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which we can interpret as the result of hybridization. We will return to use these expressions
to calculate the low-energy part of the tunneling spectrum.

17.7 Kondo insulators

The Kondo insulator is the simplest version of the Kondo lattice, in which the formation of
Kondo singlets leads to a fully gapped, insulating state. While the term “Kondo insulator”
dates back to the early 1990s [5], these are the oldest heavy-fermion materials. The first
heavy-fermion or Kondo insulator, SmB6, was discovered in 1969 by Menth, Buehler, and
Geballe at AT&T Bell Laboratories [6], followed closely by SmS under pressure [7]. It was
these materials that inspired Neville Mott to propose that Kondo insulators involve a kind
of excitonic ordering between localized f -electrons and conduction electrons [8], driving
the emergent hybridization that we have been discussing. A predecessor of the large-N
path integral approach to Kondo insulators was proposed in 1979 by Claudine Lacroix and
Michel Cyrot at the Laboratoire Louis Néel in Grenoble [28]. At the time of writing this
book, SmB6 has once again been thrust into the main-stream of research, with the proposal
[39] that this is an example of a topological insulator – a topological Kondo insulator with
robust conducting surfaces [40, 41]. This is a topic we will return to in Chapter 18 when
we consider mixed valence.

17.7.1 Strong-coupling expansion

In many ways, the Kondo insulator is the simplest ground state of the Kondo lattice. Let us
begin by returning to the SU(2) Kondo lattice model:

H = −t
∑

(i,j)σ

(c†
iσ cjσ + H.c.) + J

∑

j,αβ

σ⃗j · S⃗j (σ⃗j ≡ (c†
jβσ⃗βαcjα)), (17.145)

corresponding to a tight-binding Kondo lattice where the electrons at each site are coupled
antiferromagnetically to a local moment. We can gain a lot of insight by examining the
strong-coupling limit, in which the dispersion of the conduction sea is much smaller than
J, so that t/J << 1 is a small parameter. In this limit, the intersite hopping is a perturbation
to the onsite Kondo insteraction:

H
t/J→0−→ J

∑

j,αβ

σ⃗j · S⃗j + O(t), (17.146)

and the ground state corresponds to the formation of a spin singlet at each site, denoted by
the wavefunction

|KI⟩ =
∏

j

1√
2

(
⇑j↓j − ⇓j↑j

)
, (17.147)

where the double and single arrows denote the localized moment and conduction electron,
respectively, as illustrated in Figure 17.13(a).
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!Fig. 17.13 (a) Illustrating the ground state of the Kondo insulator in the strong-coupling limit. (b) Excitations of the Kondo
insulator, showing triplet excitation with spin gap 2J and S = 1

2 hole and electron excitations with excitation energy
3
2 J.

Each singlet has a ground-state energy E = − 3
2 J per site and a singlet–triplet spin gap

of magnitude $E = 2J. Moreover, if we remove an electron from site i, we break a Kondo
singlet and create an unpaired spin with excited energy 3

2 J,

|qp+, i ↑⟩ =⇑i
∏

j ̸=i

1√
2

(
⇑j↓j − ⇓j↑j

)
=

√
2ci↓|KI⟩, (17.148)

while if we add an electron, we create an electron quasiparticle, corresponding to an
unpaired local moment and a doubly occupied conduction electron orbital,

|qp−, i ↑⟩ =⇑i

(
↑i↓i

) ∏

j ̸=i

1√
2

(
⇑j↓j − ⇓j↑j

)
=

√
2c†

j↑|KL⟩, (17.149)

as illustrated in Figure 17.13(b).
If we now reintroduce the hopping −t between sites, then these quasiparticle excitations

become mobile, as illustrated in Figure 17.14(a) and (b). From the explicit form of the
states, we see that the matrix elements to hop these quasiparticles between nearest-neighbor
(n.n.) sites are given by

⟨qp±, iσ |H|qp±, jσ ⟩ = ± t
2

(
(i, j) ∈ n.n.

)
, (17.150)

corresponding to one-half the bare hopping, giving quasiparticle energies

Eqp± (k) = ±t(cx + cy + cz) + 3
2

J. (17.151)

To transform from the quasiparticle to the electron basis, we need to reverse the sign of
the hole (qp+) dispersion to obtain the valence band dispersion, so that the band energies
predicted by the strong-coupling limit of the Kondo lattice are

E±
k = −t(cx + cy + cz) ± 3

2
J, (17.152)

separated by an energy 3J as shown in Figure 17.14(c). Note that these are hard-core
fermions that cannot occupy the same lattice site simultaneously.
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Showing (a) electron and (b) hole doping of strong-coupling Kondo insulator. (c) Dispersion of strong-coupling Kondo
insulator. A small amount of hold doping δ gives rise to a Fermi surface containing 2 − δ = (1 − δ) + 1 heavy
electrons, showing that the Fermi surface counts the number of electrons and spins.

