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Nonequilibrium stationary thermodynamic systems are described by 
stationary random Markov processes with discrete time. For given mac- 
roscopic conditions, the condition of maximum path entropy deter- 
mines the process. 

In s ta t i s t ica l  thermodynamics  one descr ibes  the 
proper t ies  of physical sys tems  averaged over  all pos- 
s ible  ini t ial  s ta tes  because the la t ter  are  imposs ib le  
to a sce r t a in  in pract ice,  The set of sys t ems  c o r r e -  
sponding to all  possible  ini t ial  s ta tes  of a given sys -  
tem compr i ses  its Gibbs ensemble .  Funct ions  defined 
on the set  forming the ensemble  a re  called random 
quant i t ies ,  and calculat ing their  expectations (aver -  
aged over the ensemble)  is the basic  problem of s ta -  
t i s t ical  thermodynamics .  

To calculate  these averages ,  it is not at all nec-  
e s sa ry  to know the random quant i t ies  themselves ,  but 
r a the r  only their  d is t r ibut ions ,  which are  t ime - inde -  
pendent because of the s ta t ionary  na ture  of the equi-  
l ib r ium system.  Because the dynamical  laws of evo- 
lution of the sys tem are  e i ther  unknown or too compl i -  
cated to use direct ly ,  the d is t r ibut ions  of thermody-  
namics  are  found by int roducing the basic postulate 
according to which equi l ibr ium dis t r ibut ions  of random 
quanti t ies  maximize  the entropy. 

To desc r ibe  nonequi l ibr ium processes ,  it is not 
enough to know the d is t r ibut ions  of the random quant i -  
t ies,  because it is impor tant  to know not only the d is -  
t r ibut ions  over states,  but also the ra tes  of t rans i t ion  
f rom one state to another,  i . e . ,  one must  know the 
evolution of the random quanti t ies  in t ime of the so-  
called "random N process .  To completely de te rmine  the 
random process ,  one must  by some means know the 
probabi l i t ies  of all possible  t r a jec to r ies ,  i . e . ,  the 
sequence of s ta tes  t r ave r sed  by the sys tem in the 
course  of its evolution in t ime. The validity of the a s -  
sumptions used as a postulative bas is  in choosing 
the t ra jec tory  probabi l i t ies  can be es t imated  only by 
compar ing  exper iment  with the resu l t s  given by the 
approximation in question. Our task is to desc r ibe  the 
real  behavior  os a given thermodynamic sys tem by a 
random process  chosen accordingto  the bas ic  postulate.  

A random process  defined at n different  ins tants  in 
t ime may be regarded as an n -d imens iona l  random 
quantity. This  suggests  the possibi l i ty  of applying the 
second law of thermodynamics  to the theory of random 
processes ,  s ince the effect iveness  of its application 
in the case of one-d imens ional  random quanti t ies  has 
been demonst ra ted  by the agreement  between equi l ib-  
r ium theory and exper iment .  

As our basic a p r io r i  postulate we will  a ssume that 
for given macroscopic  conditions imposed on the sys -  

tern, the entropy of t ra jec tory  probabi l i t ies  (entropy of 
evolution) at tains its absolute maximum when and only 
when the system en te r s  the steady state.  In brief ,  the 
entropy of evolution is a max imum under s ta t ionary  
conditions.  The proposed postulate reduces to the 
second law of the rmodynamics  for the case of thermo-  
dynamic equi l ibr ium.  

