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The renormalization group theory of second-order phase transitions is described in a form
suitable for presentation as part of an undergraduate statistical physics course.

INTRODUCTION

The problem of communicating exciting new develop-
ments in physics to undergraduate students is of great im-
portance. There is a natural tendency for students to believe
that they are a long way from the frontiers of science where
discoveries are still being made. The presentation to un-
dergraduates of important new discoveries can show them
that they are nearer the frontier than they had imagined.
The effect on students’ interest and enthusiasm is especially
marked when they find that the “great new discovery” that
they had heard mentioned so many times without actually
knowing what it was turns out to be rather simple, and
something they might have thought of themselves given a
little time and a better background. Students tend to think
that the nature and manner of physics research changed
abruptly at some time (possibly about 40 years ago). Before
this time, physicists thought deeply and had sudden inspi-
rations that enabled them to proceed by giant strides. Later
on, however, physics became very technical and detailed.
In this later period, which includes the present time, so
students believe, progress could only be made after enor-
mous study and effort because all of the simple things had
been done. The realization that the new developments in
physics are really not essentially different from the old
dispels these ideas about the degeneration of our subject.

In this paper, we want to describe how an important re-
cent development in theoretical physics, namely, the re-
normalization group, can be successfully incorporated into
a junior-level course in statistical physics. We assume that
the material is presented at the end of a one-semester course
using a text such as Reif’s Statistical and Thermal Phys-
ics.! A student thus already knows that:

(1) Substances have various phases which can be repre-
sented on a phase diagram in the pressure-temperature
plane. Going from one phase to another is accompanied by
discontinuous changes in entropy and volume.

(2) All thermodynamic quantities can be calculated from
the partition function Z, defined by

Z =Y e-EnkaT, (1)

where F, is the nth energy state of the system, kg is
Boltzmann’s constant, and T is the temperature.

(3) Ordinary phase transitions (i.e., first-order transitions)
can be understood in a relatively simple way be treating the
various phases as separate entities each with its own Gibbs
free energy.?

SECOND-ORDER PHASE TRANSITIONS

By way of introduction to the topic of second-order phase
transitions some examples are useful to the student. Suitable
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choices include the following:

(a) Order-disorder transitions. Certain materials undergo
a phase transition in which the specific heat C has a sing-
ularity of the general form shown in Fig. 1(a). Close to the
transition temperature T, C is proportional to

|T_ Tcl‘a- (2)

where « is typically around 0.1. There is no latent heat. The
standard example of this type of transition is 8-brass. This
is an alloy of copper and zinc, in equal amounts, with a
body-centered-cubic crystal structure. Above the critical
temperature 7, of 460 °C a copper atom has, on the aver-
age, as many copper nearest neighbors as zinc nearest
neighbors. As the temperature is lowered below T, how-
ever, there develops an increasing probability for a copper
atom to have more zinc nearest neighbors than would result
from a completely random arrangement of copper and zinc
atoms. This probability increases so that at temperatures
much less than T, each copper atom has only zinc neighbors
and each zinc atom has only copper neighbors. Thus one
says that there is a transition from complete disorder above
T. to a phase which has continuously increasing order as
the temperature is lowered below 7.

(b) Paramagnetic-ferromagnetic transition. Above 7, the
magnetic dipoles in a solid are randomly oriented, and so
in the absence of an applied magnetic field there is no net
magnetic moment. Below T, there is a partial alignment
of the dipoles and a so-called “spontaneous magnetization™
[Fig. 1(b)]. This magnetization M is a vector whose di-
rection is not unique. Thus upon heating a magnet above
T. and recooling the same magnitude of magnetization will
occur but the direction may be different. 1t is found ex-
perimentally that for T close to 7,

IM| « (T, = T) (3)

for T < T.. The critical exponent lies in the range 0.3-0.4.
The specific heat also has a singularity proportional to

|T_Tc|_a (4)

with & in most cases being close to zero.

These two examples show clearly that there are in nature
more subtle transitions than those of the simple first-order
variety. To understand how this can occur it is useful to
consider a very simplified model, the Ising model, which
nevertheless manages to retain enough of the essential
features to be useful. One can choose to think of this model
as a model of the magnetic transition, but it is also just as
good a representation of the order-disorder transition. The
model involves /V magnetic dipoles which we will call spins
for short. The simplifications made are the following:
(1) Each spin can point only up or down. These directions
are chosen to be the positive and negative z directions. Thus
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Fig. 1. Examples of singularities in thermodynamic functions at sec-
ond-order phase transitions. (a) Specific heat C at an order-disorder
transition. (b) Magnitude |M]| of the spontaneous magnetization at a
magnetic phase transition.

one can describe the state of any spin by a number ¢ which
is +1 for up and —1 for down, and the state of the whole
system is specified by giving the value of ¢ for each of the
N spins.