!Fig. 17.14

In this way, the half-filled strong-coupling Kondo lattice forms an insulator with a charge
gap of size 3J and a spin gap of size 2J. Notice finally that if we dope the insulator with
an amount δ of holes, we form a band of heavy-fermions. We can regard the resulting
“hole” Fermi surface as containing 2 − δ = (1 − δ) + 1 heavy electrons, which is one
more than we expect based on the density of conduction electrons. In this way, we see
once again that the Fermi surface of the Kondo lattice counts both the electrons and the
spins.

17.7.2 Large-N treatment of the Kondo insulator

Let us now re-examine the Kondo insulator using the large-N expansion. Here, our advan-
tage is that we are not restricted to strong coupling. The Kondo insulator is a special
case of the large-N Kondo lattice, in which the chemical potential lies between the upper
conduction and lower valence band. We start with the mean-field hybridization model
(17.50):

HMF =
∑

k

ϵkc†
kσ ckσ +

∑

j

[
V̄

(
c†

jσ fjσ
)

+
(

f †
jσ cjσ

)
Vj + λ(nfj − Q) + NNs

|V|2
J

]
.

(17.153)
We can simplify the problem by considering the special case of particle–hole symmetry,
with Q = N/2 and ne = N/2 per site, in which case the mean-field constraint ⟨nf ⟩ = N/2 is
satisfied with λ = 0 and we only need to optimize the value of the hybridization. Following
the steps of (17.111) – (17.115), the mean-field dispersions for the Kondo lattice are
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Ek± =
[ϵk

2

]
±

[(ϵk

2

)2
+ |V|2

]
, (17.154)

where we have set λ = 0. Following (17.125), the ground-state energy is then given by

Eg

N
=

∑

k

([ϵk

2

]
−

[(ϵk

2

)2
+ |V|2

])
+ Ns

|V|2
J

. (17.155)

This expression is strongly reminiscent of BCS theory, and differs from the mean-field
theory of the heavy-fermion metal, in that the energy involves an unrestricted sum over
momenta in the lower valence band. If we differentiate this expression with respect to the
hybridization, we obtain

1
NNs

∂Eg

∂|V|2 = 0 = −
∫

k

1
√

ϵ2
k + 4V2

+ 1
J

, (17.156)

which is a kind of gap equation. To get an approximate treatment of the problem, let us
replace the momentum integral by an energy integration. Assuming the conduction electron
density of states ρ = 1

2D can be treated as constant, the Kondo insulator gap equation
becomes

1
J

= ρ

∫ D

−D

dϵ√
ϵ2 + 4V2

= 2ρ sinh−1
(

D
2V

)
. (17.157)

Putting ρ = 1
2D , we then obtain

V = D

2 sinh
(D

J

) . (17.158)

As we increase the half-bandwidth D from a value that is small to a value that is large
compared with J, we see that V interpolates from V = J/2 at strong coupling to V =
D exp

[
− 1

2Jρ

]
= √

DTK , where TK = De− 1
Jρ . We can also calculate the indirect gap of the

insulator, determined by the value of the dispersion when the conduction electrons are at
the edge of the band, i.e.

$g = Ek+|ϵk=−D − Ek−|ϵk=D =
√

D2 + 4V2 − D

= 2V

⎡

⎣

√(
D
2V

)2

+ 1 −
(

D
2V

)⎤

⎦

= 2V
[

cosh
D
J

− sinh
D
J

]

= 2V exp
[
−D

J

]
= 2D

e
2D
J − 1

, (17.159)

where we have used (17.158) to make the substitutions on the third and fourth lines. We
see that, in the large-N limit, the gap undergoes a crossover from $g = J to $g = 2TK , as
shown in Figure 17.15.
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17.8 The composite nature of the f -electron

17.8.1 A thought experiment: a Kondo lattice of nuclear spins

In electronic materials the Kondo effect involves localized f - or d-electrons. However, a
Kondo effect could occur equally well with a nuclear spin. This might seem absurd, yet
nuclear spins do couple antiferromagnetically with conduction electrons to produce RKKY
interactions that drive nuclear antiferromagnetism. In practice the coupling is far too small
to destabilize the nuclear magnetism and produce a nuclear Kondo effect. Nevertheless,
we learn something from the thought experiment in which the nuclear spin coupling to
electrons is strong enough to overcome the nuclear magnetism. In this case, resonant bound
states would form with the nuclear spin lattice, giving rise to charged heavy electrons,
presumably with an expanded Fermi surface.

