1.2	
Flat constant w	Fw	Ω_m, w	4.1.3	
Constant w	w	Ω_m, Ω_k, w	4.1.4	
Flat w(a)	Fwa	Ω_m, w_0, w_a	4.2.1	
DGP	DGP	Ω_k, Ω_{r_c}	4.3.1	
Flat DGP	FDGP	Ω_{r}	4.3.2	
Cardassian	Ca	Ω_m, q, n	4.4	
Flat general Chaplygin	FGCh	Α, α	4.5.1	
General Chaplygin	GCh	Ω_k, A, α	4.5.1	
Flat Chaplygin	FCh	A	4.5.2	
Chaplygin	Ch	Ω_k, A	4.5.2	

Dark Energy with Constant w

$$\frac{H^2}{H_0^2} = \frac{\Omega_m}{a^3} + \frac{\Omega_k}{a^2} + \frac{\Omega_x}{a^{3(1+w)}}$$

with
$$H = \frac{a}{a}$$

Flat, ACDM

$$\frac{H^2}{H_0^2} = \frac{\Omega_m}{a^3} + (1 - \Omega_m)$$
$$\Omega_m = 0.27 \pm 0.04$$

$$\Lambda CDM$$
$$\frac{H^2}{H_0^2} = \frac{\Omega_m}{a^3} + \frac{\Omega_k}{a^2} + \Omega_\Lambda$$

Flat, constant w $\frac{H^2}{H_0^2} = \frac{\Omega_m}{a^3} + \frac{\Omega_x}{a^{3(1+w)}}$ $\Omega_m = 0.27 \pm 0.04, \quad w = -1.01 \pm 0.15$

Dark Energy with Constant w

Dark Energy With Changing w

$$\frac{H^2}{H_0^2} = \frac{\Omega_m}{a^3} + \frac{\Omega_k}{a^2} + \frac{\Omega_x}{a^{3(1+w)}} \quad \text{with} \quad a^{3(1+w)} \to \exp\left[3\int_a^1 \frac{1+w(a')}{a'} \, da'\right]$$

Using parametrization

$$w(a) = w_0 + w_a(1-a)$$

we get

$$a^{3(1+w_0)} \rightarrow a^{3(1+w_0+w_a)}e^{3w_a(1-a)}$$

DGP Models

0.20 F

2

$$\frac{H^2}{H_0^2} = \frac{\Omega_k}{a^2} + \left(\sqrt{\frac{\Omega_M}{a^3} + \Omega_{r_c}} + \sqrt{\Omega_{r_c}}\right)$$

$$\Omega_{_M} = 1 - \Omega_{_k} - 2\sqrt{\Omega_{_{r_c}}}\sqrt{1 - \Omega_{_k}}$$

 $\Omega_{r_c} = \frac{1}{4r_c^2 H_0^2}$

$$\begin{array}{c}
0.18\\
0.16\\
0.14\\
0.12\\
0.10\\
0.08\\
0.06\\
0.00\\
0.0 0.1 0.2 0.3 0.4 0.5 0.6\\
\Omega_{m}
\end{array}$$

Cardassian Expansion

Freese and Lewis 2002

 Introduce new terms to account for selfinteraction of dark matter, brane nature of the Universe, etc.

$$\frac{H^2}{H_0^2} = \frac{\Omega_m}{a^3} \left[1 + \frac{\left(\Omega_m^{-q} - 1\right)}{a^{3q(n-1)}} \right]^{1/q}$$

with n (dimensionless) related to w

 Suffers under IC analysis since it has 3 parameters

Cardassian Expansion

Poorly constrained

Chaplygin Gas $p = -A/\rho^{\alpha}$ $\rho > 0$ A > 0 (const)

As opposed to conventional $p = w \rho$

General

$$\frac{H^2}{H_0^2} = \frac{\Omega_k}{a^2} + (1 - \Omega_k) \left[A + \frac{(1 - A)}{a^{3(1 + \alpha)}} \right]^{1/(1 + \alpha)}$$

Standard ($\alpha = 1$) $\frac{H^2}{H_0^2} = \frac{\Omega_k}{a^2} + (1 - \Omega_k)\sqrt{A + \frac{(1 - A)}{a^6}}$

Chaplygin Gas

Flat Generalized

Standard

Conclusions

TABLE 2 SUMMARY OF THE INFORMATION CRITERIA RESULTS								
Model	χ^2 /dof	GoF (%)	ΔAIC	ΔBIC				
Flat cosmological constant	194.5/192	43.7	0	0				
Flat general Chaplygin	193.9/191	42.7	1	5				
Cosmological constant	194.3/191	42.0	2	5				
Flat constant w	194.5/191	41.7	2	5				
Flat w (a)	193.8/190	41.0	3	10				
Constant w	193.9/190	40.8	3	10				
General Chaplygin	193.9/190	40.7	3	10				
Cardassian	194.1/190	40.4	4	10				
DGP	207.4/191	19.8	15	18				
Flat DGP	210.1/192	17.6	16	16				
Chaplygin	220.4/191	7.1	28	30				
Flat Chaplygin	301.0/192	0.0	30	30				

- Best fits include the standard concordance model and those that can reduce to it
- Models which cannot reduce to ACDM model do poorly

Conclusions