If the condit ions imposed on the sys tem,  which in-  
clude the conserva t ion  laws known for the sys tem,  
and the condit ions mainta in ing the sys tem in the non-  
equi l ib r ium state a re  writ ten in the form 

F l = 0 ,  i = l ,  2 . . . . .  k, (1) 

where k is the number  of condit ions,  and the F i a re  
t r a jec to ry  probabi l i ty  functions,  then smal l  changes 
dF i in the imposed condit ions a re  re la ted  to the change 
in entropy of evolution dH by the equation 

dH = Z X i d F t .  (2) 
i 

Here the X i are  Lagrange mul t ip l i e r s ,  which we will 
r e f e r  to as thermodynamic  forces.  The r e a s o n a b l e n e s s  
of this definition will become c lea r  in what follows, 
where it will be shown that nea r  equi l ibr ium the above- 
defined forces  coincide with the usual  definition of 
thermodynamic  forces in quas i - equ i l i b r ium theory in 
t e r ms  of the ra te  of entropy production [1]. It should 
be noted that no condit ions are  imposed on the concept 
of nea rnes s  to equi l ibr ium,  so that the definition of 
thermodynamic  forces  introduced has a wider range 
of applicabil i ty than the usual definition. 

Because the quantity dH, as defined above, is a 
total different ial  (H is defined as a s ing le -va lued  func-  
tion of the external  conditions),  it follows that 

and 

OH 
Xz = ~OF-- (3) 

dXi _ O*H OXk . (4) 
c)Fk OF,~Fk dFi 

Following the es tabl ished terminology,  we shall  
r e f e r  to the quanti t ies  F i as cu r ren t s .  For  a l inear  
dependence of the cu r ren t s  on the forces,  which will 
be shown below to be the case nea r  equi l ibr ium,  r e l a -  
tion (4) and the l inear i ty  re la t ions  

Xi --'-- Z LiiFi (5) 
i 
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lead at once to the Onsager  re la t ions  

L a = L w (6) 

Together  with the entropy of evolution H = H(F1, 
F 2 . . . . .  Fk), defined by the en t i re  set  of in tens ive  pa-  
r a m e t e r s  F i, one can define ~ (the genera l ized  Gibbs 
function), which is re la ted  to H by a Legendre  t r a n s -  
format ion  and which depends only on the thermody-  
namic forces  

H (F1, F2 . . . . .  Fk) = 

= - -  q~ (X1, X~ . . . . .  Xk) + ~ X f i .  
i 

For  a s ta t ionary  state, the quantity 

(7) 

d(:I) (Xx, Xe . . . . .  Xk) = X FidXc (8) 
C 

is a total different ial ,  in accordance with the in t rodue-  
tion, and the ext remal  proper t ies  of ~ may be used to 
find the s ta t ionary  s tate  i tself  in X i coordinates .  

Ent ropy of evolution. Fo r  s impl ic i ty  we will a s -  
sume that the evolution of the sys tem may be descr ibed  
by a Markov chain with d i sc re te  t imes  and a f ini te  n u m -  
ber  N of s ta tes .  At f i r s t ,  we will be in te res ted  only 
in the energy s ta tes  of the sys tem (el is the energy of 
the sys tem in the i - th  state,  i = 1,2 . . . . .  N). We 
denote by pi.(7) the conditional probabi l i ty  of a t r a n s i -  

d 
tion on the h m e  in terva l  ~- f rom the state i to the state 
j, and let Pi denote the s ta t ionary  (final) probabi l i ty  
of the state i, which is found from the sys tem of equa- 
tions defining the s ta t ionary  cha rac t e r  of the Markov 
chain, 

X PiPi] = Pi" (9) 
i 

The conditional transition probabi l i t ies  and the sta- 

tionary probabilities satisfy the normalization condi- 

tions 

XPci = 1, (10) 
] 

X Pc = I. (11) 
i 

One can desc r ibe  the t ra jec tory  of a Markov chain of 
length s (s equals the number  of steps) by the sequence 
of s ta tes  C s -  i0ili 2 . . .  is_li  s with probabi l i ty  

P (Cs) -- Pc~Pcd,Pqi~_'. �9 Pis,is, (12) 

which follows from a basic  proper ty  [2] of Markov 
cha ins- - independence  of the previous his tory.  