From this line of argument we see that, while it’s tempting to associate the heavy fermion
in the Kondo effect with a physical f - or d-electron localized inside the local moment,
from a renormalization group perspective the heavy electron is an emergent excitation:
a fermionic bound state formed between the conduction sea and the neutral localized
moments. The only memory of the underlying localized electrons is encoded in the spa-
tial symmetry of the Kondo coupling, which of course for rare-earth systems is an f -form
factor.
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The composite picture of heavy electrons is useful for several reasons:

• As we will see in Section 17.9, it allows us to understand the formation of Fano resonant
structures in Kondo lattices.

• It allows us to envisage processes in which the Kondo effect breaks down, leading to the
loss of the large Fermi surface. Such Kondo breakdown phenomena are thought to be
the origin of certain types of non-Fermi-liquid behavior in heavy-electron systems.

• It opens up the possibility of new kinds of composite structures – bosons that might
pair-condense – or composite fermions with quantum numbers which are different to
electrons, such as neutral, spinless, or integer-spin fermions.

17.8.2 Cooper pair analogy

In a superconductor, electron pairs behave as loose composite bosons described by the
relation

ψ↑(x)ψ↓(x′) = −F(x − x′). (17.160)

Here F(x − x′) = −⟨Tψ↑(1)ψ↓(2)⟩ is the anomalous Gor’kov Green’s function which
determines the Cooper pair wavefunction, extended over the coherence length ξ ∼ vF/Tc.
We can treat the pair operator as a c-number because the pairs condense.

A similar phenomenon takes place in the Kondo effect, but here the bound state devel-
ops between spins and electrons, forming a fermion, rather than a boson. For an isolated
Kondo impurity, the analogue of the coherence length in the superconductor is the Kondo
screening length ξK ∼ vF/TK , but in a lattice the renormalization of the heavy-fermion
velocity means that this screening length is of the order of a lattice spacing. In this situ-
ation, it is perhaps more useful to think in terms of a screening time τK ∼ !/TK , rather
than a length, governing the electron spin-flip correlations. Both Cooper pairs and heavy
electrons involve a binding process that spans decades of energy up to a cut-off, be it the
Debye energy ωD in superconductivity or the (much larger) bandwidth D in the Kondo
effect [42, 43].

To follow this analogy in greater depth, recall that in the path integral the Kondo
interaction factorizes as

J
N

c†
βSαβcα −→ V̄

(
c†
αfα

)
+

(
f †
α cα

)
V + N

V̄V
J

, (17.161)

so by comparing the right- and left-hand sides, we see that the composite operators Sβαcβ

and c†
βSαβ behave as a single fermion denoted by the contractions

1
N

∑

β

Sβαcβ =
(

V̄
J

)
fα ,

1
N

∑

β

c†
βSαβ =

(
V
J

)
f †
α . (17.162)

composite fermion
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Physically, this means that the spins bind high-energy electrons, transforming them-
selves into composites which then hybridize with the conduction electrons. The resulting
heavy fermions can be thought of as moments ionized in the magnetically polar electron
fluid to form mobile, negatively charged heavy electrons while leaving behind a positively
charged Kondo singlet. Microscopically, the many-body amplitude to scatter an electron
off a local moment develops a bound-state pole, which for large N we can denote by the
diagrams

Γ ≡
O(1)

V V̄
+

O(1/N)
+ . . . .

The leading diagram describes a kind of condensation of the hybridization field; the second
and higher terms describe the smaller O(1/N) fluctuations around the mean-field theory.

By analogy with superconductivity, we can associate a wavefunction with the temporal
correlations between spin-flips and conduction electrons, as follows:

1
N

∑

β

cβ (τ )Sβα(τ ′) = g(τ − τ ′)f̂α(τ ′), (17.163)

where the spin-flip correlation function g(τ − τ ′) is an analogue of the Gor’kov function,
extending over a coherence time τK ∼ !/TK . Notice that, in contrast to the Cooper pair,
this composite object is a fermion and thus requires a distinct operator f̂α for its expression.
The Fourier (Laplace) decomposition of g(τ ) describes the spectral distribution of electrons
and spin-flips inside the composite f -electron, which we may calculate as follows:

1
N

∑

β

cβ (τ )Sβα(τ ′) = 1
N

∑

β

cβ (τ )f †
β (τ ′)fα(τ ′)

= 1
N

∑

β

⟨Tcβ (τ )f †
β (τ ′)⟩fα(τ ′)

= −Gcf (τ − τ ′)fα(τ ′). (17.164)

In this way, we identify

g(τ − τ ′) = ⟨Tcβ (τ )f †
β (τ ′)⟩ = −Gcf (τ − τ ′) (17.165)

with the anomalous Green’s function between the f - and conduction electrons at the same
site.

