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Shell Filling and Spin Effects in a Few Electron Quantum Dot
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We study atomiclike properties of artificial atoms by measuring Coulomb oscillations in vertical

quantum dots containing a tunable number of electrons starting from zero. At zero magnetic field
the energy needed to add electrons to a dot reveals a shell structure for a two-dimensional harmonic
potential. As a function of magnetic field the current peaks shift in pairs, due to the filling of electrons
into spin-degenerate single-particle states. When the magnetic field is sufficiently small, however,
the pairing is modified, as predicted by Hund’s rule, to favor the filling of parallel spins. [S0031-
9007(96)01418-4]

PACS numbers: 73.20.Dx, 72.20.My, 73.40.Gk

The “addition energy” needed to place an extra elec-
tron in a semiconductor quantum dot is analogous to the
electron affinity for a real atom [1]. For a fixed number of
electrons, small energy excitations can take these electrons
to a higher single-particle state. However, due to Coulomb
interactions between the electrons, the addition energy is
greater than the energy associated with these excitations.
Both the addition energy spectrum and the excitation en-
ergy spectrum are discrete when the Fermi wavelength and
the dot size are comparable. Until now a direct mapping of
the observed addition energy, and the single-particle exci-
tation energy, to a calculated spectrum has been hampered,
probably due to sample specific inhomogeneities [2].
The three-dimensional spherically symmetric potential

around atoms gives rise to the shell structure 1s, 2s, 2p,
3s, 3p, . . . . The ionization energy has a large maximum
for atomic numbers 2, 10, 18, . . . . Up to atomic number
23 these shells are filled sequentially, and Hund’s rule
determines whether a spin-down or a spin-up electron is
added [3]. Vertical quantum dots have the shape of a
disk with a diameter roughly 10 times the thickness [2,4].
The lateral potential has a cylindrical symmetry with a
rather soft boundary profile, which can be approximated
by a harmonic potential. The symmetry of this two-
dimensional (2D) harmonic potential leads to a complete
filling of shells for 2, 6, 12, . . . electrons. The numbers
in this sequence can be regarded as “magic numbers” for
a 2D harmonic dot. The shell filling in this manner is
previously predicted by self-consistent calculations of a
circular dot [5]. In this Letter we report the observation
of atomiclike properties in the conductance characteristics
of a vertical quantum dot. We find an unusually large
addition energy when the electron number coincides with
a magic number. We can identify the quantum numbers
of the single-particle states by studying the magnetic
field dependence. At a sufficiently small magnetic field
�B , 0.4 T) we see that spin filling obeys Hund’s rule.
At higher magnetic fields �B . 0.4 T) we observe the

consecutive filling of states by spin-up and spin-down
electrons, which arises from spin degeneracy.
The gated vertical quantum dot shown schematically

in Fig. 1 is made from a double-barrier heterostructure
(DBH). The use of well-defined heterostructure tunnel
junctions allows us to vary the number of electrons in the
dot N one by one from 0 to more than 40 by changing

FIG. 1. (a) Coulomb oscillations in the current vs gate votage
at B � 0 T observed for a D � 0.5 mm dot. (b) Addition
energy vs electron number for two different dots with D � 0.5
and 0.44 mm. The inset shows a schematic diagram of the
device. The dot is located between the two heterostructure
barriers.
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the gate voltage Vg [4]. The DBH consists of an undoped
12.0-nm In0.05Ga0.95As well and undoped Al0.22Ga0.78As
barriers of thickness 9.0 and 7.5 nm (the thinner one is
closest to the substrate). The source and drain contacts
are made from n-GaAs and are lightly doped close to the
DBH. The DBH is processed to form a mesa with top
contact geometrical diameter D by using a combined dry
and wet etch to a point just below the DBH region. A
circular Schottky gate is placed on the side of the mesa
close to the DBH [4]. We point out that the inclusion of
In in the well reduces the bottom of the conduction band
below the Fermi level of the contacts. This allows us to
study linear transport through a vertical quantum dot. The
current I flowing vertically through the dot is measured
in response to a small dc voltage V applied between the
contacts. Note that all the results are reproduced in both
polarities for V since the device is in the linear transport
regime. The samples are cooled in a dilution refrigerator
down to 50 mK, although the electron temperature is
estimated to be about 0.2 K.
Figure 1(a) shows the current at V � 150 mV as a func-

tion of Vg for a dot withD � 0.5 mm. Clear Coulomb os-
cillations are observed for Vg . 21.6 V with each period
corresponding to a change of exactly one electron in the
dot. From I-V characteristics (not shown) we can unam-
biguously assign absolute values ofN, i.e.,N � 1 between
the first and second peaks, N � 2 between the second and
third peaks, etc. We find that when N becomes smaller
than 20, the oscillation period depends strongly on N. The
increasing “irregularity” for small N has previously been
reported for dots containing a few electrons [2,4], but in
marked contrast we find that the irregularity in our dot is,
in fact, systematic with respect to N.
Figure 1(b) shows the addition energy as a function