If we let mij denote the number  of t r ans i t ions  i --* j 
encountered in the chain, then the probabi l i ty  of t r a -  
jec tory  C s is 

P (C~) = Pc~ [-] [-7 (pii) "~ci. (13) 
c ] 

cient ly long t r a jec to ry  with high probabi l i ty  one should 
expect that the re la t ive  number  mij /s  of appearances  
of i -* j t r ans i t ions  will  be near ly  equal to the proba-  
bil i ty PiPij of such a t ransi t ion,  so that 

InP (C,) = lnpio + ~ . ~ m c i l n p , i  (14) 

is a lmos t  equal to 

(15) 

This also involves neglect ing the t e rm in Pi0, which is 
constant  and whose contr ibut ion can be made a r b i t r a r -  
ily smal l  by choosing a sufficiently long chain. This 
also jus t i f ies  the introduct ion of the quantity 

H ~ H(1) = - - X X p i p i i  In P'i, (16) 
t I 

the entropy per  step of the Markov chain. 
F r o m  (14)-(16) it follows that the probabil i ty  of a 

t ra jec tory  of length s is equal to 

P (C,) = e -sH. (17) 

As previous ly  indicated, one may regard  a random dis-  
c re te  p rocess  as a muI t id imensional  random quantity, 
i . e . ,  as a random vector  whose coordinates  are  r an -  
dom quanti t ies .  Therefore ,  the entropy of a path con- 
s i s t ing  of s steps is 

H(s) = - - ~  P(C,) lnP (Cs), (18) 

where the summat ion  extends over all possible  t r a -  
j ec to r i e s  C s of length s. 

The basic  proper t ies  of the path entropy which we 
will need a re  contained in two as se r t ions  proved by 
A. Ya. Khinchin [3], who has r igorous ly  formulated 
a fact which is evident f rom re la t ions  (14)-(17). It 
turns  out that sufficiently long t r a j ec to r i e s  can always 
be divided into two c lasses .  All t r a j ec to r i e s  in the 
f i r s t  c lass  have equal probabi l i t ies ,  given by (17). The 
second resu l t  is also important ,  namely,  that the sum 
of the probabi l i t ies  of t r a j ec to r i e s  of the second c lass  
can be made a r b i t r a r i l y  smal l  by choosing s suff icient-  
ly la rge .  These  a s se r t ions  show that if we cons ider  
those proper t ies  of a Markov chain which have unit 
probabi l i ty  (i. e . ,  the s ta t i s t i ca l  proper t ies) ,  we can 
confine ourse lves  to a smal l  port ion (e sH) of the very  
large number  N s of t r a jec to r ies  of length s, a ss ign-  
ing the probabi l i ty  e -sH to each t r a jec to ry  of this c lass .  
In this approximation,  the evolution entropy (18) is 
s imply expressed  in t e r m s  of the entropy per  step and 
number  of steps: 

esH 

H (s) = - -  ~ e - f f  (--sH) = sH. 
{C s ~I class ) 

(19) 

If all states are connected by a nonzero transition 
probability (Pij > 0--ergodic chain), then for a suffi- 

