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Wedescribe aminimal model of an autonomousMaxwell demon, a
device that delivers work by rectifying thermal fluctuations while
simultaneously writing information to a memory register. We solve
exactly for the steady-state behavior of our model, and we con-
struct its phase diagram. We find that our device can also act as
a “Landauer eraser”, using externally supplied work to remove
information from the memory register. By exposing an explicit,
transparent mechanism of operation, our model offers a simple
paradigm for investigating the thermodynamics of information
processing by small systems.

Landauer's principle ∣ nonequilibrium statistical mechanics

Asystem in thermal equilibrium undergoes random micro-
scopic fluctuations, and it is tempting to speculate that an

ingeniously designed device could deliver useful work by rectify-
ing these fluctuations. The suspicion that this would violate the
second law of thermodynamics has inspired nearly 150 years of
provocative thought experiments (1–5), leading to discussions
of the thermodynamic implications of information processing
(6–12). Although both Maxwell (1) and Szilard (3) famously took
the rectifying agent to be an intelligent being, later analyses have
explored the feasibility of a fully mechanical “demon”. There has
emerged a kind of consensus, based largely on the works of Land-
auer (6) and Bennett (7, 8), and independently Penrose (13),
according to which a mechanical demon can indeed deliver work
by rectifying fluctuations, but in doing so it gathers information
that must be written to physical memory. The eventual erasure of
this information carries a thermodynamic cost, no less than
kBT ln 2 per bit (Landauer’s principle), which eliminates any gains
obtained from the rectification of fluctuations.

The past few years have seen increased interest in the thermo-
dynamics of information processing (14–19). Discussions of
Maxwell’s demon, Landauer’s principle and related topics arise
in contexts such as quantum information theory (20), the synth-
esis of artificial nanoscale machines (21), feedback control in
microscopic systems (22–33), and single-photon cooling of atoms
(34). Experiments have been performed with the explicit aim of
testing theoretical predictions (27), including Landauer’s princi-
ple (35). Moreover the consensus or “favored explanation” (36)
described above is widely but not universally accepted, as suspi-
cions persist that it assigns an unwarranted thermodynamic sig-
nificance to random data (12, 36–39).

In spite of this attention, the field still lacks a tangible example
or model of a device that converts heat into work at the expense
of writing information. Discussions are often framed around gen-
eral principles rather than a particular instance, and the demon is
typically described in generic terms, as a system capable of per-
forming microscopic feedback control, but otherwise unspecified.
In this paper we propose an explicit, solvable model of a system
that behaves as a Maxwell demon. Our device, which extracts
energy from a single thermal reservoir and delivers it to raise a
mass against gravity, is fully autonomous—it is neither manipu-
lated by an external agent nor driven by an explicit thermody-
namic force—but in order to lift the mass the device requires
a memory register to which it can write information.

Briefly, in our model the device, or demon, is a three-state sys-
tem that interacts with: a thermal reservoir, a mass that can be
lifted or lowered, and a stream of bits that pass by the demon
in sequence, as sketched in Fig. 1. The demon’s dynamics consist
of random transitions among its three states. These transitions
are driven by thermal fluctuations from the reservoir, and are
coupled to the bits and to the mass in a manner described in detail
below. The model has three parameters: δ describes the initial
statistical state of the bits, reflecting the initial ratio of 0’s–1’s;
ϵ characterizes the weight of the mass; and τ is the duration
of interaction with each bit in the stream. For any set of values
ðδ; ϵ; τÞ the model reaches a unique periodic steady state, char-
acterized by an average rate of work performed on the mass, and
an average rate of information written to the bit stream.

We will first consider our model in the absence of an external
load: the demon generates directed motion while writing infor-
mation to the bits, but there is no provision for harnessing this
motion to perform work. We then add a load by attaching a non-
zero mass, as in Fig. 1, and we solve for the model’s steady-state
behavior. Our model exposes a specific mechanism for the opera-
tion of a mechanical Maxwell demon, allowing us to explore in
detail the interplay between the gravitational pull on the mass
and the changing information content of the stream of bits. More-
over, our demon is versatile: it is equally capable of acting as an
eraser, using the energy of a falling mass to remove information
from the memory register.

We now specify our model in detail, by introducing in turn its
several elements (Fig. 2). The demon evolves by making ther-
mally activated transitions among its three states, labelled A, B
and C. We consider transitions in the direction A → B → C → A
to be clockwise (CW), and those in the opposite direction to be
counterclockwise (CCW), see Fig. 2A. The demon exhibits direc-
ted rotation if CW transitions occur with greater frequency than
CCW transitions, or vice-versa. (Note that the demon must pos-
sess at least three states in order to exhibit directed rotation). To
keep track of the net CW rotation, we introduce an integer vari-
able χ, whose value increases by one unit whenever the demon
makes a transition from C to A, and decreases by one unit with
each transition from A to C.

