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Nonequilibrium stationary thermodynamic systems are described by
stationary random Markov processes with discrete time, For given mac-
roscopic conditions, the condition of maximum path entropy deter-
mines the process,

In statistical thermodynamics one describes the
properties of physical systems averaged over all pos-
sible initial states because the latter are impossible
to ascertain in practice, The set of systems corre-
sponding to all possible initial states of a given sys-
tem comprises its Gibbs ensemble. Functions defined
on the set forming the ensemble are called random
quantities, and calculating their expectations (aver-
aged over the ensemble) is the basic problem of sta-
tistical thermodynamics.

To calculate these averages, it is not at all nec-
essary to know the random quantities themselves, but
rather only their distributions, which are time-inde-
pendent because of the stationary nature of the equi-
librium system. Because the dynamical laws of evo-
lution of the system are either unknown or too compli~
cated to use directly, the distributions of thermody~
namics are found by introducing the basic postulate
according to which equilibrium distributions of random
quantities maximize the entropy.

To describe nonequilibrium processes, it is not
enough to know the distributions of the random quanti-
ties, because it is important to know not only the dis-
tributions over states, but also the rates of transition
from one state to another, i.e., one must know the
evolution of the random quantities in time of the so-
called "random"® process. To completely determine the
random process, one must by some means know the
probabilities of all possible trajectories, i.e., the
sequence of states traversed by the system in the
course of its evolution in time. The validity of the as-
sumptions used as a postulative basis in choosing
the trajectory probabilities can be estimated only by
comparing experiment with the results given by the
approximation in question. Our task is to describe the
real behavior of a given thermodynamic system by a
random process chosen according to the basic postulate.

A random process defined at n different instants in
time may be regarded as an n-dimensional random
quantity. This suggests the possibility of applying the
second law of thermodynamics to the theory of random
processes, since the effectiveness of its application
in the case of one-dimensional random quantities has
been demonstrated by the agreement between equilib-
rium theory and experiment.

As our basic a priori postulate we will assume that
for given macroscopic conditions imposed on the sys-

tem, the entropy of trajectory probabilities (entropy of
evolution) attains its absolute maximum when and only
when the system enters the steady state. In brief, the
entropy of evolution is a maximum under stationary
conditions. The proposed postulate reduces to the
second law of thermodynamics for the case of thermo-
dynamic equilibrium.

If the conditions imposed on the system, which in-
clude the conservation laws known for the system,
and the conditions maintaining the system in the non-
equilibrium state are written in the form

F;=0, i=12 ...,k (1)

where k is the number of conditions, and the Fj are
trajectory probability functions, then small changes
dF; in the imposed conditions are related to the change
in entropy of evolution dH by the equation

dH = ¥ X, dF,. (2)

£

Here the Xj are Lagrange multipliers, which we will
refer to as thermodynamic forces. The reasonableness
of this definition will become clear in what follows,
where it will be shown that near equilibrium the above-
defined forces coincide with the usual definition of
thermodynamic forces in quasi-equilibrium theory in
terms of the rate of entropy production {1], It should
be noted that no conditions are imposed on the concept
of nearness to equilibrium, so that the definition of
thermodynamic forces introduced has a wider range
of applicability than the usual definition.

Because the quantity dH, as defined above, is a
total differential (H is defined as a single-valued func-
tion of the external conditions), it follows that

x. =

' OF, @

and

X, _ OH _ 93X, @
aF,  OFQF,  OF,

Following the established terminology, we shall
refer to the quantities F; as currents. For a linear
dependence of the currents on the forces, which will
be shown below to be the case near equilibrium, rela-
tion (4) and the linearity relations

X, = X LF; (5)

)
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lead at once to the Onsager relations
Lii - Lii' (6)

Together with the entropy of evolution H = H(F,,
Foyont, Fk), defined by the entire set of intensive pa-
rameters Fi, one can define & (the generalized Gibbs
funection), which is related to H by a Legendre trans-
formation and which depends only on the thermody-
namic forces

H(Fb Fo ..o, Fk)=
=@ Xy Xp e X0+ D XF (7)

For a stationary state, the quantity

4D (X, Xy - vy X = D FidX; (8)
is a total differential, in accordance with the introduc-
tion, and the extremal properties of & may be used to
find the stationary state itself in X; coordinates.
Entropy of evolution. For simplicity we will as-
sume that the evolution of the system may be described
by a Markov chain with discrete times and a finite num-
ber N of states. At first, we will be interested only
in the energy states of the system (g, is the energy of
the system in the i-th state, i=1,2,..., N). We
denote by pi-('r) the conditional probability of a transi-
tion on the time interval 7 from the state i to the state
j» and let p; denote the stationary (final) probability
of the state i, which is found from the system of equa-
tions defining the stationary character of the Markov
chain,

2 Pipij = Pj- (9)

The conditional transition probabilities and the sta-
tionary probabilities satisfy the normalization condi-

tions
Epii =1
i

EPiz L.

