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. I. INTRODUCTION
{

There are many processes in chemical physics that require the
calculation of rates or rate constants. In several of these calcul-
ations one assumes that the underlying process can be described
in terms of stochastic models, and more specifically in terms of the
properties of random walks. Chandrasekhar! has given an excel-
lent introduction to some of these topics. There is one class of
problem, mentioned only briefly in his article, that has recently
found increasing application in many fields of chemical physics,
namely, first passage time problems. As an example, several
authors?* have proposed models for the dissociation of diatomic
molecules in which dissociation occurs when the molecules acquire
a certain critical energy E, through collisions. If the changes in
energy can be described in probabilistic terms, then the time to
reach Eg is known as the first passage time. Since the theory of
first passage times plays an integral role in the formulation of
many models in chemical physics, and since no general account
of the theory is to be found in chemical literature, various tech-
niques useful for solving such problems are collected below.

In order to define a first passage time problem we consider a
space Q that can be decomposed into two non-overlapping sub-

* This paper was presented at the La Jolla Summer School on Chemical
Physics, Angust 1965, University of California, San Diego, California,
U.S.A
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9 GEORGEJH. WEISS

spaces V and V. It will be assumed that initially the rand'om
variable of interest lies in the subspace V: the first passage time
is defined to be the time elapsing before passage to .V for the first
time. For example, in the dissociation model mentioned above' Q
would consist of all energies, the space V would bej all energies
satisfying E < E, and V would cons:ist of all energies satisfying
E > E.. In more elaborate dissociation models several quantur_n
numbers might be involved, in which cases Q would be multi-
dimensional. )

There are many specific models involving first passage times to
be found in the literature. The first of these appears to have been
developed in connection with Brownian motion studies by
Schrédinger® and by Smoluchowski.® A first passage time model
is relevant in the discussion of the Ehrenfest urn model,” in the
theory of escape of stars from star clusters,® in the theory of
reaction rates,®~* and in certain problems in the theory of poly-
electrolytes.? Although there is a considerable mathematical
literature on first passage time problems,’® there have been few
publications in the physical or chemical literature on the subject.

Although our principal concern in this article will be first
passage problems for Markov processes it is well to point out that
there are occasional applications which are non-Markovian in
nature. As an example the recurrence of colloid counts in a fixed
volume as in the experiments of Svedberg!* and Westgren??
analysed by Smoluchowski,® is a fundamentally non-Markovian
process. Although Smoluchowski’s early analysis did not make
use of any assumption of Markovian evolution Chandrasekhar’s
later account? erred in deriving the fundamental relations. This
error was pointed out by Bartlett, who gave a more complete
account of the general problem.’* Some related material is also
to be found in a paper by Siegert.15 Most applications, however,
fall under the heading of Markov processes, which will be the
subject of our future developments.

The plan of the present article is as follows: Section IT contains
a general account of the calculation of first passage time moments
for Ma_u‘ko_v processes in continuous time, together with the
specialization to the case of a discrete set of states. Section

III cor.l’c.a_?ns the specialization to systems where the transition
probabilities satisfy a Fokker—Planck equation.

FIRST PASSAGE TIME PROBLEMS 3

II. GENERAL FORMULAE FOR MOMENTS OF THE
FIRST PASSAGE TIME

We shall label the random variable of interest X(t), which can
be a vector or a scalar. It will be assumed that the development
of X(t) in time can be described as a stationary Markov process.
To describe the statistical properties of X(t) we choose a prob-
ability density p(x,t|y), defined so that P(x,t|y)dx is the probability
that x << X(t) < x -+ dx given that X(0) = y, i.e., y is the initial
position. When X(t) takes on integer values only p(n,tjm) will
be the probability that X(t) = n, given that X(0) = m. In both
cases the variables x or n can refer to multidimensional vectors
unless otherwise noted. The function p(x,t|y) in general satisfies
a linear operator equation of the form:

ap[ot = —Lyp, (1)

where Ly operates on x only, and where p(x,0]y) = d(x — y) for
X continuous, and p(x,0|y) = dxy for X discrete. To encompass
both cases we introduce the symbol A(x — y) which will denote a
delta function or a Kronecker delta depending on whether x and
y are continuous or discrete. When X is continuous the most
commonly used form for Ly is the Fokker—Planck operator which
in one dimension is