We next describe the interaction between the demon and a
single bit, with states labelled 0 and 1, Fig. 2B. The demon and
bit together form a composite system with six states, A0;⋯C1,
depicted in Fig. 2C. The five lines, or edges, connecting pairs
of states in this network specify the allowed transitions for the
composite system. The demon can jump between states A and
B, and between B and C, without involving the bit; these transi-
tions are represented by the edges A0-B0, B0-C0, A1-B1 and
B1-C1. Additionally, the demon can make a transition from C
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toA if the bit simultaneously “flips” from 0 to 1, or fromA toC if
the bit flips from 1 to 0, as indicated by the line connecting A1
and C0. We model these transitions as a Poisson process, where
Rij is the probability per unit time to make a transition to state i,
when the system is in state j, with i; j ∈ fA0;⋯C1g. For the mo-
ment, we set Rij ¼ 1 for each of the ten allowed transitions (two
per edge) depicted in Fig. 2C. These rates set the unit of time in
our model. Because Rij ¼ Rji for every edge, we have implicitly
assigned the same energy to all six states (40). Under these rates,
the demon and bit relax toward equilibrium, in which all six states
are equally likely. This relaxation occurs on a time scale of order
unity: τr ∼ 1.

The network of states in Fig. 2C forms a linear chain. Because
this chain contains no closed loops, the model cannot yet exhibit
directed rotation, only back-and-forth excursions along the chain.
To introduce the possibility of rotation, let us now imagine a bit
stream (see Fig. 1): a sequence of bits arranged at equally spaced
intervals along a tape that is pulled through at constant speed, for
instance by a frictionless flywheel. The demon remains at a fixed
location, and interacts, in the manner discussed above, only with
the bit that is currently closest to it. Let τ−1 denote the rate at
which the bits pass by the demon, each interacting with the de-
mon for a time interval of duration τ before the next bit in the
stream takes its place. Thus τ determines the extent to which the
composite system approaches equilibrium during one such interac-
tion interval; for τ ≪ τr ∼ 1 the system hardly evolves during the
interval, whereas for τ ≫ 1 the demon and the bit effectively reach
equilibrium. Finally, let bn and b 0

n denote, respectively, the incom-
ing and outgoing state of the n’th bit in the stream. The state of any
bit can change only when it is interacting with the demon.

The incoming bits are statistically independent of one another,
each with probability p0 to be in state 0, and p1 to be in state 1.
The excess parameter

δ ≡ p0 − p1 [1]

quantifies the excess of 0’s in the incoming bit stream.
To understand how the demon can exhibit directed rotation, in

this paragraph let us consider the case in which every bit in the
incoming stream is set to 0 (as in Fig. 1). The demon interacts
with the n’th bit during the n’th interaction interval,
tn ≤ t < tnþ1 ≡ tn þ τ. At the start of this interval, the composite
system begins in state A0, B0 or C0, since bn ¼ 0. From t ¼ tn to
tnþ1 the system evolves among the network of states depicted in
Fig. 2C. It might repeatedly pass forward and back along the edge
connecting C0 to A1, resulting in alternating increments and
decrements of the counter χðtÞ. At the end of the interaction in-
terval, if the system is found in state A0, B0 or C0 (i.e. if b 0

n ¼ 0)
then we can infer that every transition C0 → A1 was balanced by
a transition A1 → C0, hence Δχn ≡ χðtnþ1Þ − χðtnÞ ¼ 0. If the
system instead ends in A1, B1 or C1 (b 0

n ¼ 1), then the counter
has advanced by one net unit: Δχn ¼ þ1. At t ¼ tnþ1, the n’th bit
is replaced by the ðnþ 1Þ’th bit, and the next interval commences.
Thus if the composite system is in state B1 at the end of one
interval, then at the start of the next interval it is in state B0. This
effective transition does not imply an actual change in the state of
a given bit, but simply reflects the replacement of an outgoing bit
in state 1 with an incoming bit in state 0. (Note that Fig. 2C de-
picts only the actual transitions that may occur during one inter-
action interval). Over time, the demon interacts with a sequence
of bits, all initialized to 0, and the outgoing bit stream contains a
record of the demon’s rotary motion: each occurrence of an out-
going bit in state 1 indicates one full CW rotation, Δχ ¼ þ1.
Since the value of the counter can only increase or remain un-
changed from one interval to the next, in the long run χðtÞ grows
with time and the demon undergoes directed CW rotation.

