Connections between diffusion and electrostatics

Consider
\[\begin{align*}
C_t &= D \nabla^2 C \\
C(\vec{r}, t=0) &= \delta(\vec{r} - \vec{r}_0) \\
C(\vec{r} \in B) &= 0 \quad \text{absorbing boundary}
\end{align*} \]

Then
\[\vec{j}(\vec{r}_B, t) = -D \nabla C \quad \text{is the flux into the boundary at } \vec{r}_B, \]

and
\[\int_0^\infty \int_{\vec{r}_B \in B} \frac{\partial}{\partial t} \phi(\vec{r}_B, t) = 1 \]

To simplify the problem, consider
\[\phi(\vec{r}) = \int_0^\infty \int_{\vec{r}_B \in B} \frac{\partial}{\partial t} C(\vec{r}, t). \]

Then
\[\int_0^\infty \int_{\vec{r}_B \in B} \frac{\partial}{\partial t} C_t = C(\vec{r}, \infty) - C(\vec{r}, 0) = \delta(\vec{r} - \vec{r}_0), \]

and we have
\[-\delta(\vec{r} - \vec{r}_0) = D \nabla^2 \phi. \]

So \(\phi \) is like the electrostatic potential, and
\(E(\vec{r}_b) \) is like electric field for a point charge of magnitude \(q_0 = \frac{1}{D \omega_d} \)

surface area of a unit sphere in \(d \) dim's, e.g. \(4\pi \) in 3D

Indeed, \(E(\vec{r}_b) = \int_0^\infty dt \overset{\infty}{\int} j(\vec{r}_b, t) = \)

\(-D \int_0^\infty dt \partial_t \overset{\infty}{\int} C = -D \partial_n \overset{\infty}{\int} C \).

The boundary is grounded (\(\overset{\infty}{\int} C = 0 \)) due to absorbing BCs.

Semi-infinite 1D Line

QA:

1. What is the prob. of hitting \(x = 0 \) at \(t \) for the 1st time?
2. What is the average hitting time?

Here, \(\begin{cases} C_t = DC_{xx}, \\ C(x, t=0) = \delta(x-x_0), \\ C(x=0, t) = 0 \end{cases} \)
Let's use the image method.

\[\frac{x_0}{\text{antiparticle}} \rightarrow \frac{x}{\text{particle}} \rightarrow x \]

Then \(C(x, t) = \frac{1}{\sqrt{4\pi D t}} \left[e^{-(x-x_0)^2/4Dt} - e^{-(x+x_0)^2/4Dt} \right] \)

satisfies the eq'n & the BCS.

Note that
\[
\frac{\partial C}{\partial x} \bigg|_{x=0} = \frac{1}{\pi^{1/2} (4Dt)^{3/2}} x
\]

\[
x \left[-2(x-x_0) e^{-(x-x_0)^2/4Dt} + 2(x+x_0) e^{-(x+x_0)^2/4Dt} \right] \bigg|_{x=0} = \frac{x_0}{(4\pi)^{1/2} (Dt)^{3/2}} e^{-x_0^2/4Dt}
\]

Then \(j(x=0, t) = -D \frac{\partial C}{\partial x} \bigg|_{x=0} = -\frac{x_0}{\sqrt{4\pi D t^{3/2}}} e^{-x_0^2/4Dt} \)

Eventual exit prob. is given by

\[L(x=0) = \int_0^\infty dt \left| j(x=0, t) \right| = \]

\[= + \frac{x_0}{\sqrt{4\pi D}} \int_0^\infty \frac{dt}{t^{3/2}} e^{-x_0^2/4Dt} \]

\[= 2 \int_0^\infty du e^{-u^2/4D} \]

\(\left\{ \begin{array}{l}
 u^2 = \frac{1}{t}, \\
 dt = -2 \frac{du}{u^2}
\end{array} \right. \)

\[= \frac{x_0}{\sqrt{4\pi D}} \int_0^\infty du e^{-u^2/4D} = 1, \text{ as expected} \]

\[= \int_0^\infty du \ldots = \frac{\sqrt{4\pi D}}{x_0} \]

-3-
Moreover,
\[
\langle t \rangle = \frac{\int_0^\infty dt \, t \, j(x=0,t)}{\int_0^\infty dt \, j(x=0,t)} = \infty
\]
on average, takes infinite time to get absorbed.

Indeed, \(\int_0^\infty dt \, t \, j(x=0,t) \sim \int_0^\infty dt \, \frac{x^2}{4D} \, t \) diverges.