A detailed calculation (see Example 17.5) shows that g(τ ) is logarithimically correlated
at short times, but decays as 1

τ at times |τ | >> !
TK

:

g(τ ) ∼
{

ρV ln
(

TKτ
!

)
(!/D << τ << !/TK)

1
τ (τ >> !/TK).

(17.166)

The short-time logarithimic correlations between the spin-flip and electron (τ << !/TK)
represent the weak-coupling interior of the composite fermion, whereas the long-time
power law correlations reflect the development of the Fermi liquid correlations at long
times.
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The internal structure of the composite fermion, spread over several decades up to the
bandwidth, guarantees that the composite f -state is orthogonal to the low-energy conduc-
tion electrons, behaving as an emergent electron field, injected into the low-energy Fermi
sea. The physical manifestation of this phenomenon is an expansion of the Fermi surface
by the composite fermions. A particularly dramatic example of this expansion is seen in the
material CeRhIn5, which is an antiferromagnetic metal at ambient pressures but becomes
superconducting as the f -electrons delocalize at higher pressures (Figure 17.16). De Haas–
van Alphen experiments on the normal state show that the Fermi surface expands as the
mobile f -electrons are formed. Similar effects are also seen in Hall-constant measurements.
Most remarkably of all, in cases where the Fermi surface expands to fill the entire Brillouin
zone, the resulting system becomes an insulator, a Kondo insulator.

Example 17.5 Calculate the internal spin-flip correlation function of the composite
f -electron,

1
N

∑

β

cβ (τ )Sβα(τ ′) = g(τ − τ ′)f̂α(τ ′), (17.167)
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in the large-N expansion. Carry this out using a Fourier decomposition,

g(τ ) = −T
∑

k,iωn

Gcf (k, iωn)e−iωnτ , (17.168)

where Gcf (k, τ ) = −⟨ckσ (τ )fkσ (0)⟩ is the anomalous propagator between the conduction
and f -state.

Solution

Transforming to Fourier space, we have

Gc f (k, iωn) =
f c

V
=

V
iωn − k

1
iωn − λ − V2

iωn− k

=
V ,

(iωn − k)(iωn − λ) − V2 (17.169)

where the double dashed line is the full f -electron propagator. We can approximate the
summation over momentum in (17.168) as an integral over energy:

Gcf (z) =
∑

k

Gcf (k, z) = ρ

∫ D

−D
dϵ

V
(z − ϵ)(z − λ) − V2

= ρV
z − λ

ln
[

(z + D)(z − λ) − V2

(z − D)(z − λ) − V2

]
. (17.170)

This function contains two branch cuts along the real axis, corresponding to the upper and
lower bands, which run from E±

1 −→ E±
2 , where (E±

1,2 ± D)(E±
1,2 − λ) − V2 = 0. The

low-energy ends of the branch cut |E+
2 | ∼ |E−

1 | ∼ V2/D ∼ TK are of the order of the
Kondo scale, whereas the high-energy ends |E−

1 | ∼ |E+
2 | ∼ D are set by the bandwidth:

E−1 E−2 E+1 E+2

−D −TK TK D
.

There are thus two energy scales in this function – the bandwidth D and the Kondo tem-
perature TK ∼ λ. The internal structure of the composite fermion is thus determined by the
spectral function

g(ω) = − 1
π

Im Gcf (ω − iδ) = − ρV
ω − λ

∑

±
[θ (ω − E±

1 ) − θ (ω − E±
2 )], (17.171)

as shown in Figure 17.17.
In the time domain,

g(τ ) = −
∫ ∞

−∞
dωg(ω)

[
(1 − f (ω))θ (τ ) − f (ω)θ (−τ )

]
e−ωτ . (17.172)
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!Fig. 17.17 Spectral distribution function g(ω) (17.171) describing the internal correlations of spin and electron inside a
composite f -electron. See Example 17.5.