If the incoming stream were instead composed entirely of 1’s,
then full CW rotations would be prohibited, and full CCW rota-
tions would be documented as outgoing 0’s. For a more general
distribution of incoming bits, the net change in the counter during
the n’th interaction interval is

Δχn ¼ b 0
n − bn; [2]

and the outgoing stream provides partial information regarding
the demon’s gyrations.

The demon eventually reaches a periodic steady state in which
its statistical behavior is the same from one interval to the next. If
the outgoing bit stream is then characterized by values p 0

0, p
0
1 and

δ 0 ≡ p 0
0 − p 0

1, then the average number of full CW rotations per
interaction interval is

Φ ≡ hΔχni ¼ p 0
1 − p1 ¼

1

2
ðδ − δ 0Þ: [3]

Wewill useΦ as our measure of directed rotation, and we will call
it the circulation.

We have solved for the periodic steady state, obtaining (as de-
scribed in the Methods)

Φðδ; τÞ ¼ δ
2

�
1 −

1

3
KðτÞ

�
; [4a]

where

KðτÞ ¼ e−2τ
ð1þ 8αþ 4

ffiffiffi
3

p
βÞ − ð2þ 7αþ 4

ffiffiffi
3

p
βÞe−2τ

3 − ð2þ αÞe−2τ [4b]

and α ¼ coshð ffiffiffi
3

p
τÞ, β ¼ sinhð ffiffiffi

3
p

τÞ. The functionKðτÞ decreases
monotonically from Kð0þÞ ¼ 3 to Kð∞Þ ¼ 0, hence the magni-
tude of the circulation increases with τ, from Φðδ; 0þÞ ¼ 0 to

Fig. 1. A sequence of bits moves at constant speed past the three-state
demon, which interacts with the nearest bit (shaded) and a thermal reservoir
(not shown). To model a positive external load f > 0, we imagine that a mass
m is lifted by an amount Δh every time the demon makes a transition C → A,
and lowered with each transition A → C. See text for details. For f < 0, the
mass can be pictured as hanging off the rights side of the small circle, so that
transitions C → A lower the mass and transitions A → C lift it.

A B C
Fig. 2. Schematic depiction of the demon, the bit and their composite
6-state system. (A) The state of the demon is indicated by an arrow pointing
in one of three directions (A, B, or C) on the face of a dial. (B) The bit is re-
presented as an arrow pointing either up (1) or down (0). (C) Network depic-
tion of the composite system, showing allowed transitions. The edge that
connects A1 and C0 represents the coupling between the demon and bit.
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Φðδ;∞Þ ¼ δ∕2. These values are easily understood. When τ → 0,
the probability to observe any transition during a given interac-
tion interval vanishes, and therefore so doesΦ. When τ ≫ 1, dur-
ing each interaction interval the composite system has sufficient
time to relax to equilibrium, with all six states in Fig. 2C equally
likely, hence δ 0 ¼ 0 and Φ ¼ δ∕2 [Eq. 3]. Interestingly, the aver-
age rate of rotations, ω ¼ Φ∕τ, achieves its maximal value
ω ¼ δ∕6 at τ ¼ 0þ, and then decreases with τ.

Since the quantity in square brackets in Eq. 4a is non-negative,
the demon effectively converts an excess of 0’s or 1’s into directed
CWor CCWrotation. We now harness this rotation to an external
load, by attaching a mass m to the demon in such a way that
the mass is lifted a distance Δh whenever the demon makes a
transition from C to A, and is lowered by Δh for the reverse tran-
sition (Fig. 1). The corresponding energy, �mgΔh, is exchanged
with the thermal reservoir: with every transitionC0 → A1, heat is
withdrawn from the bath to lift the mass, and with every transition
A1 → C0 that energy is released to the bath. (There is no ex-
change of energy with the flywheel that pulls the bits past the de-
mon, in particular the flywheel does not contribute energy to lift
the mass). To incorporate these considerations into our dynamics,
we modify the transition rates in accordance with detailed bal-
ance (40):

RA1;C0

RC0;A1

¼ e−f ; f ≡
mgΔh
kBT

> 0; [5]

where T is the temperature of the thermal reservoir and kB is
Boltzmann’s constant, with all other rates Rij unchanged. The
parameter f quantifies a thermodynamic force that favors CCW
rotations (RC0;A1 > RA1;C0) as gravity tugs the mass downward.
In terms of Fig. 2C, Eq. 5 effectively increases the energies of
states A1, B1 and C1 by an amount mgΔh, relative to states
A0, B0 and C0, reflecting the energy that is withdrawn from
the reservoir during the transition C0 → A1.