Higher moments diverge as well.

Finite 1D interval

\[x=0 \quad x_0 \quad L\]

QQ:

1. What is the survival prob. \(S(t) \)?
2. What is the 1st passage prob. (FPP) to \(0 \) or \(L \), at time \(t \)?
3. What are the eventual exit probs. to \(0 \) or \(L \)?
4. What is the average time \(t(x_0) \) to reach \(0 \) or \(L \)?
5. What are the conditional average times to reach \(L \) (\(t+(x_0) \)) or \(0 \) (\(t-(x_0) \))?
We have
\[
\begin{cases}
C_t = DC_{xx}, \\
C(x, t=0) = \delta(x-x_0), \\
C(0, t) = C(L, t) = 0
\end{cases}
\]

The diff'\n eq\n' n is like a time-dep.
SE in a square-well potential:
\[
\begin{cases}
V(x) = 0, & 0 < x < L \\
V(x) = \infty & \text{otherwise}
\end{cases}
\]

with \(D \leftrightarrow -\frac{h^2}{2m} \)

So we can use SE technique to solve this eq'n.

1. Survival prob. \(S(t) \).

Try variable separation on \(\phi(x, t) \):
\[
\phi(x, t) = f(t) g(x)
\]

Then \(f'g = Dg'' \), or
\[
\frac{f'}{f} = D \frac{g''}{g} \Rightarrow D^{-1} \frac{f'}{f} = \frac{g''}{g} \equiv -\frac{k}{\text{const}}
\]

This gives \(g'' = -kg \), or
\[
g \sim \sin \left(\frac{n\pi}{L} x \right), \ n \in \mathbb{Z}
\]

to satisfy the BCS
Furthermore,
\[\dot{f} = -D_k f \] gives
\[f \sim e^{-D \left(\frac{\pi n}{L} \right)^2 t} \]

So,
\[C(x, t) = \frac{2}{L} \sum_{n=1}^{\infty} \sin \left(\frac{n \pi x}{L} \right) \sin \left(\frac{n \pi x_0}{L} \right) e^{-D \left(\frac{\pi n}{L} \right)^2 t} \]
\[\times \quad \ast \]

Note that \(C(0, t) = C(L, t) = 0 \) by construction.
Also, the \(n=0 \) term is \(\theta \) everywhere
and the expression is symm. wrt \(n \).

Indeed, consider
\[C(x, 0) = \delta(x-x_0) = \sum_{n=1}^{\infty} \sin \left(\frac{n \pi x}{L} \right) \]
dact with
\[\int_0^L dx \sin \left(\frac{n' \pi x}{L} \right) \ast \quad \text{on both sides:} \]
\[h' = 1, 2, 3, \ldots \]

\[\sin \left(\frac{n' \pi x_0}{L} \right) = \sum_{n=1}^{\infty} A_n \int_0^L dx \sin \left(\frac{n' \pi x}{L} \right) \sin \left(\frac{n \pi x}{L} \right) = \]
\[= \sum_{n=1}^{\infty} A_n \frac{1}{2} \int_0^L dx \left[\cos \left(\frac{n \pi x}{L} (n-n') \right) - \cos \left(\frac{n \pi x}{L} (n+n') \right) \right] \]
\[\text{will always give } \theta \] since \(n, n' > 0 \)
\[\int_0^L \cos \left(\frac{\pi x}{L} (n-n') \right) \frac{L}{\pi(n-n')} \sin(\pi(n-n')) = \begin{cases} 0 & n \neq n' \\ L & n = n' \end{cases} \]

But then \(\sin \frac{n\pi x_0}{L} = A_n \frac{L}{2} \), or

\[A_n = \frac{2}{L} \sin \frac{n\pi x_0}{L} \text{, which gives } (*) \]

Finally, \(S(t) = \int_0^L dx \ C(x,t) \sim e^{-\frac{D \pi^2 t}{L^2}} \sim e^{-\frac{t}{\tau}} \),

where \(\tau \sim \frac{L^2}{D} \) is the slowest decaying mode \(n=1 \) the diffusion time-scale.