For simplicity, let’s examine the case where the Fermi energy is in the lower band (λ > 0).
Now by (17.167) and (17.162), the bound-state amplitude V is given by the equal-time
Green’s function,

V
J

= g(0−) = −Vρ

∫ 0

−D

dω

ω − λ
= ρV ln

D
λ

, (17.173)

from which we deduce that

V
J

= ρV ln
D
λ

⇒ λ = De− 1
Jρ = TK , (17.174)

as obtained earlier from the minimization of the energy. Note that the argument in the
bound-state integral (17.173) depends on the inverse of the energy, right out to the band-
width. If we divide the band on a logarithmic scale into n equal parts, where the ratio of
the lower and upper energies is s > 1, we see that each decade of energy counts equally to
the bound-state amplitude:

V
J

= −ρV
∫ −λ

−D
dϵ

1
ϵ

= −ρV

{∫ −D/s

−D
+

∫ −D/s2

−D/s
+ · · · +

∫ −λ

−D/sn−1

}
dϵ

ϵ

= ρV
{

ln s + ln s + · · · + ln
Ds−n+1

λ

}
, (17.175)

demonstrating that the low-energy heavy-fermion bound state is formed from electron
states that are spread out over decades of energy out to the bandwidth.

Finally, returning to the time dependence,

g(τ ) = −
∫ 0

−D
dω

−g(ω)︷ ︸︸ ︷
Vρ

ω − λ
e−ωτ (τ < 0), (17.176)
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We show how Oshikawa’s theorem for the Fermi surface volume of the Kondo lattice can be extended to
the SU(N ) symmetric case. By extending the theorem, we can show that the mechanism of Fermi surface
expansion seen in the large N mean-field theory is directly linked to the expansion of the Fermi surface in a
spin- 1

2 Kondo lattice. This linkage enables us to interpret the expansion of the Fermi surface in a Kondo lattice
as a fractionalization of the local moments into heavy electrons. Our method allows extension to a pure U(1) spin
liquid, where we find the volume of the spinon Fermi surface by applying a spin twist, analogous to Oshikawa’s,
[Phys. Rev. Lett. 84, 3370 (2000)] flux insertion. Lastly, we discuss the possibility of interpreting the FL∗ phase
characterized by a small Fermi surface in the absence of symmetry breaking, as a nontopological coexistence of
such a U(1) spin liquid and an electronic Fermi liquid.
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I. INTRODUCTION

Over two decades ago, Oshikawa [1] applied the Lieb-
Schultz-Mattis approach [2] to the Kondo lattice, using its
response to a flux insertion to demonstrate that its Fermi
surface volume counts the combined density of electrons and
local moments. Although the expansion of the Fermi surface
in the Kondo lattice had been informally established from
arguments of continuity based on the Anderson lattice model
[3], from the large N limit of the Kondo lattice [4–7], Os-
hikawa’s [1] result provided a rigorous foundation for the
Fermi surface expansion in a strict S = 1

2 system Kondo
lattice.

Curiously, since this hallmark development, Oshikawa’s
[1] result has not been generalized to higher group sym-
metries. Here, we show that this generalization is readily
established for a family of SU(N ) Kondo lattices. The key
result is that, for local moments in an antisymmetric represen-
tation of the group constructed from Q elementary spinons, a
Fermi liquid ground state will have an expanded Fermi surface
volume VFS given by

Nvc
VFS

(2π )D
= ne + NSQ, (1)

where ne and NS are, respectively, the number of electrons and
number of local moments per unit cell of volume vc. For all
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N , the electronic Fermi surface expands to incorporate the
number of elementary spinons forming the local moments,
and by increasing N to arbitrarily large values, we can link
Oshikawa’s [1] original result to the basin of attraction of
large N field theoretic approaches to the Kondo lattice [4,5,7].
The importance of this link is that the Kondo fractionalization
of local moments into charged heavy fermions, inferred field
theoretically, is rigorously confirmed.

One of the unexpected outcomes of our analysis is the
discovery that Oshikawa’s [1] flux attachment method can
also be applied to spin liquids [8,9]. Previously, it was as-
sumed that, since spin liquids are neutral, they are immune
to flux attachment, stimulating an alternative topological in-
terpretation of spin-liquid ground states in coexistence with
a Fermi liquid. However, because the unitary transformation
that attaches a flux involves both a charge and a spin twist
of the wave function, a spin liquid is sensitive to the flux
attachment. This enables us to show that a U(1) spin liquid
in an SU(N ) Heisenberg model will have a Fermi surface
volume determined purely by the number of spinons in the
representation, i.e.,

Nvc
VFS

(2π )D
= NSQ. (2)

This result suggests that fractionalization in a U(1) spin liquid
and the Kondo lattice does not require a topological interpreta-
tion, i.e., that fractionalization and topology are not inevitably
tied together.