1 0 0 0
L == —_ - 2
*T 9 ox (a2ax) ox (), 2)

where a; and a, are the first and second moments of the infinites-
imal transition rates.! When X is discrete, as is the case for many
quantum problems, Ly is a difference operator. There appears to
have been no study of the case of mixed discrete and continuum
problems, although they do arise in the context of neutron
thermalization.

The probability that X(t) is still in V at time t given that it
started at y in V will be denoted by py(y,t) and is given by

Py(yt) = f p(xt]y)dx. @)

Let #n(y,t) be the probability density for the first passage time:
that is, if T is the first time that X(t) reaches V, given that
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“then ﬂ(Yr )dt is the probability that t < T<t4dt

gl\(fen that X(0) = y. An expression for n(y,t) is obtained by
noting that if X(t) isin V at time t, then it either makes a first
Péssége in (tt -+ dt) or it remains in V at t + dt. These two

. p0551b111t1es lead to
 pylyt) = n(yit)dt -+ pelyt + dY (4)

Moments of the first passage time are defined by
oy =[ md=n [Topod @
0

n=12...

where the last form is obtained by an integration by parts.

We can obtain other, formal, expressions for the moments in
terms of the operator Ly by starting from the formal solution
to eq. (1)

| p(x,tly) = 75 Alx —y). (7)

SuBs{itutiilg this expression into egs. (3) and (6) we find

ol =n [“eade [ e agx — y)dx ®

A\
;n!f Lot Ax —y)dx,

where we have freely interchanged orders of integration.

In order to use eq. (8) for computation we must introduce a more
explicit representation of the quantities involved. When X(t)
ranges over the integers, the operator Ly can be represented as a
matrix L = (Lny), Eq. (3) becomes

p(ntjm) = (G~Lt)nr5rm = (G_Lt) nm, )

and the r'th moment of the first passage time conditional on
X(0) =mis

A (m))y = 1! 2 (L ) nybjm = 1! 2 L) am. (10)

nev nev’

FIRST PASSAGE TIME: PROBLEMS 5

Hence the r'th moment is simply related to the r'th power of the
inverse of the rate matrix. When Ly is the Fokker—Planck operator,
the operator L' can be identified with a Green’s function and
operators L{" are iterates of the Green’s function. To establish
this fact we expand the Green’s function associated with the
operator Ly and the boundary conditions of the problem, in terms
of the eigenfunctions of Ly. It will then be seen that the resulting
expansion is that which arises in the evaluation of {t(y)>.
The eigenfunctions of Lyuy,(x), are defined by

Lxun(x) = anln(X), (11)

where it will be assumed that the 1, are real, distinct, and positive.
These conditions are fulfilled in most problems of physical
interest, although the theory can be extended to deal with more
complicated situations. Since Ly is not necessarily self-adjoint
the up(x) do not directly form an orthonormal set, but are ortho-
gonal with respect to the eigenfunctions of the adjoint operator
L which satisfy?$ R

Lva(x) = Anva(x). (12)

The relation of orthogonality can be expressed as

f () Va(x)dx = Snm. (13)

One can easily verify by means of this property that the Dirac
delta function d(x — y) has the representation

—3) = 3 walvaly) (14
Since Lylun(x) = un(x)/An by application of eq. (8), we have
9> = 127 Sualvalyiax = [3 L )

and, by the same argument
Hr(y)> = ! fz Un x)vn )dx' | (16)

One can now verify that the expression for {t(y)) is an integral
over the Green’s function, G(x,y), associated with Ly, and that
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erates of the Green'’s function.