If the demon interacts with a single bit for a sufficiently long
time then the two will reach equilibrium, with

peq
A0 ¼ peq

B0 ¼ peq
C0 ¼

ef

Z
; peq

A1 ¼ peq
B1 ¼ peq

C1 ¼
1

Z
; [6a]

where Z ¼ 3ð1þ ef Þ. After summing over the states of the de-
mon, the equilibrium probabilities for the bit itself are found
to satisfy

peq
0 − peq

1 ¼ tanh
�
f
2

�
≡ ϵ; [6b]

where the weight parameter, ϵ, is a rescaled version of the ther-
modynamic force, f .

Eq. 5 leaves us with some freedom in assigning the ratesRC0;A1

and RA1;C0. We have chosen

RA1;C0 ¼ 1 − ϵ; RC0;A1 ¼ 1þ ϵ: [7]

With this choice, we are again able to solve analytically for the
periodic steady state, obtaining (see Methods)

Φðδ; ϵ; τÞ ¼ δ − ϵ
2

�
1 −

1

3
KðτÞ þ ϵδ

6
Jðτ; ϵδÞ

�
[8a]

with

Jðτ; ϵδÞ ¼ ð1 − e−τÞ½2e−2τðαþ ffiffiffi
3

p
β − 1Þ�2

½3ð1 − ϵδe−τÞ − ð1 − ϵδÞð2þ αÞe−2τ�½3 − ð2þ αÞe−2τ�
[8b]

andK, α and β as in Eq. 4. These results extend to negative values
of f , if we interpret these as indicating that gravity exerts a clock-
wise torque (see caption of Fig. 1). Eq. 8, our central result, is
then valid for jϵj < 1, jδj ≤ 1, and 0 < τ < ∞.

In the limits τ ¼ 0þ and τ → ∞ Eq. 8 gives Φ ¼ 0 and
Φ → ðδ − ϵÞ∕2, respectively. The latter reflects equilibration
between the demon and each bit: p 0

0;1 ¼ peq
0;1, hence δ 0 ≡ p 0

0−
p 0
1 ¼ ϵ (see Eqs. 3 and 6b). On the right side of Eq. 8a, the quan-

tity in square brackets is non-negative, as determined by numer-
ical inspection, and the prefactor indicates a competition between
the parameters δ and ϵ. When δ > ϵ, the incoming bits contain a
surplus of 0’s, relative to the equilibrium proportions [Eq. 6a];
during each interaction interval the composite system relaxes
toward equilibrium, generating CW rotation as 0’s are converted
to 1’s, on average. Similarly when δ < ϵ the relative surplus of
incoming 1’s generates CCW rotation. When δ ¼ ϵ there is no
directed rotation, as the bits arrive distributed in the equilibrium
ratio.

The new term appearing in Eq. 8a, ϵδJ∕6, does not affect the
sign of the quantity in square brackets. However, there is a
succinct way to describe its action: it goes against the loser if there
is a competition between δ and ϵ, and against both if there is
cooperation. This follows from the inequality Jðτ; ϵδÞ ≥ 0 (deter-
mined by numerical inspection). E.g. if δ > ϵ > 0, so that in com-
petition δ wins giving rise to Φ > 0, then the term ϵδJ∕6 makes a
positive contribution to Φ. If δ > 0 > ϵ, so that both parameters
favor CW rotation, the contribution due to this term is negative.

We now explore the thermodynamic and information-proces-
sing behavior of our device, and we ask when it might perform a
“useful” service. Consider the square region representing allow-
able values of the excess parameter δ and the weight parameter ϵ,
depicted in Fig. 3 for τ ¼ 1 and 10. The line ϵ ¼ δ is the contour
of zero steady-state rotation: to the left of this line the rotation is
CCW (Φ < 0) and to the right it is CW (Φ > 0). The product
W ≡ kBTfΦ represents the average work that the device delivers
to the mass, per interaction interval. Since signðϵÞ ¼ signðf Þ, the
two lightly shaded triangles in Fig. 3 (ϵΦ > 0) are the regions in
which the device acts as an engine, converting heat from the
thermal bath into work to lift the mass. For example, when δ >
ϵ > 0 gravity exerts a CCW torque, but the excess of incoming 0’s
generates a greater CW torque.