One can describe the trajectory of a Markov chain of
length s (s equals the number of steps) by the sequence
of states Cg= ipizl; ... g With probability

(10)

(11)

ig,i
P(Cy) = Pu.PiiPiyis - -+ Pigsig (12)
which follows from a basic property 2] of Markov
chains—independence of the previous history.

If we let mj; denote the number of transitions i — j
encountered in the chain, then the probability of tra-
jectory C s is

PCy=pi [T (o (13)
i
If all states are connected by a nonzero transition
probability (pij > 0—ergodic chain), then for a suffi-
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ciently long trajectory with high probability one should
expect that the relative number mi-/s of appearances
of i —j transitions will be nearly equal to the proba-
bility PiPjj of such a trangition, so that

InP(Cy)=1Inp;, + 22’"11' Inp,; (14)
iy

is almost equal to
-
s X2 pipi; 10 py.
ig

This also involves neglecting the term lnpj,, which is
constant and whose contribution can be made arbitrar-
ily small by choosing a sufficiently long chain. This
also justifies the introduction of the quantity

(15)

H=H(l)=— X3 pp;Inpiy (16)
i

the entropy per step of the Markov chain.
¥rom {(14)—(16) it follows that the probability of a
trajectory of length s is equal to

P(C,) = e—sH, (17)

As previously indicated, one may regard a random dis-

crete process as a multidimensional random quantity,

i.e., as a random vector whose coordinates are ran-

dom quantities. Therefore, the entropy of a path con-

sisting of s steps is

H(s)=— X, P(C)InP(C), (18)
{Cs)

where the summation extends over all possible tra-
jectories Cg of length s.

The basic properties of the path entropy which we
will need are contained in two assertions proved by
A. Ya. Khinchin [3], who has rigorously formulated
a fact which is evident from relations (14)—(17). It
turns out that sufficiently long trajectories can always
be divided into two classes. All trajectories in the
first class have equal probabilities, given by (17). The
second result is also important, namely, that the sum
of the probabilities of trajectories of the second class
can be made arbitrarily small by choosing s sufficient~
ly large. These assertions show that if we consider
those properties of a Markov chain which have unit
probability (i.e., the statistical properties), we can
confine ourselves to a small portion (eSH) of the very
large number N® of trajectories of length s, assign-
ing the probability e”SH to each trajectory of thisclass.
In this approximation, the evolution entropy (18} is
simply expressed in terms of the entropy per step and
number of steps:

osH

E e—sH (—sH) = sH.

{CsCleclass}

H{s) = — (19)

The situation with which we are confronted is com-
pletely analogous to the statistical conclusions of the
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equilibrium-state theory based on the so-called most
probable distribution method [4]. In this method, all
possible distributions of a system in equilibrium are
also grouped into two classes, The first class con-
tains relatively few distributions—those of highest
probability. In the second class are all the remaining
distributions, the sum of whose probabilities may be
made negligibly small by arbitrarily increasing the
set of systems forming the equilibrium Gibbs ensem-
ble. The proof of this is not contained in the probable
distribution method, but may be obtained either by us-
ing the limit theorems of probability theory [5], or by
the mean~value method of Darwin and Fowler {4, 6].

In the latter method, it is shown that the inclusion of
all distributions of low probability does not affect the
asymptotic conclusions of the most probable distribu-
tion method. It can be shown that it is possible to ex-
tend the mean-value method to the case of a stationary
Markov chain. This confirms the close analogy be-
tween the structures of the equilibrium and stationary
nonequilibrium theories, which, in our view, should
be of considerable heuristic value in developing the
macroscopic concepts of the thermokinetics of station-
ary processes.

Principle of maximum entropy of evolution, Let us
consider the stationary evolution of the system., A com-
plete description of its properties is given by the sto-
chastic matrix

M= ||p;f, (20)
and the probabilities of the states are given by (9). If
the system is in thermodynamic equilibrium, its state
is completely determined by the set {pi}. The latter
quantities are found by using the second law of thermo-
dynamics, which says that at equilibrium the entropy
of the system :

S =“EP[ Inp, (21)

i

has a conditional maximum.

In describing nonequilibrium systems it is no long-
er possible to confine oneself to the vector {p;}, and
‘one must consider the entire stochastic matrix M. By
analogy with the equilibrium case, one may ask if
there exists some function of the py; such that the
condition for its extremum might serve to determine
the elements of the matrix M.

It is possible to offer several arguments in behalf
of our choice of basic postulate,

Suppose that as a result of making measurements
on the system, we know the average values of a num-
ber of quantities (energy, heat flux, etc.). The ob-
served evolution of the system corresponds to a cer—
tain Markov chain trajectory. The measurements
correspond to a series of equations satisfied by the
stochastic matrix:

Fi(py Po -+ s Py Prvs Pros -+ Pypy) = 0 (22)

Let us take another system of the ensemble, i.e.,
another trajectory of the Markov chain with the same
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time averages. From the macroscopic standpoint,
these systems are indistinguishable insofar as the
experimental results are the same for both., We shall
use the term "adequate" to describe those trajecto-
ries which lead to the same macroscopic results, and
refer to the rest as "inadequate™. We will choose a
certain stochastic matrix that satisfies (22), but is
arbitrary in other respects.