The situation with which we are confronted is com- 
pletely analogous to the statistical conclusions of the 
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e q u i l i b r i u m - s t a t e  theory  based  on the s o - c a l l e d  mos t  
p r o b a b l e  d i s t r ibu t ion  method [4]. In this  method,  a l l  
pos s ib l e  d i s t r ibu t ions  of a s y s t e m  in equ i l ib r ium a r e  
a l so  grouped into two c l a s s e s .  The f i r s t  c l a s s  con-  
ta ins  r e l a t i ve ly  few d i s t r i b u t i o n s - - t h o s e  of h ighest  
p robab i l i ty .  In the second c l a s s  a r e  a l l  the r ema in ing  
d i s t r ibu t ions ,  the sum of whose p robab i l i t i e s  may  be 
made negl ig ib ly  s m a l l  by a r b i t r a r i l y  i n c r e a s i n g  the 
set  of s y s t e m s  fo rming  the equ i l ib r ium Gibbs  e n s e m -  
ble.  The proof  of this  is  not conta ined in the p robab le  
d i s t r ibu t ion  method,  but may  be obtained e i t he r  by us -  
ing the l imi t  t heo rems  of p robab i l i ty  theory  [5], o r  by 
the mean -va lue  method of Darwin and F o w l e r  [4, 6]. 
In the l a t t e r  method,  it  is  shown that the inc lus ion of 
a l l  d i s t r ibu t ions  of low probab i l i ty  does not affect  the 
asympto t ic  conclus ions  of the mos t  p robab le  d i s t r i b u -  
tion method.  It can be shown that  i t  is  pos s ib l e  to ex-  
tend the mean -va lue  method to the ca se  of a s t a t iona ry  
Markov  chain.  This  con f i rms  the c lo se  analogy be -  
tween the s t r u c t u r e s  of the equ i l ib r ium and s t a t i ona ry  
nonequi l ib r ium theor i e s ,  which, in our view, should 
be of cons ide rab l e  heur i s t i c  value in developing the 
m a c r o s c o p i c  concepts  of the the rmokine t i c s  of s t a t ion-  
a r y  p r o c e s s e s .  

P r i n c i p l e  of max imum ent ropy of evolution.  Let  us 
cons ide r  the s t a t iona ry  evolut ion of the sys t em.  A c o m -  
plete  desc r ip t ion  of i ts  p r o p e r t i e s  is  given by the s to -  
chas t ic  m a t r i x  

M --r!Pqll, (20) 

and the p robab i l i t i e s  of the s t a tes  a r e  given by (9). If 
the s y s t e m  is  in the rmodynamic  equi l ib r ium,  i ts  s t a t e  
is  comple t e ly  de t e rmined  by the se t  {Pi}. The l a t t e r  
quant i t ies  a r e  found by using the second law of t h e r m o -  
dynamics ,  which says  that at equ i l ib r ium the en t ropy  
of the s y s t e m  

S = - - ~ P i  lnpi (21) 
i 

has a condi t ional  maximum.  
In de sc r i b ing  nonequi l ibr ium s y s t e m s  it is  no long-  

e r  pos s ib l e  to confine onese l f  to the v e c t o r  {Pi}, and 
one  mus t  c o n s i d e r  the en t i r e  s tochas t i c  m a t r i x  M. By 
analogy with the equ i l ib r ium case ,  one may ask  if 
t he re  ex i s t s  some  function of the Pij such that  the 
condit ion for  i t s  e x t r e m u m  might  s e r v e  to d e t e r m i n e  
the e l emen t s  of the m a t r i x  M. 

It is  pos s ib l e  to offer  s e v e r a l  a rguments  in behalf  
of our  choice  of bas i c  pos tu la te .  

Suppose that as  a r e su l t  of making m e a s u r e m e n t s  
on the sy s t em,  we know the ave r age  va lues  of a num-  
b e r  of quant i t ies  (energy,  heat  flux, e t c . ) .  The ob-  
s e r v e d  evolution of the s y s t e m  c o r r e s p o n d s  to a c e r -  
ta in Markov  chain t r a j e c t o r y .  The m e a s u r e m e n t s  
c o r r e s p o n d  to a s e r i e s  of equat ions s a t i s f i ed  by the 
s tochas t ic  mat r ix :  

Fi (p l ,  P'z . . . .  ' PN; Ptl, P12 . . . . .  PNIV) = O. (22)  

Let  us take another  s y s t e m  of the ensemble ,  i . e . ,  
another  t r a j e c t o r y  of the Markov  chain with the s a m e  

t ime  a v e r a g e s .  F r o m  the m a c r o s c o p i c  s tandpoint ,  
these  s y s t e m s  a r e  ind is t inguishable  inso fa r  as  the 
e xpe r ime n t a l  r e s u l t s  a r e  the s a m e  for  both. We shal l  
use  the t e r m  "adequate"  to d e s c r i b e  those  t r a j e c t o -  
r i e s  which lead  to the s a m e  m a c r o s c o p i c  r e s u l t s ,  and 
r e f e r  to the r e s t  as  " inadequate" .  We wil l  choose  a 
c e r t a i n  s tochas t i c  m a t r i x  that  s a t i s f i e s  (22), but is  
a r b i t r a r y  in o ther  r e s p e c t s .  