of N for two different devices. The spacing between
the current peaks in Fig. 1(a) reflects the energy to add
one more electron to a dot containing N electrons. For
example, the energy to add the third electron to an N � 2
dot can be derived from the spacing between the second
and third peaks. For each value of N the factor a to
convert gate voltage to addition energy can be determined
from the Vg dependence of the I-V characteristics [6].
The differential conductance dI�dV plotted in linear grey
scale in the V -Vg plane reveals a series of diamond
shaped regions associated with Coulomb blockade. The
boundary of the Nth region of the Coulomb blockade
is defined by the conditions that the electrochemical
potential of the collector and emitter, respectively, align
with the electrochemical potential m�N� of the dot when
N and N 1 1 electrons are trapped in the dot. When
the boundary is located at a vanishingly small V , the N
and N 1 1 peaks occur in the I-Vg characteristic. The
boundary identifies the linear transport regime, and we can
determine the addition energies directly from half-widths
of the Coulomb diamonds. The a value determined in
this way, for example, in the D � 0.5 mm dot, varies

from 57 to 42 meV�V for N � 1 to 6, and then gradually
decreases to 33 meV�V as N approaches 20. As N is
decreased, the addition energy generally becomes larger
due to the increase of the Coulomb interaction as the
effective dot size is decreased. We find that the addition
energy is unusually large for N � 2, 6, and 12 for these
two devices. In eight devices with D between 0.4 and
0.54 mm the addition energy is unusually large for N � 2
and 6. An unusually large addition energy for N � 12 is
observed in three devices. We also observe a relatively
large addition energy for N � 4 in most of the devices.
In the remaining part of this Letter we focus on one
particular D � 0.5 mm device. All the main features,
however, have been reproduced in other devices.
The electronic states are expected to be significantly

modified by a magnetic field B applied parallel to the
tunneling current. We show the B-field dependence of
the position of the current oscillations in Fig. 2. It is
constructed from I-Vg curves for B increasing from 0
to 3.5 T in steps of 0.05 T. We can see the evolution
of the first 24 current peaks. The positions of the first
three peaks depend monotonously on B, whereas the other
peaks oscillate back and forth a number of times. The
number of “wiggles” increases with N . Close inspection
of the figure reveals that the current peaks generally shift
in pairs with B. We see this even-odd effect up to
N � 40. Note, for instance, that around 3.5 T the peak
spacing alternates between “large” for even N and “small”
for odd N. Intriguingly, just before entering the regime
where they evolve smoothly with B, the peaks making
up a pair move out of phase during the last one or two
wiggles (see also Ashoori et al. in Ref. [2]).
For the simplest explanation of the magic number

and the B dependence we ignore, for the moment, the
Coulomb interactions. The energy spectrum in a B field

FIG. 2. Plot of the gate voltage positions of the current
oscillations vs magnetic field for a dot with D � 0.5 mm.
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can be solved analytically for a dot with a 2D radial
harmonic confining potential [7]. The energy En� of a
state with a radial quantum number n �� 0, 1, 2, . . .� and
angular momentum quantum number � �� 0, 61, 62, . . .�
is given by

En� � �2n 1 j�j 1 1�h̄� 1
4v2

c 1 v2
0 �1�2 2

1
2 �h̄vc , (1)

where h̄v0 is the electrostatic confinement energy and
h̄vc is the cyclotron energy. Spin is neglected so each
state is twofold degenerate. At B � 0, En� has degenerate
sets of states, which are separated by h̄v0 from each
other and are completely filled for N � 2, 6, 12, 20,
etc. These N values can be regarded as magic numbers
since they signify the complete filling of a shell. The
unusually large addition energies we observe for N � 2,
6, and 12 are consistent with this picture. This shell
structure should persist as long as the 2D lateral potential
is radially parabolic to a fairly high degree and h̄v0
is comparable to, or larger than, the interaction energy.
We believe that our vertical dot structures meet these
conditions. However, as N is increased, the potential
can be significantly deformed by the effects of screening.
This could be the reason why we observe the third
harmonic shell only in some of the devices.
In Fig. 3(a) we plot En� vs B calculated for h̄v0 �

3 meV. A single-particle state with a positive or negative
� shifts to lower or higher energies, respectively, as B
is initially increased from 0 T. The B-field dependence
of these states gives rise to an addition energy for even
N that is strongly dependent on B. On the other hand,
the addition energy for odd N is determined only by
the effect of Coulomb repulsion, which is responsible for
lifting spin degeneracy. This should lead to the pairing
of the conductance peaks, which is evident in Fig. 2.
In Fig. 3(a) we mark the energy curve for the seventh
and eighth electrons with a dashed line to illustrate
that these electrons undergo transitions in their quantum
numbers: �n, �� goes from (0, 2) to �0, 21� at 1.3 T and
then to (0, 3) at 2 T. These transitions are also seen in
Fig. 2, demonstrating that 3 meV is a reasonable value
for the confinement potential. In a similar fashion, we
can identify the quantum numbers of the other electron
states. A more detailed comparison can be made from
Fig. 3(b), which shows the B-field dependence of the
fifth, sixth, and seventh peaks measured symmetrically
from B � 25 to 5 T. It is clear that the fifth and
sixth peaks form a pair. At 1.3 T the sixth peak has
a maximum, whereas the seventh peak has a minimum.
This corresponds to the crossing of the third and fourth
energy curves at 1.3 T in Fig. 3(a). For h̄v0 � 3 meV,
it follows that the effective dot diameter is about 100 nm.
At the B field where the states last cross the single-particle
states merge to form Landau levels. The single-particle
excitation energy calculated, for example, at B � 3.5 T,
is, however, still large [between 1 and 1.5 meV, see
Fig. 3(a)] and significantly contributes to the addition