It is known that the Markov chain ftrajectories de-
scribed by this matrix fall into two classes. All tra-
jectories in the first class that are of sufficient length
have nearly equal probabilities, while the sum of the
probabilities of trajectories in the second class may
be made arbitrarily small. For trajectories of the
first class the time-averaged value is the same as
the mathematical expectation of the corresponding
quantity and hence, assuming that for the stochastic
matrix selected the experimental conditions (22) are
satisfied, these trajectories are adequate. Both ade-
quate and inadequate trajectories are to be found in
the second class. Choosing a different stochastic ma-
trix of greater entropy, which also satisfies (22), re-
sults in some of the adequate trajectories of the second
class going over into the first class. This is because
the new choice of matrix must correspond to a larger
number of trajectories in the first class, which does
not admit inadequate trajectories. To the observer all
adequate trajectories are the same. For them to be
equivalent in relation to the process as well, we must
choose a stochastic matrix such that all adequate tra-
jectories fall into the first class. To do this, we must
make the first class as broad as possible, and since
the number of trajectories in it is eSH (where H is the
entropy of evolution per step, and s is the number of
steps), then the stochastic matrix corresponding to
transition of all adequate trajectories into the first
class must have the greatest possible entropy of evolu-
tion per step. '

We are thus led to the conclusion that M, the condi~
tional transition probability matrix satisfying all the
imposed conditions (22), must maximize the entropy
of evolution per step:

H=— ZZ PP In pij.
i :

Of course, this requirement is applicable only to sta-
tionary systems whose time step 7 is much less than
the observation time, i.e,, systems which go through
a great many steps during the course of the experi-
ment.

Limiting case of equilibrium, The criterion for
maximum ordinary entropy must follow from the pro-
posed criterion in the limiting case of equilibrium.
According to the theory developed in the present arti-
cle, the equilibrium case is different from other sta-
tionary situations in that it is completely determined
by the state vector {pj}. This means that the additional
conditions impose constraints only on the state vector,
as distinct from the general stationary case where
they depend explicitly on the conditional transition
probabilities.
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At equilibrium conditions {22) become

Folpy Poy - Py) =0 (23)
Here, the process of determining max H canbe divided
into two stages. For a given choice of {pi} satisfying
(23), we find maxH by varying Dijs then, having ob-
tained py; as a function of p;, we find its maximum as
a function of p;. First, we need to prove the inequality

“Zqz ng <

for sets of nonnegative numbers normalized to unity.
This inequality is a direct consequence of the well-
known inequality Inx < -1 + x for any x > 0.

The proof of (24) follows, infact, from the sequence
of relations

S‘f;f, Inp, (24)

2% nx < Eqi(wl%-x‘.):—z Qi+2 pi=0,

where x; = p;/4;.

We will next prove a fundamental inequality be~
tween the entropy of evolution and the entropy of the
state

HLS. (25)

For sets of numbers {p;} and {p;;} normalized to j,
inequality (24) gives

“‘Epi; In pii<—zpij Inp;. (26)
i . : i

By multiplying both sides of (26) by p;, summing over
i, and using the stationary condition (9), we imme-
diately obtain

—EES};I?[; np;<— 2 p; lnp;, {27
i i

which is a developed form of (25). The equality holds
only for

Py =P {28)

In this case the entropy of evolution is an absolute
maximum,

Thus, if no conditions are imposed on M, at the
maximum H = 8, and subsequent maximization of H
with respect to p; ordinarily leads to a Boltzmann
form of probability distribution. Hence from {28} we
obtain the following expression for the equilibrium
probability of a transition i —j on the interval 7:
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?‘) pt; )Ulp] {exp I(‘“ & — SI)!kT}} X

x [2 exp (~—z/kT) ]‘2. (29)
I

It is worth noting that (28) is stronger than the prin-
ciple of defailed balance, which at equilibrium re-
quires only the equality

Pipij = Pipjy- (30)

In order to determine the elements of the stochastic
matrix M in the nonequilibrium case, with k condi-
tions of the general form (22) imposed on the system,
it is necessary to solve the variational equation

k
8(H + ZXF)=o. (31)

Among the necessary conditions to be taken into
account are the normalization conditions (10) and (11),
the stationary condition (9), and also the relation de~
termining the average energy and average heat flux
through the system.

Elsewhere [7] we have given a detailed solution of
Eq. (81) for the case of a system connected with two
heat baths, and have found the explicit form of the
stochastic matrix. We also intend to examine the
quasi-equilibrium approximation of this solution and will
obtain an explicit form of the Onsager coefficients for
the case of thermal and particle currents flowing si-
multaneously through the system.
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