Now consider the quantities

Sb ¼ −∑
i¼0;1

pi ln pi and S 0
b ¼ −∑

i¼0;1

p 0
i ln p

0
i : [9]

For convenience we will call these the disorder (per bit), although
this terminology ignores correlations between successive bits in
the outgoing stream. Sb quantifies the information content of the
incoming stream, and is related to its capacity to record new in-
formation, in the following sense. When Sb ¼ 0 the incoming
stream is a blank slate composed entirely of 0’s (or entirely of
1’s), and the outgoing stream contains a faithful record of CW
(or CCW) rotations, as discussed earlier. When Sb ¼ ln 2 (its
maximum possible value) the incoming stream is saturated with
an equal mixture of 0’s and 1’s, and in this case the outgoing
stream does not chronicle the demon’s rotations. We will inter-
pret the difference ΔS ≡ S 0

b − Sb as a measure of the degree to
which new information is written to the bits, as they interact with
the demon.

Since the rotation of the demon couples tightly to the flipping
of bits [Eq. 2], the line ϵ ¼ δ (where Φ ¼ 0) is a contour along
which ΔSðδ; ϵ; τÞ ¼ 0; here, there is no net rotation and no net
change in the bit statistics: p 0

0 ¼ p0 and p 0
1 ¼ p1. The other solid

line depicted in Fig. 3, running from the upper left to the lower
right, is also a contour along which ΔS ¼ 0, representing the in-
version of bit statistics: p 0

0 ¼ p1 and p 0
1 ¼ p0. The two lines divide
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the ðδ; ϵÞ-square into four regions, with the +’s and −’s in Fig. 3
denoting the sign of ΔS in these regions.

We see in Fig. 3 that ΔS > 0 whenever our device acts as an
engine. This is consistent with the proposition that a mechanical
demon, in order to convert heat to work, must write information
to a memory register. Indeed, Fig. 3 shows that the greater the
storage capacity of the incoming bit stream, the larger the mass
the demon can hoist against gravity: when presented with a blank
slate (δ ¼ �1) the demon can lift any mass; but when the incom-
ing bit stream is saturated (δ ¼ 0) the demon is incapable of de-
livering work. Thus a blank or partially blank memory register
acts as a thermodynamic resource that gets consumed when
the demon acts as an engine.

In the above description, the demon is an active rectifying
agent and the bit stream merely a passive receptacle for informa-
tion. From another perspective, however, the interaction with the
demon presents an opportunity for the bits to evolve to a more
disordered sequence of 0’s and 1’s. The bits’ role then appears
more assertive: their evolution toward greater randomness is what
drives the engine, and the demon simply facilitates the process.

In the darkly shaded regions in Fig. 3, the demon acts as an
eraser, removing information from the memory register:
ΔS < 0. For example, if δ ¼ 0, f ≫ 1 (i.e. ϵ ≈ 1) and τ ≫ 1, then
the bits arrive in an equal mixture of 0’s and 1’s, but each bit has
sufficient time to equilibrate with the demon, hence at the end of
each interaction interval the composite system is almost certainly
in state A0, B0 or C0 [Eq. 6]. As a result, the outgoing bits are
nearly all 0’s, and the memory is effectively wiped clean as the
mass drops by a distance Δh∕2 (on average) per interaction
interval.

Our model thus reflects the interplay between two effective
forces, one associated with the randomization of the bits and
the other with the pull of gravity. When our model acts as an
engine, it consumes one resource—a blank or partially blank
memory register—to build up another: the gravitational potential
of the mass. When it acts as an eraser the roles are reversed. In
the unshaded regions in Fig. 3, both resources are squandered
(the mass falls and the bits’ disorder increases) and our model
is a dud, accomplishing nothing useful.

Our model satisfies the inequality

W ≤ kBTΔS; [10]

for any ϵ, δ and τ, with the equality holding only when ϵ ¼ δ. (See
SI Text). Thus, the increase in the information content of the bit
stream places an upper limit on the work that can be delivered,

when the model is an engine. Analogous inequalities arise in the
context of feedback control, where an external agent manipulates
the system on the basis of outcomes of explicit measurements
(22–33). When our model acts an eraser (ΔS < 0), Eq. 10 reveals
the minimum amount of work that must be supplied, by the falling
mass, in order to reduce the information content by a given
amount. In the case of full erasure (S 0

b ¼ 0) this becomes Land-
auer’s principle, jW j > kBTSb. Note that if we are willing to
assign thermodynamic meaning to the randomness in a string of
data, Eq. 10 can be interpreted as the second law of thermody-
namics (or rather as a weak statement of it, since S 0

b ignores
correlations between outgoing bits): the decrease in the entropy
of the reservoir, −ΔSr ¼ W∕kBT, must not exceed the increase in
the entropy of the bit stream:

ΔSr þ ΔS ≥ 0. [11]

While both sides of Eq. 10 approach zero as ϵ → δ, their ratio
approaches unity in that limit (see SI Text). Thus in the immediate
vicinity of the line ϵ ¼ δ, the bound represented by Eq. 10 be-
comes saturated, and our model behaves with maximal efficiency,
acting as a thermodynamically reversible engine or eraser. Note
however that the rate at which the demon either delivers work or
erases information approaches zero in this reversible limit.