FIG. 3. (a) Calculated single-particle energy vs magnetic field
for a parabolic potential with h̄v0 � 3 meV. Each state is
twofold spin degenerate. The dashed line is discussed in the
text. (b) Evolution of the fifth, sixth, and seventh current peaks
with B field from 25 to 5 T observed for the D � 0.5 mm dot.
The original data consists of current vs gate voltage traces for
different magnetic fields, which are offset and rotated by 90±.

energy for even N. This leads to the alternate peak
spacings observed around 3.5 T in Fig. 2.
We now focus on spin filling in the second shell near

B � 0 T. Fig. 4(a) shows the B-field dependence of the
third, fourth, fifth, and sixth current peaks. The pairing of
the third and fourth peaks and the fifth and sixth peaks
above 0.4 T is clearly seen. However, we intriguingly
find that below 0.4 T the third and fifth peaks are paired,
and the fourth and sixth peaks are paired. The evolution
as a pair of the third and fifth peaks for B , 0.4 T is
continued by the third and fourth peaks for B . 0.4 T.
Similarly, the evolution as a pair of the fourth and sixth
peaks for B , 0.4 T is continued by the fifth and sixth
peaks for B . 0.4 T. This rearrangement of the pairing
can be understood in terms of Hund’s rule, which is well
known in atom physics [3]. Hund’s rule favors the filling
of parallel spins up to the point where the shell is half
filled, and we use this to derive the B-field dependence of
the electrochemical potential m�N� given in Fig. 4(b). In
a constant interaction model we can simply add a constant
energy U to the energy of the single-particle states to
derive m�N�. To include Hund’s rule in our addition
spectrum we introduce an energy D, which represents the
energy reduction due to exchange interactions between
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FIG. 4. (a) Evolution of the third, fourth, fifth, and sixth
current peaks with B field from 0 to 2 T observed for the
D � 0.5 mm dot shown in a manner described for Fig. 3(b).
(b) Calculated electrochemical potential vs magnetic field for
the model described in the text and parameters U � 3 meV,
D � 0.7 meV, and h̄v0 � 3 meV.

electrons with parallel spins. Specifically for N � 4,
the ground state energy can be lowered if the outer
two electrons have parallel spins with different angular
momenta rather than antiparallel spins with the same
angular momentum. m�4� is reduced by an amount D and
there is a corresponding increase in m�5�. This exchange
effect is canceled in the presence of a B field when the
�0, 61� states, which are degenerate at B � 0 T, are split
by energy D. This is the simplest way to account for
exchange effects in a constant interaction model, however,
for small N we find a remarkable agreement between what
we see in Fig. 4(a) and that predicted in Fig. 4(b) if we
assume U � 3 meV and U � 0.7 meV. In Fig. 4(b) we
include quantum numbers �n, �� to identify the angular
momentum transitions and pictorial diagrams to illustrate
the spin configurations. In our model, the addition energy
for N � 4 at B � 0 T is expected to be larger by
2D �� 1.4 meV� than that for N � 3 and 5, and this is

indeed observed in Fig. 1(b). Our model for including
Hund’s rule is very simple. More rigorous Hartree-Fock
calculations, as performed in Ref. [8], are needed for a
quantitative comparison. Very recently Tamura [8] and
Eto [9] have actually been able to calculate addition
spectra that closely reproduce our data when h̄v0 is
comparable to or larger than the interaction energy.
For B , 0.4 T, we also see an intriguing pairing in the

height of the current peaks. The fourth and sixth peaks
are higher than the third and fifth peaks. In addition, as
the temperature is raised from 50 mK to 1 K at B � 0 T,
the fourth and sixth peaks become small, while the third
and fifth peaks gradually grow. We also note that similar
behaviors have been observed for N � 9 and 16 [see also
the small maxima in Fig. 1(b)], which correspond to half
filling of the third and fourth shells. These observations
deserve further investigation.
In conclusion, we use single-electron tunneling spec-

troscopy to probe electronic states of a few electron
vertical quantum dot atom. At zero magnetic field the
addition energy reveals a shell structure associated with a
2D harmonic potential. As a function of magnetic field,
current peaks evolve in pairs, due to the antiparallel filling
of spin-degenerate states. Close to zero magnetic field,
however, this pairing behavior is altered to favor the fill-
ing of states with parallel spins in line with Hund’s rule.
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