itten in terms of it . ° :
g_‘i(ygrg:;l’ : :equlzl’:ioen G(x,9), associated with the oper ator Ly is
e 3

ion t
the solution to LyG(xy) = o(x — y) 17

: e. it is the continuous analogue of tl}e matrix‘inverse.:. hII’{ o.ne
gii;alrlds G(x,y) in a series of eigenfunctions associated with Lx:
G(xy) = >gntn(X), (18)
n

and uses the representation of eq. (14) in eq. (17), it is found that

gn = Vn(y)/}.n or

2(¥)Va(y)
iy = 3 22, (19

A comparison of egs. (15) and (19) shows that

ty)y = [Glry)dx. (20)
Tterates of G(x,y) are defined by
Guaaloy) = [Galx2)Glzy)dz (21)

Gy(x.y) = GE.y)-
The expansion in terms of eigenfunctions of L or Gn(x,y) reads

Gafiy) = 3 220, )

as may readily be confirmed from egs. (19) and (21). Hence
¢tr(y)) can also be written

)y = 1! [Gulxy)dx. (23)

The expansions of egs. (10) and (22) are analogues b?cause Qf the
formal relation between the matrix inverse and Green’s functions.
So far our results have taken the form of a 1'eductiqn of a problem
stated in probabilistic terms to a purely compu"cahonal problem.
In practice, the applications treated in the literature contain
further restrictions on the form of the operator L, so that analytic
results are possible. In the case of a master equation defined over
a discrete set of states it is most often assumed that L -represents
2 nearest-neighbor system, that is Ly =0 for [i — il>1 A

FIRST PASSAGE TIME PROBLEMS 7

typ'ica} examplg of this is the Montroll-Shuler model of the dis-
sociation of a diatomic molecule, in which the elements of L are

L= —x(j + 1e™®, L= —«j,
and Lii =Ly + Ly, (24)

where « is a rate parameter, and © = hy/(kT) where » is the char-
acteristic oscillator frequency.? It is possible to derive formulae
for the (t*(m)) in closed form for these nearest-neighbor systems.
Let us consider, as an example, a derivation of the formula for
{(t(m)> when states 0, 1, 2, . . ., N are non-reactant but state
N 4 1isareactant state. We can first observe that we need only
calculate (t(0)) since if T, ; is the random variable representing
the time for the system to reach state j for the first time starting
from state 0, it follows from the assumption of a nearest-neighbor
system that

Tovia = Tom + T (25)

That is to say, since every state must necessarily be traversed in
passing from state O to state N 4 1, the total first passage time is
made up of the time to reach state m for the first time plus the
time to reach state N 4 1 for the first time starting from state m.
If we let <tyx)> denote the mean first passage time for getting from
state O to state k, eq. (25) implies that

<t(1’11)> == <tN+1> - <tm>; (26)
so that we need only calculate a formula for (t(0)» with an arbi-
trary upper reaction level.

In order to calculate <t(0)> most expeditiously we will start,
not from the general formulation of eq. (10), but rather from
eq. (1) which in the present case can be written:

Po = LigP1 — LoPo
P = Lype — (Lyo + Lio)ps + Lope
Ps = Lispy — (Lo + Lag)pe + Laops (27)

Dy = Lyp,wProt — Lvynor + L) Pros
where it is to be understood that p;(0) = dy.

a
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Since pelt) = Polt) + Pt - - .+ px(t). €q. (6) indicates
v

that .
RS ORI

-
or, introducing the Laplace transforms Pi¥(s) L e~stpy(t)dt,
we can also write

0y ———-éopj*(o)- (29)

alculation becomes most convenient.

m that the ¢ .
It is in this for (27) with s = 0 is

The Laplace transform ot eq.