We conclude by mentioning two extensions of the present
work. First, we can reformulate our model as one in which the
bits arrive as a sequence of matched pairs, or dimers, b2k−1 ¼ b2k
(e.g. 0011110011…), and the demon interacts with the bit stream,
one dimer at a time. Even if the incoming stream contains an
equal proportion of 0’s and 1’s, the demon is able to lift the mass,
effectively by “digesting” the pairwise correlations between the
bits, which depart in a less ordered sequence (e.g. 0111101011…).
This suggests the possibility of a more complex information-pro-
cessing engine, driven by the recognition of specific patterns in
the bit stream.

We have also sketched a mechanistic version of our model,
composed of frictionless paddles, pulleys and axles immersed
in a dilute gas. While highly idealized, this model is more easily
visualized as a material physical system than the discrete-state
model described in the present paper. See ref. (8) for an analo-
gous model of a Turing machine.

Methods
To obtain Φðδ; ϵ; τÞ we solve for the periodic steady state of the demon, then
we use that solution to determine the distribution of outgoing bits ðp 0

0; p
0
1Þ.

The value of Φ then follows from Eq. 3.

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0BA

Fig. 3. Behavior of our model as a function of δ and ϵ, for τ ¼ 1 and 10. The demon can act as an engine (lightly shaded region), an eraser (darkly shaded) or a
dud (unshaded). These regions are delineated by the lines ϵ ¼ 0 and ϵ ¼ δ, together with a third line (see text), shown passing through the second and fourth
quadrants, which depends on τ and is nearly but not exactly straight. The symbols + and − indicate the sign of ΔS, the average change in disorder per bit. The
circulation Φ is positive (CW) in the Lower Right half of the figure, and negative (CCW) in the Upper Left.
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Let T3×3 denote the transition matrix whose component Tμν gives the
probability to find the demon in state μ ∈ fA; B; Cg at the end of one inter-
action interval, given that it began in state ν at the start of the interval.
Explicitly,

T ¼ PDeRτM: [12]

Here, M6×3 ¼ p0I
p1I

� �
, with I the 3 × 3 identity matrix; R6×6 is the transition

rate matrix whose elements fRijg are discussed in the main text; and

ðPDÞ3×6 ¼ ðI; IÞ. Specifically, if q0 ≡ ðqA
0 ; q

B
0 ; q

C
0 ÞT gives the probability distri-

bution that describes the demon at the start of one interval, then the six-
component vector Mq0 gives the combined state of the (initially uncorre-
lated) demon and bit. The factor eRτ propagates this distribution for the
duration of the interval, and PD projects out the state of the bit, so that
qτ ¼ Tq0 is the statistical state of the demon at the end of the interval.

In the periodic steady state, the initial probability distribution of the
demon is given by the vector satisfying Tqpss ¼ qpss, whose uniqueness is
guaranteed by the Perron-Frobenius Theorem (41). At the end of the inter-
action interval the state of the (now correlated) demon and bit is eRτMqpss.

The statistics of the outgoing bit are obtained by projecting this correlated
state to that of the bit:

p 0
0

p 0
1

� �
¼ PBeRτMqpss; PB ≡ 1 1 1 0 0 0

0 0 0 1 1 1

� �
:

[13]

Thus to obtain ðp 0
0; p

0
1Þ we must determineT, solve for its eigenstate qpss,

and apply Eq. 13. This calculation involves a straightforward if tedious exer-
cise in the spectral decomposition of R, which we detail in the SI Text.
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SI Text
Here we detail key steps in the derivation of our expression for
Φðδ; ϵ; τÞ, and we discuss the inequality W ≤ kBTΔS, Eq. 10 of
the main text.

Solving for Φ.As explained in the “Methods” section, to solve for
Φ we first obtain the stationary probability distribution qpss of the
transition matrix T3×3. This matrix describes the evolution of
the demon over one interaction interval, and is the product of
three matrices, T ¼ PDeRτM (Eq. 12). Expressions for PD

and M were provided explicitly in the “Methods” section. For
ϵ ∈ ð−1; 1Þ, the transition rate matrix for the composite de-
mon-and-bit is