The outline of this paper is as follows. In Sec. II, we
derive the Luttinger sum rule for the SU(N ) Kondo lattice.
In Sec. III, we interpret the result as a signature of spin frac-
tionalization, cementing an intuition derived from the large N
mean-field theories as a general feature of the Kondo lattice.
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FIG. 1. Flux insertion strategy: (a) Initial state |"0⟩ with momen-
tum P0

x . (b) State |"#⟩′ after flux insertion for electrons with spin
component µ has unchanged canonical momentum, (c) After gauge
transformation, |"#⟩ = Uµ|"#⟩′ has canonical momentum Px . The
change in momentum $Px = Px − P0

x determines the Fermi surface
volume.

In Sec. IV, we show how the method can be extended to
a Kondo-Heisenberg model. In Sec. V, we discuss the role
of spin-exchange interactions and identify the spinon Fermi
surface volume of a U(1) spin liquid. Finally, in Sec. VI, we
discuss whether the coexistence of a spin and small Fermi
surface conduction fluid to form an FL∗ requires a topological
interpretation.

II. DERIVATION

We consider the SU(N ) symmetric Kondo lattice

HKL = −
∑

rr′

tr,r′c†
rσ cr′σ + JK

∑

r

λ⃗r · '⃗r, (3)

where c†
rσ , (σ = 1, N ) creates an electron at site r, moving on

a D-dimensional toroid with intersite hopping amplitude tr,r′ ,
with dimensions Lx, Ly . . . LD. Here, λ⃗r = c†

rσ λ⃗σσ ′crσ ′ is the
electron spin density at r, where the λ⃗ = (λ1, . . . λN2−1) are
the SU(N ) Gell-Mann matrices. The '⃗r = ('1

r, . . . '
N2−1
r )

are the components of the localized moment at site r.
We shall consider local moments composed of Q elemen-
tary spinons, in an antisymmetric representation of SU(N),
|σ1, . . . σQ⟩ = (−1)P|σP1 . . . σPQ⟩. The action of the spin oper-
ator 'a, a = (1, N2 − 1) on these states is then 'a|σ1...σQ⟩ =∑Q

n=1 |σ1...σ
′
n...σQ⟩λa

σ ′
nσn

.

The SU(N ) Kondo lattice has a global U(1)×SU(N ) sym-
metry, associated with the conserved electron number Ne
and magnetization Ma =

∑
r λa

r + 'a
r . Of particular interest

are the diagonal components of the magnetization Mµ, (µ ∈
[1, N − 1]), which form the Cartan subalgebra of the SU(N )
group, with Gell-Mann matrices λµ

σσ ′ = (δµσ − 1/N )δσσ ′ .
Oshikawa’s [1] strategy (see Fig. 1) is to introduce a

unit magnetic flux quantum #µ = h
e that couples to the µth

spin component of the Fermi sea, giving rise to an induc-
tive current which increases the mechanical momentum by
an $Px = 2π/Lx × V/(2π )D × V µ

FS, directly proportional to
the Fermi surface volume. Since the flux insertion does not
change the many-body energy eigenstates, it is equivalent
to a unitary transformation Uµ of the original Hamiltonian
H[#µ] = U †

µH[0]Uµ. This enables a direct calculation of the
change in the mechanical momentum due to flux insertion in
terms of microscopic quantities. Equating the direct calcula-
tion with the Fermi liquid result determines the Fermi surface
volume.

We now apply this strategy to the SU(N ) Kondo lattice.
Flux insertion is achieved by a Peierls substitution tr,r′ →
tr,r′ exp[−iAσ · (r − r′)], where Aσ = δµσ ( 2π

Lx
)x̂. (Note, we

are using natural units in which e = h̄ = 1, and the di-
mensions of the unit cell are rescaled to be unity, so that
the unit cell volume vc = 1.) This additional gauge field
is generated by a large gauge transformation of the elec-
tron fields U †

µc†
rσUµ = c†

rσ exp(−iAσ · r). The obvious guess
Uµ = exp( 2π i

Lx

∑
r xrnµ

r ) does not leave the Kondo interaction
invariant, but a modified transformation

Uµ = exp

[
2π i
Lx

∑

r

xr

(
nµ

r + 'µ
r + Q

N

)]

, (4)

satisfies this requirement. This is a generalization of Os-
hikawa’s [1] original transformation, in which we have
replaced the SU(2) generator Sz

r by '
µ
r . We have also added

an additional gauge transformation which multiplies the wave
function by a factor exp( 2π i

Lx
xr

Q
N ) at each site, which en-

sures that the unitary transformation preserves the periodic
boundary conditions: Uµ(xr ) = Uµ(xr + Lx ). Here Uµ is a
product of a U(1) and an SU(N) gauge transformation: in
other words, to selectively impart momentum to µth Fermi
surface we must “twist” the wave function in charge and spin
space.