(2) The spins are arranged in a simple-cubic lattice. Thus
there is a spin at each of the positions

Xin = i + mj + nk, (5)

where i, j and k are unit vectors parallel to the Cartesian
axes, and /, m, and n are integers. To be more precise this
is the arrangement of spins in the three-dimensional cubic
Ising model. In the square two-dimensional model the spins
are located in a square array in the x-y plane,? and in the
one-dimensional model they are at equally spaced intervals
along the x axis.

(3) There is an interaction energy between spins that tends
to align them. Each pair of nearest-neighbor spins that are
parallel makes a contribution —J to the total energy of the
system, and each nearest-neighbor pair that are antiparallel
gives a contribution +J. J is a positive constant. Thus the
total energy can be written

E=-JY op0, (6)
Pq

where the sum is restricted to be over nearest-neighbor pairs
pq of spins.

It is easy to see the model exhibits some of the qualitative
characteristics of real magnetic systems. There are two
lowest-energy states which we can call + and —. In these
states all spins are either up (+ state) or down (— state). In
either case the energy of the state is

Eq = —J X (# of nearest-neighbor bonds)
= —J X (# of atoms) X (# of bonds per spin). (7)

In three dimensions, for example, each spin has 6 nearest
neighbors but one must divide by 2 to avoid counting bonds
twice. So

Eq= —3NJ, (8)

where NV is the number of spins. In both of these states the
spins are all aligned and so there is a large magnetization.
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Since at zero temperature there is a probability of 0.5 of
finding the system in either of these two lowest-energy states
we can see that the Ising model does indeed exhibit a
spontaneous magnetization. Higher-energy states, which
will be important at nonzero temperatures, are produced
by reversing the direction of some of the spins. It is clear that
these states will have a smaller spontaneous magnetization,
and so we expect that the magnitude of the spontaneous
magnetization will decrease as the temperature goes up,
again in qualitative agreement with what happens for a real
magnetic system.

To “solve” the Ising model means to evaluate the sum for
Z [Eq. (1)] using the expression for the energy levels [Eq.
(6)]. This can be done with not too much difficulty for the
1D model with the result*

Z = [2 cosh(J/kgT)]V. 9)

For the 2D model the problem is much harder, and the so-
lution was first given in a celebrated paper by Onsager.’
Although his method has been simplified somewhat® there
is still no easy derivation of the result. He found that

Z = [2 cosh(2J/ksT)e']", (10)

where

I=(Q2r)~ J;"anp In{(1/2)[1 + (1 = k2 sin?¢)1/2]},
1

« = 2 sinh(2J/kgT)/cosh?(2J/ksT). (12)

In 3D no analytic solution has yet been found, and there are
only numerical calculations of the thermodynamic quan-
tities. From Z one can calculate the internal energy U and
the specific heat C using the formulas

U= kgT?d InZ/dT, (13)
C = dU/dT. (14)

For the 1D model one finds there is no phase transition in
the sense that U and C are both smoothly varying functions
of T. The increase in the alignment of the spins as the
temperature decreases occurs in a very gradual way. In 2D
the specific heat is as shown in Fig. 2. There is a singularity
at the temperature 7, such that
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Fig. 2. Specific heat of the 2D Ising model as a function of temperature.
The specific heat is plotted in units of Nkg, and the temperature in units
of J/kg. In these units the critical temperature is 2.269.
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Fig. 3. Section of a 1D Ising model. The sums over the spin variables a3,
o4, 0, etc. (spins denoted by open circles) are performed first. This leaves
a new sum that involves only the spin variables o, a3, o5, etc. (solid cir-
cles).

sinh(2J/kgT.) = 1. (15)

Near this temperature C has a singular contribution which
varies with temperature as

(8kp/m)(J/kpTc)In| 1/(T-Tc) (16)

In 3D there is also a phase transition and the singular term
in the specific heat is proportional to

|T = Tc|~°, (17)

where «a is close to 0.125.