LoyPo*(0) = LaoPr” *0) + 1 '
(Lyo + Lia)p*(0) = LgPo*(0) - Laypo™(0) (30)

(Ly,xor + L) P (0) = Ly-1,xPx-1%(0).
These may be solved recursively to yield

pj*(O) = ijo{(o) — N5 (31)
where

0, =1,0y=

LyLioLos - - - Lisi 2
I—’lOL?.lLSZ’ . ‘LJ,]—l
1 [ Li Lili_si
= = l : +
o= 0,71 Lija * Lig—e  Lisgieeliai-s

Lj—1,le—2,J—1 . s lej‘
L}—l,j—zLj—z,j—:s- . 'Ll

+.oo0 4+

Eq. (31) is derived from the first N lines of eq. (30): if We now
substitute eq. (31) into the last line of eq. (30) we obtain an
expression for py*(0):

Po*(0) = Nxia/Oxia- (33)
Thus the mean first passage time is given by

N

GO)y = 11 S S . (34)

0\I+1J i=0

FIRST PASSAGE TIME PROBLEMS 9

In a similar fashion it can be shown that if states 0 and N + 1
form absorbing barriers (that is, the reaction ends when either
state is reached) the mean first passage time conditional on the
initial state’s being r is

X

ey =T S 3 g (35)

0;\1—1] j=r+1

For particular models which are appropriately described by
the nearest-neighbor approximation the sums indicated in egs.
(32) and (34) may be rather simple to evaluate. For example, in
the Montroll-Shuler treatment of dissociation characterized by
the transition rates of eq. (24) it is easily verified that the para-
meters 0; and #; are, respectively:

03=€—j0,
1 e e e

so that the mean first passage time to reach state N - 1 in the
case of a single reactive state is

—20

1 1 e~? e e”\"’)
L a1
<t(0)>—ke (N+1+ tg—gt ;
1 — e—(N+1)0)
( 1 —e™?

1 —XNo 1 —(N-1)0 1 —(N~2)0
k(l—e‘o)[l e tgl—e J+gzl—e )
1 0]
R — e~ 7
+ &= (37)
1 N+lgit g

Tk —e 5 ;

One can derive expressions for higher moments of the first
passage time by following the same line of proof as above. A
general treatment of the theory of equations of the form of
eq. (27), i.e., with nearest-neighbor transitions only, has been
developed by Ledermann and Reuter,'” and by Karlin and Mac-
Gregor.*® Their results include a general solution to eq. (27) in
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d orthogonal polynomials. In particula
able to discuss the statistics of the first
= 1em in terms of the orthogonal polynomials
time problem 11l set of equations. With their results

N articular
Prlggf f:c’-), g:jige expressions for momen_ts of t'he ﬁr;t Ppassage
"fllleree'tsﬂy but I have chosen to omit a discussion of the
a i 3

1 technique from this article because the

‘ momi )
i a,lca?flbyenzbt;ned directly. It would be of considerable

: res"ciO Tave results as simple as those of egs. (34) and (35) for
+ams not restricted to the nearest-neighbor type, as there are
t?onsl" that the nearest—ngighbor th.eory i dpes not give
s of the right order of magnitude for dissociation times.!

éursively define
nd MacGregor are

ST PASSAGE TIME AND THE FOKKER-PLANCK
EQUATION

have obtained a general formuyla for n}oments of the first
passage time in terms of the Green's function of the Fokker-
lanck operator. This formulation is usefu.l for p_roblems involving |
J+idimensional geometries. The one—dlmensmnal.case can bg ;
\zéd in detail for moments of the first passage time. "fh1s is
surprising since the one-dimensional p.robler.n is the continuous .
logue of the nearest-neighbor models just discussed. We shall
resent results for the one-dimensional case. ihese are due
riginally to Pontryagin, Andronow, and. Witt,?0 although
~ special cases were treated earlier by Schrodinger. Recent con-
tributions to the mathematical theory have been made by Darh.ng
and Siegert.2t Jackson and his collaborators have made extensive
use of this theory in certain polymer problems.?2%:2
In what follows we use the mathematical terminology “ab-
sorbing” or “reflecting” barrier to describe the propertlfzs qf a
designated point or surface. A surface is said to be absorbing if it
forms a boundary between V and ¥, that is, if the process tef—
minates when X(t) reaches a point of the surface. A surfacg Is
called reflecting if, when X(t) reaches a point of the surface, it 1
automatically transferred to a point in the interior of V. In 'the
present article we consider only the case of infinitesimal reflection,
ie., when X(t) is transferred to an infinitesimal neighborhood of
the point of impingement.