To see that Uµ commutes with the Kondo interaction, we
write nµ

r = λµ
r + nr/N , so that

Uµ = exp

[
2π i
Lx

∑

r

xr

(nr + Q
N

+ Mµ
r

)]

, (5)

involves the electron density nr and local magnetization Mµ
r =

λµ
r + 'µ

r , which both commute with the Kondo interaction. To
confirm that the transformation also preserves periodic bound-
ary conditions, we note that, if we shift the x component of the
site at r0 by Lx, i.e., xr0 → xr0 + Lx, the unitary transforma-
tion picks up an additional factor exp[2π i(nµ

r0 + 'µ
r0 + q)] =

exp[2π i('µ
r0 + q)], where q = Q

N , and we have used the fact
that the nµ

r are integers. However, under a 2π rotation, an
SU(N ) spin picks up a phase factor, i.e., exp(2π i'µ

r0 ) =
exp(−2π iq), so that the factor exp[2π i('µ

r0 + q)] = 1, and
the unitary transformation Uµ preserves periodic boundary
conditions.
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Written in full, the Hamiltonian with flux inserted is

H[#µ] = −
∑

rr′σ

tr,r′ exp[−iAσ · (r − r′)]c†
rσ cr′σ + JK

∑

r

λ⃗r · '⃗r,

Aσ = δσµ

(
2π

Lx

)
x̂. (6)

The process of flux insertion involves adiabatically increasing Aσ (t ) = Aσ exp(−|t |/τ ) from zero at t = −∞ to its full value
at t = 0, taking τ ≫ (1/TK ) to be much longer than the inverse Kondo temperature, so that the initial eigenstate |ψ0⟩ evolves
smoothly into an excited eigenstate |ψ#⟩′ of HKL[#µ] (see Fig. 1).

Since translational symmetry is preserved by flux insertion, and since the exponential of the canonical momentum exp(−iPx )
is the eigenstate of translation, it follows that the state retains a fixed canonical momentum Px(t ) = P0

x , so that under a translation,

Tx|ψ#⟩′ = exp
(
−iP0

x

)
|ψ#⟩′. (7)

We can obtain the mechanical momentum Px of the final state |ψ#⟩′ by noting that, since this quantity is gauge invariant,
it is unchanged when we gauge transform back into the original gauge. Now since HKL[0] = UµHKL[#µ]U †

µ, it follows that
|ψ#⟩ = Uµ|ψ#⟩′ is the corresponding transform of |ψ#⟩ back into the original gauge. However, since the vector potential is now
absent, the mechanical and canonical momentum coincide and can be determined from a translation:

Tx|ψ#⟩ = exp(−iPx )|ψ#⟩. (8)

Since Tx|ψ#⟩ = (TxUµT −1
x )Tx|ψ#⟩′, it follows that

exp(−iPx )|ψ#⟩ =
(
TxUµT −1

x

)
exp

(
−iP0

x

)
|ψ#⟩′. (9)

Now TxUµT −1
x describes the effect of translating the operator Uµ by one lattice spacing in the x̂ direction, so that

(
TxUµT −1

x

)
= exp

[
2π i
Lx

∑

r

xr
(
nµ

r+x̂ + '
µ
r+x̂ + q

)
]

= exp

[
2π i
Lx

∑

r

xr−x̂
(
nµ

r + 'µ
r + q

)
]

, (10)

where inside the sum, we have shifted the x coordinate of the position vectors r, r → r − x̂. Now naïvely, we might expect
xr−x̂ = xr − 1. However, this is not the case with sites on the first layer of the crystal, for in this case, x1−1 = x0, but the periodic
boundary conditions mean that x0 = xLx = Lx = x1 − 1 + Lx. Thus, in general, xr−x̂ = xr − 1 + Lxδr1,1. Substituting this into
Eq. (11), we obtain

(
TxUµT −1

x

)
= exp

[
2π i
Lx

∑

r

(
xr − 1 + Lxδr1,1

)(
nµ

r + 'µ
r + q

)
]

= exp

[
2π i
Lx

∑

r

(
Lxδr1,1 − 1

)(
nµ

r + 'µ
r + q

)
]