It is  known that the Markov  chain t r a j e c t o r i e s  de-  
s c r i b e d  by this  m a t r i x  fal l  into two c l a s s e s .  A l l  t r a -  
j e c t o r i e s  in the f i r s t  c l a s s  that a r e  of suff icient  length 
have n e a r l y  equal p robab i l i t i e s ,  while the sum of the 
p roba b i l i t i e s  of t r a j e c t o r i e s  in the second c l a s s  may  
be made  a r b i t r a r i l y  sma l l .  F o r  t r a j e c t o r i e s  of the 
f i r s t  c l a s s  the t i m e - a v e r a g e d  value  is  the s a m e  as  
the ma the ma t i c a l  expecta t ion  of the c o r r e spond ing  
quant i ty  and hence,  a s suming  that  for  the s tochas t i c  
m a t r i x  s e l ec t ed  the e xpe r ime n t a l  condi t ions (22) a r e  
sa t i s f ied ,  these  t r a j e c t o r i e s  a r e  adequate.  Both ade -  
quate and inadequate t r a j e c t o r i e s  a r e  to be found in 
the second c l a s s .  Choosing a d i f fe ren t  s tochas t i c  ma-  
t r i x  of g r e a t e r  entropy,  which a lso  s a t i s f i e s  (22), r e -  
su l t s  in some of the adequate  t r a j e c t o r i e s  of the second 
c l a s s  going over  into the f i r s t  c l a s s .  This  is  because  
the new choice  of m a t r i x  mus t  c o r r e s p o n d  to a l a r g e r  
number  of t r a j e c t o r i e s  in the f i r s t  c l a s s ,  which does  
not admi t  inadequate  t r a j e c t o r i e s .  To the o b s e r v e r  a l l  
adequate  t r a j e c t o r i e s  a r e  the s ame .  F o r  them to be 
equivalent  in re la t ion  to the p r o c e s s  as  well ,  we mus t  
choose  a s tochas t ic  m a t r i x  such that a l l  adequate  t r a -  
j e c t o r i e s  fa l l  into the f i r s t  c l a s s .  To do this ,  we mus t  
make  the f i r s t  c l a s s  as  b road  as  poss ib le ,  and s ince  
the number  of t r a j e c t o r i e s  in it  is  e sH (where  H is  the 
ent ropy of evolution p e r  step,  and s i s  the number  of 
s teps) ,  then the s tochas t ic  m a t r i x  c o r r e spond ing  to 
t r ans i t i on  of al l  adequate  t r a j e c t o r i e s  into the f i r s t  
c l a s s  mus t  have the g r e a t e s t  p o s s i b l e  en t ropy of evolu-  
tion pe r  step.  

We a r e  thus  led to the conclus ion that  M, the condi -  
t ional  t r ans i t ion  p robab i l i ty  m a t r i x  sa t i s fy ing  al l  the 
imposed  condi t ions (22), mus t  m a x i m i z e  the ent ropy 
of evolut ion p e r  step: 

H = - -  ~. ~. p~p~J ln p q. 
L I 

Of course ,  this  r e q u i r e m e n t  is  app l i cab le  only to s t a -  
t ionary  s y s t e m s  whose t ime s tep  "r is  much l e s s  than 
the obse rva t ion  t ime,  i . e . ,  s y s t e m s  which go through 
a g r e a t  many s teps  during the c o u r s e  of the e x p e r i -  
ment.  