FIR

FIRST PASSAGE TIME PROBLEMS 11

We begin by considering the one-dimensional case in which
X(t) is constrained to lie between x = 0 and x = A. It will be
assumed that x = A is always an absorbing point and x = 0 is
either reflecting or absorbing.

The probability density for the position of X(t) satisfies eq. (1)
with Ly given in eq. (2). Theoretically one can find statistical
properties of the first passage time by solving the Fokker—Planck
equation for p(x,t) with appropriate boundary conditions. How-
ever, it proves considerably more convenient to derive an equation
for a function ¢(x,t) defined to be the probability that the first
passage time is less than t, given that X(0) = x. If W(y,dt|x)dy
is the probability that y < X(dt) <y + dy, given that X(0) = x,
then we may write the equation

.t + dt) = L Wiy, dtglytdt, (38)

which expresses the fact that a transition x — (y,y -+ dy) took
place in time dt, and the new position can be regarded as a starting
point for the process. The next step is to expand ¢(y,t) in a
Taylor series around the point x and substitute into the last
equation. This leads to

A‘\
d(x,t + dt) = ¢(x,1) L W(y,dt|x)dy
A
£ BED [y — gy dedy
X 0

1 %p(x,t)
2 ox?2

A

f (y — x)2W(y.dt|x)dy + . . . (39)
0

The Foklker-Planck equation is derived on the assumption that

1 2
lim — f (y — x)2W(y,dt|x)dy = 0 (40)
at—o dt Jo
for n > 3. On this assumption, eq. (39) implies that ¢(x,t) is the
solution to
9 _ ay(x) &%

¢
g = 9 E)—X—‘Q + al(:\) é-}—{, (41)
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where the aj(x) are infinitesimal transition moments

. 1 A — OiW(v.dt]x)d
ay(x) = it?},a%[) (y — x)}W(y,dt|x)dy. (42)

The boundary conditions for eq. (41) are p(A,t) = Tand ¢(0,t) = 1
' ' $(0,t)
X

= 0 for x = 0 a reflecting

DN
D

for x = 0 an absorbing point, or

point. A comprehensive discussion of reqqirements on a,(x) to
ensure a finite first passage time has bee_n given by Feller:% qu
all problems of physical interest there is no difficulty with this
point since a,(x) is strictly positive and })ound@d away from zero.
In dimensions greater than one, it is possible to derive the equation

2 o1 &
A {— + = b; - 43
ot ] aj 3,\'1 + 2 21? ij 8X13X_‘ ( )

for the distribution of first passage time. In this equation the
coefficients are defined, analogously to eq. (40), by

ay(x) = lim — L (yi — x1)W(y,dt|x)dny
(44)

.1
bl = lim 2o | 51— )0 — x)Wir.dtixany;

and it is assumed that higher infinitesimal transition moments are
zero. Equation (43) is to be solved under the initial condition
#(x,0) =0 for x in V, and ¢(x,t) = 0 for x belonging to an
absorbing portion of the boundary between V and V, and &¢/on
= 0 for x belonging to a reflecting part of the boundary, where
d/on denotes a normal derivative.

Equation (41) together with the boundary conditions on
$(x,t) enables us to calculate moments fairly readily. The same
argument as has led to eq. (6) implies that the j'th moment of the
first passage time starting from a point x is expressible as

py(x) = Jow td %’%ﬁ dt. (45)

FIRST PASSAGE TIME PROBLEMS 13

If we differentiate eq. (41) with respect to t, multiply by t!, and

integrate over all t, we find that the y;(x) are the solution to the
set of equations

1 d%; du : :
Qz@—}‘ha:_]ﬂj—l 1=23...

1. a2 o)
Ly, $r oy de

502 e T by dx 1

with boundary conditions uj(A) = 0 for x = a an absorbing point
and duj(a)/dx = 0 for x = A a reflecting point.