R ¼

−1 1 0 0 0 0

1 −2 1 0 0 0

0 1 −2þ ϵ 1þ ϵ 0 0

0 0 1 − ϵ −2 − ϵ 1 0

0 0 0 1 −2 1

0 0 0 0 1 −1

0
BBBBBB@

1
CCCCCCA
: [S1]

This matrix has six real, non-degenerate eigenvalues that are (sur-
prisingly) independent of ϵ:

fλig ¼ f0; −c; −1; −2; −3; −dg; [S2]

with

a ¼ 1 −
ffiffiffi
3

p
; c ¼ 2 −

ffiffiffi
3

p
; x ¼ 1þ ϵ

b ¼ 1þ
ffiffiffi
3

p
; d ¼ 2þ

ffiffiffi
3

p
; y ¼ 1 − ϵ:

[S3]

The quantities a, b, x and y will be used momentarily.
We have found the following spectral decomposition of R to

be convenient:

R¼∑
6

i¼1

jiiλihij
hijii ¼UN−1ΛV

¼
↑ ↑
u1 ⋯ u6
↓ ↓

0
@

1
A

n−1
1

. .
.

n−1
6

0
B@

1
CA

λ1
. .
.

λ6

0
B@

1
CA

← v1 →
..
.

← v6 →

0
B@

1
CA:

[S4]

Here, the columns ofU are right eigenvectors ofR, and the rows
of V are its left eigenvectors. We denote the right eigenvectors by
ui or jii, and the left eigenvectors by vTi or hij. These form a
biorthogonal pair of basis sets: vTi · uj ¼ hijji ¼ niδij, i.e.
VU ¼ N. Explicitly,

U ¼

x 1 x 1 x 1

x −a 0 −1 −2x −b
x c −x −1 x d
y −c −y 1 y −d
y a 0 1 −2y b
y −1 y −1 y −1

0
BBBBBB@

1
CCCCCCA
;

V ¼

1 1 1 1 1 1

y −ay cy −cx ax −x
1 0 −1 −1 0 1

y −y −y x x −x
1 −2 1 1 −2 1

y −by dy −dx bx −x

0
BBBBBB@

1
CCCCCCA
;

[S5]

and fnig ¼ f6; 12c; 4; 6; 12; 12dg. Note that since R is not sym-
metric, its left and right eigenvectors differ. The matrices N and
Λ are diagonal. While it is usual to normalize the left and right
eigenvectors so that they are biorthonormal (ni ¼ 1), we have
found that the choice of normalization given above leads to less
cumbersome expressions in the subsequent analysis.

In terms of this decomposition, we have

T ¼ PDeRτM ¼ I Ið ÞUN−1eΛτV
p0I
p1I

� �
[S6]

where I is the 3 × 3 identity matrix (see “Methods”). An explicit
evaluation yields

T¼ 1

12

FþGþ δH M − 2δL F−Gþ δH
M Mþ 12σ3 M

F−G− δH Mþ2δL FþG− δH

0
@

1
A

−
ϵ
12

Hþ δðG− 6σÞ −2L H − δðG− 6σÞ
0 0 0

−H − δðG− 6σÞ 2L −Hþ δðG− 6σÞ

0
@

1
A
[S7]

where σ ¼ e−τ and

F ¼ 4þ 2σ3; G ¼ 4σ2 þ σc þ σd; H ¼
ffiffiffi
3

p
ðσc − σdÞ

L ¼ 2σ2 − σc − σd; M ¼ 4 − 4σ3:
[S8]

Solving the equation Tqpss ¼ qpss (see “Methods”) we obtain

qpss ¼ 1

3

1þN
1

1 −N

0
@

1
A; Nðδ; ϵÞ ¼ ðδ − ϵÞðH −LÞ

6 −Gþ ϵδðG − 6σÞ : [S9]

Combining this result with Eq. 13 of the text yields the statistics of
the outgoing bits, ðp 0

0; p
0
1Þ, from which we then obtain the circula-

tion using the relation Φ ¼ p 0
1 − p1.

Relationship betweenW andΔS.We now obtain Eq. 10 of the main
text: W ≤ kBTΔS. Since

W ¼ kBTΦf ¼ kBTΦ ln
1þ ϵ
1 − ϵ

; [S10]

we must establish the non-negativity of the dissipation function:
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Ω ≡ ΔS −Φ ln
1þ ϵ
1 − ϵ

≥ 0. [S11]

We will first prove this for the quasistatic case τ → ∞, and then
extend it to finite τ. Let

SðXÞ ¼ −
1 −X
2

ln
1 −X
2

−
1þX

2
ln
1þX

2
[S12]

denote the entropy of a bit as a function of an excess para-
meter X .