(2) FPP \Rightarrow use Laplace domain

\[C(x,s) = \int_0^\infty dt \ e^{-st} C(x,t) \]

\[\int_0^\infty dt \ e^{-st} \frac{\partial C(x,t)}{\partial t} = e^{-st} C(x,t) \bigg|_0^\infty + \]

\[+ \int_0^\infty dt \ e^{-st} C(x,t) = -C(x,0) + SC(x,s). \]

With \(C \equiv C(x,s) \), we have:

\[\int \left[SC - \delta(x-x_0) \right] = DC, \]

\[C(0,s) = C(L,s) = 0 \]
This is solved by

\[C(x, s) = \frac{1}{\gamma DS} \frac{\sinh \left(\sqrt{\frac{S}{D}} x_2 \right) \sinh \left(\sqrt{\frac{S}{D}} (L - x_0) \right)}{\sinh \left(\sqrt{\frac{S}{D}} L \right)} \]

\[
\begin{cases}
 x_2 = \min(x, x_0) \\
 x_0 = \max(x, x_0)
\end{cases}
\]

Indeed, \(C(0, S) = C(L, S) = 0 \).

\[[C(x, s)] = \frac{T}{L} \text{ in } 1D \]

\[[s] = \frac{1}{T} \Rightarrow \left[\frac{1}{\gamma DS} \right] = \frac{1}{\sqrt{L^2/T^2}} = \frac{T}{L}, \]

as expected.

Finally,

\[\lim_{\varepsilon \to 0} D \frac{DC'}{x_0^\pm \varepsilon} = D \frac{1}{\gamma DS} \left[\frac{\sinh \left(\sqrt{\frac{S}{D}} x_0 \right)}{\sinh \left(\sqrt{\frac{S}{D}} L \right)} \left(-\sqrt{\frac{S}{D}} \cosh \left(\sqrt{\frac{S}{D}} (L - x_0) \right) \right) \\
- \sqrt{\frac{S}{D}} \cosh \left(\sqrt{\frac{S}{D}} x_0 \right) \frac{\sinh \left(\sqrt{\frac{S}{D}} (L - x_0) \right)}{\sinh \left(\sqrt{\frac{S}{D}} L \right)} \right] = \]

\[= -\frac{1}{\sinh \left(\sqrt{\frac{S}{D}} L \right)} \sinh \left(\sqrt{\frac{S}{D}} (x_0 + L - x_0) \right) = -1, \]

as expected.

\[\int_{x_0 - \varepsilon}^{x_0 + \varepsilon} \delta(x - x_0) = -1. \]
But then

\[\tilde{j}_+(s) = - D \left. \frac{\partial c(x,s)}{\partial x} \right|_{x=L} = \]

\[= \frac{1}{T D s} \frac{\sinh \left(\sqrt{\frac{s}{D}} x_0 \right)}{\sinh \left(\sqrt{\frac{s}{D}} L \right)} \sqrt{\frac{s}{D}} (-1) = \]

\[= \frac{\sinh \left(\sqrt{\frac{s}{D}} x_0 \right)}{\sinh \left(\sqrt{\frac{s}{D}} L \right)}. \]

\[\tilde{j}_-(s) = - D \left. \frac{\partial c(x,s)}{\partial x} \right|_{x=0} = - \frac{\sinh \left(\sqrt{\frac{s}{D}} (L-x_0) \right)}{\sinh \left(\sqrt{\frac{s}{D}} L \right)}. \]

Eventual exit prob.:

\[\xi_-(x_0) = \left| \int_0^\infty dt j_-(0,t) e^{-st} \right|_{s=0} = \]

\[= \left| \tilde{j}_-(S=0) \right| = 1 - \frac{x_0}{L}. \]

Likewise,

\[\xi_+(x_0) = \left| \tilde{j}_+(S=0) \right| = \frac{x_0}{L}. \]

Note that \(\xi_+(x_0) + \xi_-(x_0) = 1 \), as expected.
Finally, consider

$$t(x) = \frac{\int_0^\infty dt \left[j_-(t) + j_+(t) \right]}{\int_0^\infty dt \left[j_-(t) + j_+(t) \right]}$$

average time to reach \(0\) or \(L\) starting from \(x\)

since you leave the system eventually

\[\Rightarrow \quad \int_0^\infty dt t j(t) e^{-st} \bigg|_{s=0} = \left(-\frac{\partial}{\partial s} \int_0^\infty dt j(t) e^{-st} \right) \bigg|_{s=0} = -\frac{\partial \tilde{j}(s)}{\partial s} \bigg|_{s=0} \]

In this way, one can obtain

$$t(x) = \frac{x(L-x)}{2D}, \quad \text{as well as} \quad t_+(x) \quad \& \quad t_-(x).$$

However, there is a more straightforward approach, as discussed next.