The equation for w,(x) can be solved in closed form. The general
solution is

x y oU2)

<) = —92 =0
/‘Ll(\) J;) e dy 0 bZ(Z)

dz + C, f VW dy 4 C,, (47)
0
where U(x) is defined by
U = 2 uls)outylay. (4s)
When both boundaries are absorbing,
A y A
C, =2 J e~ dy f [eU)b(2)]dz / f eI dy  (49)
0 0 0
and Cy,=0;

and when x = A is absorbing and x = 0 reflecting we have
C,=0

¢, =2 =T dx [ by (50)

Formulae for higher moments can be derived recursively from
eq. (46), with u,(x) given by eq. (47).

The simplest illustration of the use of these formulae is in terms
of simple Brownian motion in one dimension for which a,(x) = 0
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i crsion constant. The equation for
and a,(x) = 2D with D the diffusio

he mean first pa age time reduces to M1 = : ]
t dx= Alarie botshS absorbing, then the expression for mean first
and X

passage time 15 I

mlx) = 555 XA = %) 1)

e statistical properties of one dimen-
sional Brownian motion in a constant force field. Let us EO?Sider
the case of a semi-infinite interval (0,00) with absorpuon{)% x = 0.
The coefficients in €q. (41) are a;(x) = —V ar}d ag(x‘) = 2D, \ffhere
v is assumed to be a constant. The expression for 1y (x) is found

to be

Tt is instructive to calculate th

m(x) = x/v, (52)

independent of diffusion effects. The diffusion constzu}t D does,
however, appear in the expression for ,u?(x). An equation for the
distribution of absorption times can be written, following eq. (41), as

% _pl_ 0

—V

ot~ oxe? ox

, (53)

subject to ¢(x,0) = 0 for x > 0 and ¢(0,t) = 1. The solution to

this equation is
X b dt 1 . 2:|
(}S(X,t) = 777—:6 A {3/—2 exp [— ﬁ (gk — '\rt) s (54)

as given by Schrodinger.® . '

Tirst passage time problems in spaces of dimension greater than
one require a simple geometry if useful information is to .be
obtained in closed form. Thus, solutions for the distribution
function of first passage times and the moments are readily
obtained for force-free Brownian motion in cylinders or spheres,
and between parallel plates when these form the absorbing
boundaries.252 More complicated geometries may require purely
numerical techniques in the solution of associated first passage
time problems.

An interesting example of the use of first passage time tech-
niques in chemical physics is provided by Lifson and Jackson's
attempt? to explain long association times of sodium ions and

FIRST PASSAGE TIME PROBLEMS 15

polymer macroions observed in transference experiments for
polyelectrolytes. Their model is that of the Brownian motion of a
counterion in the electrostatic field of a polyelectrolyte molecule.
The simplest way to pose the problem in detail is to suppose that
we have two bounding planes of 4-X. Within this region is a
series of equidistant parallel charged planes at x = 2jL, j = —n,
—n+1,...n—1n where X =2nL. Lifson and Jackson
then go on to calculate the expected time for an ion initially
at x = 0 to reach a boundary plane. The force on an ion of
charge e will be written ¥ = —eVY. It is convenient to define
a reduced potential ¢ = eW'/(kT). The equation for the mean
first passage time for a particle performing Brownian motion
in a force field derivable from a potential is

DViu + (1p)F - Vi = —1, (55)

“where F is the force and y is the hydrodynamic friction constant.