RENORMALIZATION GROUP

The aim of the renormalization group theory is to cal-
culate directly the critical exponents such as « and g8 oc-
curring in Egs. (2), (3), (4), and (17). If the theory also
happens to give the partition function at all temperatures
s0 much the better, but the primary emphasis is on the de-
termination of the partition function in the critical region,
i.e., for T close to T,. The renormalization group arose from
Wilson’s brilliant translation’ of the conceptual picture of
phase transitions which arose in the 1960s into a calcula-
tional tool. The history of these developments is complex
and involves the appreciation of such concepts as scaling,
universality, and correlations in the critical region.® The
approach we want to present here is deliberately directed
away from these concepts. In this way we certainly lose both
history and what many current workers in the field consider
to be the deep physics of the renormalization group (RG).
What we gain is the possibility of explaining the RG to a
wider audience. We will simply take the view that the RG
approach is a practical but approximate way of calculating
the sums involved in Z.

Consider first the 1D Ising model.” We show a section
of the chain of spins in Fig. 3. The problem is to evaluate the
sum

Z =Z CXp[J(' «+ 0107+ a303
+O’30’4+040’5+°°-)/kBT]. (18)
The sum is over all possible values of a1, a2, etc. For con-

venience let us introduce a quantity K, called the coupling
constant, defined by

K =J/kgT. (19)
We partition Z into the form
A =Z e eK(alaz+aza3)eK(a364+0405) en, (20)

The only place o, appears in this equation is in the first
exponential. We therefore carry out the sum over o2 with
the result

Z = Z e [eK(al + 03) + e—K(61+a3)]
% eK(osoatauos) ... ¥}

We continue by summing over a4, and g, etc. This gives
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Z =3 .. [eKlo1t03) 4 p=K(o1+03))

X[eKlostos) 4 p=Klaatos)] ... (22)
The sum is now over the possible values of the remaining
spin variables, i.e., 01, 63, 05, etc. The next idea is to try to
find a value of K’ and a function f such that

eK(o|+a3) + ¢—K(o1+a3) Ef(K)eK/‘”‘U (23)

for all possible values of o) and o3. The function f must not
depend on o} or ¢3. The solution is (see Appendix)

K’ = (1,)In cosh(2K), (24)
SA(K) = 2 cash!/2(2K). (25)
Thus we can write

Z=Y.. .f(K)eK’olaaf(K)eK’asus e
=f(K)N/2 Z eK’(- - - g103+o305+- - -). (26)

We still have not done the sum, but we notice that if we had
been trying to solve a problem where the coupling constant
had the value K’ and there were only N /2 spins exactly this
sum would appear. Thus we have shown that the partition
function Z(V,K) for N spins interacting with coupling
constant K is related to the partition function Z(N/2,K")
for N /2 spins and coupling constant K’ by the equation

Z(N,K) = f(K)N2Z(N/2,K"). Q7

For a large system we know how Z depends on N. Since we
believe that the free energy F is proportional to the size of
the system'? it must be true that

InZ = N¢, (28)

where { depends on K but is independent of the system size.
Then from Eq. (27)

§{(K) = (1/2)In f(K) + (1/2){(K") (29)
o §(K') = 28(K) = In [2 cosh!/2(2K)].  (30)

Equations (24) and (30) are the essential results of the
renormalization group!! analysis. If the partition function
is known for one value of the coupling constant K, or
equivalently the temperature T, these equations provide a
recursion relation that can be used to calculate Z for other
values. Using Eqs. (24) and (30) this recursion, or “renor-
malization,” is always towards lower values of K, i.e., K’ is
always less than K. One can find recursion relations that
work in the opposite direction by solving Eq. (24) for K.
These recursion relations are

K = (1/2) cosh™1(e2X"), (31)
(K)Y=(1/2)In2+ (1/2)K’ + (1/2){(K’). (32)

These results can be used to find the partition function {(K)
in the following way. For K’ very small, e.g., 0.01, the in-
teraction between the spins is negligible. For free spins the
partition function is just the number of ways of arranging
them. So for K’ = 0.01

Z =~ 2N (33)
. {(0.01) ~In 2. (34)

We now calculate K from Eq. (31) and obtain the result
0.100 334. The value of { for this value of K is found from
Eq. (32) to be 0.698 147. The procedure is then repeated
with K’ equal to 0.100 334, and by continuing in this way
one obtains the results shown in Table 1. This table includes
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Table I.  Values of ¢ for the 1D Ising model calculated from the recursion
formulas Eqs. (31) and (32) of the renormalization group and from the
exact formula derived from Eq. (9). { is related to the partition function
Z through Egq. (28).

