Contents

List of illustrations page vi
List of tables xi
Preface xii

1 Invariance and quantization of charges and currents 1
1.1 Polarization, adiabatic currents, and surface charge 4
 1.1.1 Surface charge 6
 1.1.2 Adiabatic loop and charge pumping 11
 1.1.3 Slow spatial variation in a supercell 14
 1.1.4 Fictitious physics of classical point charges 15
 1.1.5 Robustness against weak interactions 18
1.2 Orbital magnetization and surface currents 20
1.3 Edge channels and anomalous Hall conductivity 23
 1.3.1 Edge channels 23
 1.3.2 Anomalous Hall conductivity 26
1.4 Discussion 30

2 Review of electronic structure theory 33
2.1 Electronic Hamiltonian and Bloch functions 33
 2.1.1 Reduction to a single-particle Hamiltonian 33
 2.1.2 Spin, spin-orbit coupling, and external fields 37
 2.1.3 Crystal potential, Bloch’s theorem, and reciprocal space 38
 2.1.4 Electron counting 41
 2.1.5 Cell-periodic Bloch functions 42
2.2 Tight-binding model Hamiltonians 43
 2.2.1 Finite systems 44
 2.2.2 The PYTHTB package 48
 2.2.3 Extended systems 50
2.2.4 Examples 53
2.3 Linear response theory 57

3 Berry phases and curvatures 62
 3.1 Berry phase, gauge freedom, and parallel transport 62
 3.1.1 Discrete formulation 63
 3.1.2 Continuous formulation and Berry potential 67
 3.1.3 An example 71
 3.2 Berry curvature and the Chern theorem 74
 3.2.1 Berry curvature 74
 3.2.2 Chern theorem 76
 3.3 Adiabatic dynamics 80
 3.4 Berryology of the Brillouin zone 84
 3.5 Wannier functions 91
 3.5.1 Properties of the Wannier functions 93
 3.5.2 Gauge freedom 98
 3.6 Multiband formulation 99
 3.6.1 Multiband Wannier functions 100
 3.6.2 Multiband parallel transport 104
 3.6.3 Multiband Berry potentials and curvatures 108

4 Electric polarization 112
 4.1 Statement of the problem 112
 4.2 Berry-phase theory of polarization 116
 4.2.1 First-order change in polarization 117
 4.2.2 Change of polarization on an adiabatic path 121
 4.2.3 Quantized diabatic charge transport in 1D 126
 4.2.4 Historical development 127
 4.3 Discussion 127
 4.3.1 The quantum of polarization 128
 4.3.2 Ionic contribution and origin dependence 132
 4.3.3 Relation to Wannier charge centers 133
 4.3.4 Practicalities 135
 4.4 Questions of interpretation 139
 4.4.1 How is polarization measured? 140
 4.4.2 “Formal” vs. “effective” polarization 142
 4.4.3 Symmetry considerations 144
 4.5 Surface charge theorem 147
 4.6 Uniform electric fields 148

5 Anomalous Hall conductivity 149
 5.1 Introduction 149
5.2 Intrinsic AHC in terms of Berry curvature and Berry phase 149
5.3 Quantum anomalous Hall insulator 149

6 Topological insulators 150
6.1 Quantum anomalous Hall insulator 150
6.2 Quantum spin Hall insulator 150
6.3 3D Z_2 topological insulator 150
6.4 4D second-Chern insulator 151

7 Orbital magnetization 152
7.1 Statement of the problem 152
7.2 Derivation in the Wannier representation 152
7.3 General expression 152
7.4 Discussion 152

8 Orbital magnetoelectric coupling 153
8.1 The linear magnetoelectric tensor 153
8.2 Axion electrodynamics 153
8.3 The Chern-Simons theta coupling 153
8.4 Relation to surface anomalous Hall conductivity 153

9 Summary and prospects 154

Appendix A The PythTB package 155
Introduction 155
PYTHTB extensions module 155
Example PYTHTB programs 156

Appendix B Fourier transform conventions 159

Appendix C Quantum metric and Born-Oppenheimer dynamics 160

Appendix D Born-Oppenheimer adiabatic dynamics 161

Appendix E Systems of units 162

References 163