Substituting the expression for F in terms of " into this equation,
and making use of the Einstein relation D = kT/y, we find that
eq. (55) can be rewritten

V. (e?Vi) = —et/D (56)

Since the system is homogeneous on a macroscopic scale, we
might expect that the diffusion process is characterized by a
diffusion constant D* which depends on D and the local electro-
static field of the polyelectrolyte molecule. The object of Lifson
and Jackson’s analysis was to calculate D* for a model system.
One solves for D* by calculating x,(0) and equating it to the
expression

m(0) = X2[(2D%), (57)

which is the expression relevant for the case of field-free Brownian
motion. The average time g (0) is given by

1

1 X t ’
w(0) = = f du e“"’(")f ™ dv. (58)
D Jo 0
To obtain an expression for D* we introduce the notation

1 2L
e?y = 5T f e*™dy. (59)
Z 0
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Since ¢(x) 18 periodic with period 2L, far from the boundaries,
i p

eq. (58) can be rewritten

2(m+ 1)L

u
0y = 1 nil f du e““““)f dv e*™
Ml( )—4 m=0 J2mL 0

=

D
u
— (m - 1)1 R
Longd (A gy gmew [ZmL(e”’) —l~f dv e“’“)}
= ']'j 0 2mL

m=0 J2mL
L oni)s omtyce® = 5 €™ (60
= o3 (2nL)? <8 X =55
A comparison between eqs. (57) and (60) yields the result

D* = D/({e*){e™) (61)

for the particular one-dimensional model under consideration.
The Cauchy-Schwartz inequality can be used to show that
(e*y{e™*) = 1, so that

D* < D. (62)

Jackson and Coriell22 have shown that this inequality holds in
any number of dimensions. Lifson and Jackson concluded from
their study that the retardation of drift of counterions in poly-
electrolyte solutions might be accounted for by their entrapment
in the electrostatic fields of the macroions.

Another problem related to the first passage time problem is
that of calculating the probability of absorption by a particular
one of a set of absorbing barriers. For example, in one dimension
we can consider the probability of termination at x = 0, given
that x = 0 and x = A both offer the possibility of absorption.
Such a mathematical problem finds application in elucidation of
the theory of competitive rate processes. If the transfer of energy
can be described in terms of a stochastic process, e.g., if the
energy distribution obeys a Fokker-Planck equation, then the
probability of one of a set of outcomes can be calculated by
the technique to be described.

Let us first consider the one-dimensional case in which absorp-
tion can occur at either x == 0 or x = A. Let ¢,(x) be the prob-
ability of absorption at x = 0 given a starting point x. We
define a function ¢y(x,t) to be the probability of absorption at
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x = 0 belore time t, given the starting point x. The desired
probability ¢,(x) is then
do(x) = Lim ¢y(x,t). (63)
t—0
The function ¢,(x,t) is a solution to eq. (41), the derivation being

the same as given above. However, the boundary conditions are
now to be changed to

$0(0.t) = 1, $o(At) = 0. (64)

Setting dgy/dt = 0 in eq. (41), we see that $y(x) is the solution to
1 d%, | dey =

2 a’?.(‘\) dx?‘_ ..i,. al("\) E{ - 0 (6:))

with boundary conditions ¢4(0) == 1, ¢4(A) == 0. The solution to
eq. {65) under these circumstances is

dob) = [

o X

A
e VM dy / [ e~ V¥ dy, (66)
JO

where U(x) is defined in eq. (48). For Brownian motion in a
constant force field ¢y (x) is found to be

1 — e (v/D)A—x)
ho(x) = T eseam (67)

In the limit v — 0 this reduces to ¢y(x) = 1 — (x/A), as is to be
expected. The theory for more complicated geometries is similar.
If the boundary between V and V is broken up into n segments
S;, Ss, . . ., Sp the probability of absorption by a particular
segment S;, ¢i(x), satisfies eq. (43) with d¢;(x)/ot = 0 and the
boundary conditions ¢;(x) = 0 for X in

Si, Sa - - o St Sipr - - - Sy and ¢y(x) = 1 for x in Sy

There are many further applications of first passage time
problems in chemical physics, particularly in the study of poly-
mers.2” Some of these involve first passages defined on Markov
chains, a subject that has not been touched in the present article.
However, the theory is similar to that developed here. The
interested reader should refer to Kemeny and Snell’s book? for a
discussion of first passage time problems in discrete time.
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Although it might appear at first glance that such problems would

completely unphysical, they have applications in polymer

be . ; )
physics, where the analogue of time units are bond lengths of
MONOIETS.
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