In the quasistatic limit (specified below by the subscript “∞”)
the outgoing bits reflect full equilibration between the demon and
the bit; see Eq. 6 of the main text. In that limit we have

Φ!δ − ϵ
2

≡ Φ∞; δ 0!ϵ; ΔSb!SðϵÞ − SðδÞ; [S13]

hence

Ω!SðϵÞ − SðδÞ − δ − ϵ
2

ln
1þ ϵ
1 − ϵ

≡ Ω∞: [S14]

Now note that

Ω∞ ¼ 0 for ϵ ¼ δ and
∂
∂ϵ

Ω∞ ¼ ϵ − δ
1 − ϵ2

�
>0 if ϵ > δ
<0 if ϵ < δ :

[S15]

Thus for any fixed value of δ, the function Ω∞ðδ; ϵÞ is zero at the
point ϵ ¼ δ, and as a function of ϵ it decreases when ϵ < δ and
increases when ϵ > δ. This establishes that Ω∞ ≥ 0.

We have verified by explicit numerical investigation that

Φðδ; ϵ; τÞ ¼ ηΦ∞ where 0 ≤ η ≤ 1. [S16]

That is, the quantity in square brackets in Eq. 8a of the main text
(which we here label η) falls in the range ½0; 1�. While we have not
been able to establish this analytically, we believe it is related to
the fact that all eigenvalues of the transition rate matrix R are
real and non-positive [Eq. S2], with the consequence that the
composite demon-and-bit system relaxes monotonically toward
equilibrium during each interaction interval. This suggests that
signðΦÞ ¼ signðΦ∞Þ, and that the maximum circulation is ob-
tained by allowing the composite system to relax fully to equi-
librium.

For finite τ, the excess parameter δ 0 for the outgoing stream is
a linear average of δ and ϵ:

δ 0 ¼ δ − 2Φ ¼ ð1 − ηÞδþ ηϵ; [S17]

using Eq. 3 of the main text, Eq. S16 and Φ∞ ¼ ðδ − ϵÞ∕2. Since
SðXÞ is concave (d2S∕dX 2 < 0),

S 0
b ¼ Sðδ 0Þ ≥ ð1 − ηÞSðδÞ þ ηSðϵÞ ¼ SðδÞ þ η½SðϵÞ − SðδÞ�:

[S18]

From Eqs. S13, S14 and the non-negativity of Ω∞, we have

SðϵÞ − SðδÞ ≥ Φ∞ ln
1þ ϵ
1 − ϵ

: [S19]

Combining Eqs. S18 and S19 we get

S 0
b ≥ SðδÞ þ ηΦ∞ ln

1þ ϵ
1 − ϵ

¼ Sb þΦ ln
1þ ϵ
1 − ϵ

; [S20]

which is the result we set out to establish [Eq. S11].
As mentioned in the main text, the inequalityW ≤ kBTΔS can

be viewed as a weak statement of the second law of thermody-
namics, where the weakness is due to the neglect of correlations
in the outgoing bit stream.* If we accept an equivalence between
thermodynamic entropy and the information content of a random
data set, then we might expect the second law to be represented
more accurately by the inequality

W ≤ kBTΔH; [S21]

where ΔH ¼ H 0
b −Hb is the change in the information entropy

per bit, including correlations among the outgoing bits. For our
model Eq. S21 can be derived directly from general properties of
Markov processes, without involving our solution for Φðδ; ϵ; τÞ.
We omit this derivation, which makes use of relative entropy
(1) as a Lyapunov function (2) characterizing the relaxation of
the demon and bits. SinceHb ¼ Sb (the bits arrive uncorrelated)
and H 0

b ≤ S 0
b (1), we get

ΔH ≤ ΔS; [S22]

which provides an alternative derivation of the inequal-
ity W ≤ kBTΔS.

Finally, setting kBT ¼ 1 for convenience, we establish the re-
sult

lim
ϵ→δ

W
ΔS

¼ 1 [S23]

mentioned near the end of the main text. Taking the partial de-
rivatives of the quantities

W ¼ Φ ln
1þ ϵ
1 − ϵ

and ΔS ¼ Sðδ 0Þ − SðδÞ [S24]

with respect to ϵ, at fixed δ and τ, we get

∂W
∂ϵ

¼ ∂Φ
∂ϵ

ln
1þ ϵ
1 − ϵ

þ 2Φ
1 − ϵ2

∂ΔS
∂ϵ

¼ ∂Φ
∂ϵ

ln
1þ δ 0

1 − δ 0 [S25]

(using δ 0 ¼ δ − 2Φ). Along the line ϵ ¼ δ we have W ¼ ΔS ¼ 0

as well as

∂W
∂ϵ

¼ ∂ΔS
∂ϵ

: [S26]

Eq. S23 then follows by l’Hôpital’s rule.
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*Empirically, these correlations are quite small, though non-zero.
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