L imi t ing  c a s e  of equ i l ib r ium,  The c r i t e r i o n  for  
ma x imum o r d i n a r y  ent ropy mus t  follow f rom the p r o -  
posed  c r i t e r i o n  in the l imi t ing  ca se  of equ i l ib r ium.  
Accord ing  to the theory  developed in the p r e s e n t  a r t i -  
c le ,  the equ i l ib r ium case  is  d i f ferent  f rom other  s t a -  
t ionary  s i tua t ions  in that it  is  comple t e ly  d e t e r m i n e d  
by the s ta te  vec to r  {Pi}. This  means  that  the addi t ional  
condi t ions  impose  cons t r a in t s  only on the s ta te  vec to r ,  
as  d i s t inc t  f rom the gene ra l  s t a t i ona ry  ca se  where  
they depend expl ic i t ly  on the condi t ional  t r ans i t i on  
p robab i l i t i e s .  
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At equi l ib r ium condit ions (22) become 

Fh(pl,  P2 . . . . .  PN) = O, (23) 

Here,  the p rocess  of de te rmin ing  max H can be divided 
into two stages.  Fo r  a given choice of {Pi} sa t is fying 
(23), we find maxH by vary ing  Pij; then, having ob- 
tained Pij as a function of Pi, we find its maximum as 
a function of Pi" F i r s t ,  we need to prove the inequali ty 

- -  1 .  q , . . . <  - lnp, (24) 
i i 

for sets of nonnegative numbers normalized to unity. 
This inequality is a direct consequence of the well- 
known inequality Inx _< -i + x for any x >0. 

The proof of (24} follows, in fact, from the sequence 
of relations 

q, t. < Z q , ( - , +  x , ) = - E  q , + Z  p ,=  o, 
i i 

where x i = pi/qi . 
We will next prove a fundamental  inequal i ty  be-  

tween the entropy of evolution and the entropy of the 
s tate  

H ~.S. (25) 

F o r  se ts  of number s  {pj} and {Pij} no rma l i zed  to j, 
inequali ty (24) gives 

ip - in y, p,; lnp;. (26) 
i i 

By multiplying both sides of (26) by Pi, summing over 
i, and using the stationary condition (9), we imme- 
diately obtain 

which is a developed form of (25). The equali ty holds 
only for 

P~j = Pr (28) 

In this case  the entropy of evolution is an absolute 
maximum.  

Thus,  if no condit ions are  imposed on M, at the 
max imum H = S, and subsequent  maximiza t ion  of H 
with respec t  to Pi o rd ina r i ly  Ieads to a Boltzmalm 
form of probabi l i ty  dis t r ibut ion.  Hence f rom (28) we 
obtain the following express ion  for the equ i l ib r ium 
probabi l i ty  of a t r ans i t ion  i ~ j on the in terva l  ~-: 

P~Pq = PiP] = [exp [(--- si -- si)/kT] ] x 

i 

(29)  

It is worth noting that (28) is stronger than the prin- 
ciple of detailed balance which at equilibrium re- 
quires only the equality 

PiPii = PiPir (3 O) 

In o rder  to de te rmine  the e lements  of the s tochast ic  
mat r ix  M in the nonequi l ibr ium case,  with k condi-  
t ions of the genera l  form (22) imposed on the sys tem,  
it is ne c e s sa r y  to solve the var ia t ional  equation 

k 

(31) 
i 

Among the n e c e s s a r y  condit ions to be taken into 
account are  the normal iza t ion  conditions (10) and (11), 
the s ta t ionary  condition (9), and also the re la t ion  de- 
t e rmin ing  the average energy and average heat flux 
through the sys tem.  

E l sewhere  [7] we have given a detai led solution of 
Eq. (31) for  the case  of a sys t em connected with two 
heat baths, and have found the explicit  form of the 
s tochast ic  matr ix .  We also intend to examine the 
quas i - equ i l i b r ium approximation of this solution and wilI 
obtain an explici t  form of the Onsager  coefficients for 
the case  of the rmal  and par t ic le  c u r r e n t s  flowing s i -  
mul taneous ly  through the sys tem.  
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