$(K)

K Renormalization group Exact
0.01 In2 0.693 197
0.100 334 0.698 147 0.698 172
0.327 447 0.745 814 0.745 827
0.636 247 0.883 204 0.883 210
0.972 710 1.106 299 1.106 302
1.316 710 1.386 078 1.386 080
1.662 637 1.697 968 1.697 968
2.009 049 2.026 876 2.026 877
2.355 582 2.364 536 2.364 537
2.702 146 2.706 633 2.706 634

the exact values of { calculated from Ising’s formula Eq. (9).
The agreement is excellent. A remarkable feature of this
method is that small errors in the first value of { actually
lead to smaller and smaller errors as the calculation pro-
ceeds. If one attempts the same calculation starting from
a large coupling constant, on the other hand, one obtains
progressively larger errors.

This process may be represented by a “flow diagram,”
as shown in Fig. 4, which shows how K moves under suc-
cessive recursion. Of significance are points where recursion
does not change K. For the 1D Ising model the only such
“fixed points” are at K = 0 and K = «.

To use the renormalization group to study phase transi-
tions we must apply it to the 2D Ising model, as shown in
Fig. 5. In analogy with the 1D problem the first step is to
sum over the spin variables of half of the spins. A choice of
which spins to sum over is shown in Fig. 5. After the sum-
mation the expression for Z becomes

Z =Y ... [eKlortortostay)

+ e—K(01+02+03+64)] ces, (35)

The sum is over all possible values of the remaining spin
variables. There is a square bracket term for every large
square, such as 1234, in the lattice of remaining spins. To
follow the same method as in the 1D problem we would now
like to do something so that Z involves exactly the same
form of difficult summation that was present in the original
expression. This is not possible, however. In fact, it is
straightforward to show that Eq. (35) is equivalent to the
result (see Appendix)

Z=f(K)yN?y exp(K1 Y 0,00+ K2 Y apoy
nn

nnn

+ K33 apcrqa,as), (36)
sq

where ,
S(K) = 2 cosh!/2(2K) cosh!/3(4K), 3N
K=0 K=o00

Fig. 4. Flow diagram for the 1D Ising model. The only fixed points are
at K = 0 and « and are marked X. The arrows show the direction of flow
when the recursion formula Eq. (31) is used. Equation (24) gives a flow
in the opposite direction.
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Fig. 5. Section of the 2D Ising model. The summed over spins are denoted
by open circles, and the spins that remain by solid circles. Notice that the
lattice formed by the remaining spins is still a simple cubic lattice, but is
rotated by 45° relative to the original lattice.

and the sums in the exponential are over all nearest-
neighbor pairs, next-nearest-neighbor pairs, and sets of four
spins pgrs around all squares. Explicit expressions for K,
K5, and K; are

K, = (1/4)In cosh(4K), (38)
K, = (1/8)In cosh(4K), (39)
K3 = (1/8)In cosh(4K) — (1/2)In cosh(2K). (40)

At this point an essential difference between the renor-
malization group in the 1D and 2D models appears. The
expression for Z in the 2D case [Eq. (36)] does not just in-
volve the same sort of sum that appeared in the original
expression for Z. Hence, unless we can somehow get rid of
K, and K5 the method fails. To eliminate K, and K3 it is
necessary to make some sort of approximation, and this
requires considerable intuition. For example, two possi-
bilities are the following.

(1) Simply ignore K, and K3. This gives recursion rela-
tions

K’ = (1/4)In cosh(4K), (41)
§(K') = 28(K) — In[2 cosh!/2(2K) cosh!/3(4K)]. (42)

These recursion relations have the same sort of flow pattern
as in the 1D model (Fig. 4). They do not predict a phase
transition, i.e., { turns out to be an analytic function of
K.

(2) A better result is obtained by correcting the theory in
an approximate way for the presence of the term in K. K>
is the coupling between next-nearest spins, such as 1 and
3. Both K and K are positive, and hence both have the
effect of increasing the alignment of spins. Hence, a possible
procedure is to drop K, but simultaneously increase K; to
a new value K’ so that the net “aligning tendency” remains
the same. A crude way of determining K’ is as follows.
Consider the energy of the lattice when all the spins are
aligned. In a lattice of N/2 spins there are N nearest-
neighbor bonds and /V next-nearest bonds. Thus if we retain
K and K the total energy is

—NkpTK, — NkgTK>.

We choose K’ so that this gives by itself the same energy.
Thus

K =K 1 + Kz
= (3/8)In cosh(4K). (43)
The partition function is still determined by Eq. (42). The

recursion relations now have a remarkable new feature. The
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Fig. 6. Flow diagram for the 2D Ising model based upon the recursion
formula (43).

flow diagram, as shown in Fig. 6, splits into two separate
parts separated by a fixed point at K, = 0.506 98. If one
starts with a K just to the right of this point recursion in-
creases K eventually to «. Starting just to the left decreases
K to zero. Detailed study of the partition function using
these recursion relations shows that there is a singularity
in {and Z at K, and so this fixed point is to be associated
with the phase transition. The value of K, is surprisingly
near the exact value (much nearer than it should be con-
sidering the naivete of the approximation). The exact so-
lution of Onsager [Eq. (15)] shows that the correct value
of K. is

J/kgT, = (1/2) sinh~1(1)

= 0.440 69. (44)

Another test is to calculate the specific heat. By expanding
¢and Z around K, it is a simple exercise (see Appendix) to
show that near the transition

Ce«|l=T/T|™, (45)

where
a=2—1n2/In (dK’/dK|k=k.). (46)

a comes out to be 0.131. This is to be compared with On-
sager’s exact result, which has a logarithmic singularity in
the specific heat, and hence a critical exponent «a of zero.

To obtain a more accurate value of the critical exponent
is not trivial. In fact, the second example given above is
deceptive in the sense that seemingly logical improvements
can easily lead to worse results! For example, if K’ is cal-
culated in the same way as above but the energy contribu-
tion from K in the aligned state is included a poorer value
of « is obtained. For a discussion of better approximation
schemes see Ref. 11.

Our experience has been that this material can be covered
at a fairly leisurely pace in two lectures, and successfully
gives students an idea of what the renormalization group
is, and how it can be used in the theory of second-order
phase transitions.

APPENDIX

We give here some of the intermediate steps in the deri-
vations. Equations (24) and (25) are obtained as follows.
Equation (23) must be true for all values of o and &. For
o1 = 1 and o; = 1, Eq. (23) becomes

e2K + ¢~ 2K = foK', (A1)
The same result is obtained with ¢; = —1 and o3 = —1. For
oy =1and 63 = —1o0r oy = —1 and o3 = 1 we obtain
2= fe K, (A2)
Solution of Egs. (A1) and (A2) leads to the expressions for
K’ and f given in the text.

The derivation of Eqs. (36)-(40) proceeds in a similar
way. We first try to find K, K>, K3, and f such that
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eK(a; +o2+a3+04) +e~K(a +o2+a3t04)

=f€xp[(1/2)K1(0'10’2 + G203 + 0304 + 0’40’1)

+ K2(0'10'3 + 0’20’4) + K30'10'20'3O'4] (A3)

for all possible values of oy, 03, 63, 64. For example, when
all the ¢’s are equal to +1, or all equal to —1, we obtain the
condition

edK 4 p—4K =f82K1+2K2+K3. (A4)

Investigation of all of the other possible values of the ¢’s
gives the conditions

2 ___.fe—2K1+2K2+K3, (A5)
ek + 72K = fe~ K3, (A6)
2 = fe=2Ka+Ks, (A7)

Solution of these equations gives the expressions for K, K,
K3, and f given in the text [Egs. (38)-(40)]. The result for
Z now becomes

VA =Z- e [fexp((1/2)K1(alaz + 0203 + 0304 + 0’401)
+ Ka(0103 + 0204) + K3(01020304))] - -+ (A8)
There is one square bracket for each large square of the type

1234. Since there are N/2 such squares Z contains a fac-
tor

N2,

A nearest-neighbor term such as

e1/DKa102

will appear both in the square bracket that has been written
out explicitly and in one other square bracket. Thus the total
term coming from the neighbors 1 and 2 is

eKIUIGZ.

Hence there appears in Z a factor

€Xp (K1 x apdq).
nn

The understanding of the terms in K, and K that appear
in Eq. (36) is straightforward.

To derive Eq. (46) assume that there is a nonanalytic
term in {(K) which is

alK — K|

where a is a constant. Near to K, we have to first order in
(K - Kc)

dK’

K'=Ke+ (K= K)o (A9)

Now expand Eq. (42) around K = K. On the right-hand
side the only term which is a (2 — ) power is

2a|K — K |*>7°. (A10)
On the left-hand side the corresponding term is
aK’ 2-a
K - ma = gl(K - K —| All
al Kcl al( ) dK | =k, ( )

using Eq. (A9). Comparison of Egs. (A10) and (All)
gives
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dK'|2 -«

— K| =a|K - K[>
2a|K el a| l dK |k = k.

. (Al12)

and Eq. (46) follows.
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