Uµ

= exp

[

2π i
∑

r⊥

(
nµ

1,r⊥
+ 'µ

1,r⊥
+ q

)
]

exp

[

−2π i
Lx

∑

r

(
nµ

r + 'µ
r + q

)
]

Uµ. (11)

The first term derives from the crystal boundary at xr = 1, derived from the shift of the x coordinates by Lx. However, since
we have chosen a gauge where Uµ is invariant under such coordinate shifts, this prefactor is unity {exp[2π i(nµ

1,r⊥
+ 'µ

1,r⊥
+ q)]

= 1}. Our final answer for the translated Uµ is then

(
TxUµT −1

x

)
= exp

[

−2π i
Lx

∑

r

(
nµ

r + 'µ
r + q

)
]

Uµ. (12)

We note that this answer is also obtained with Oshikawa’s [1] original choice of Uµ = exp[ 2π i
Lx

∑
r xr(nµ

r + 'µ
r )], but in this case,

the q dependence derives from the boundary term.
From Eq. (10), it then follows that

exp(−iPx )|ψ#⟩ = exp
(
−iP0

x

)
exp

[

−2π i
Lx

∑

r

(
nµ

r + 'µ
r + q

)
]

|ψ#⟩, (13)

i.e., flux insertion changes the mechanical momentum by

$Px = 2π

Lx

∑

r

(
nµ

r + 'µ
r + q

)
. (14)
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For Ns spins per unit cell,

$Px = 2π

Lx
V [νµ + Ns(mµ + q)] mod 2π , (15)

where V = LxLy . . . LD is the system volume, while νµ =
(1/V )

∑
r nµ

r and mµ = (1/V )
∑

r 'µ
r are the µth filling frac-

tion and magnetization, respectively.
Alternatively, if we assume a Fermi liquid ground state,

we can compute the change in momentum by observing that
coupling to the gauge potential shifts the momentum of each
µ-quasiparticle by 2π/Lx, so that $Px = 2π

Lx
Nµ

F where Nµ
F

is the number of µ-quasiparticles. The quasiparticle number
operator ñkµ is conserved in a Fermi liquid and jumps from
1 to 0 across the Fermi surface. This allows us to relate the
shift in momentum to the volume of the µ-Fermi surface
V µ

FS = Nµ
F (2π )D/V :

$Px = 2π

Lx
V

[
V µ

FS

(2π )D

]
. (16)

Comparing Eqs. (18) and (19), we find

V X
V µ

FS

(2π )D
= V [νµ + Ns(mµ + q)] + nxLx, (17)

with nx ∈ Z. Now since the remainder term nxLx can be cal-
culated for a flux threading in any of the D directions, the
remainder is also equal to nyLy, . . . nDLD, where the ni (i =
1, D) are distinct integers for each direction. However, since
the integer remainder is independent of direction, nxLx =
nyLy = . . . nDLD. If we choose the Lx, Ly . . . LD to be coprime
(no common denominators), it follows that nx is proportional
to each of the nyLy, . . . nDLD, so that the remainder is a
multiple of the full product, i.e., the volume V = Lx . . . LD.
Factoring out the volume V , we obtain

V µ
FS

(2π )D
= νµ + Ns(mµ + q) + n. (18)

Since the Fermi surface volume is an intensive quantity, the
remainder n is independent of the convenient choice of mu-
tually coprime boundary lengths, and Eq. (19) is valid in the
thermodynamic limit.

Finally, if we trace over all N Fermi surfaces, since the
members of the Cartan subalgebra are traceless, it follows that∑

µ mµ = 0, so that

Nvc
VFS

(2π )D
= ne + NsQ, (19)

where ne =
∑

µ νµ, and we have restored the unit cell volume
vc and have dropped the integer remainder p = nN , with the
understanding that the Fermi surface volume is only defined
mod (2π )D.

III. THE LINK WITH FRACTIONALIZATION

Traditionally, the localized spins of a Kondo lattice are
written in terms of an Abrikosov pseudofermion representa-
tion:

'a
r = f †

rσ λa
σσ ′ frσ ′ , (a = 1, N2 − 1), (20)

with a constraint on the local f -fermion (spinon) density
n( f )

r =
∑

µ f †
rµ frµ = Q, which determines the number of

spinons contained in the Qth antisymmetric representation of
SU(N). With hindsight, we now see that, since the constraint
commutes with every operator involved in the proof, we could
have used this representation from the outset, but by tacitly
avoiding doing so, we avoided any lingering concerns about
the constraint.

In the Abrikosov representation, the Kondo lattice Hamil-
tonian takes the form [4]

HKL = −
∑

rr′

tr,r′c†
rσ cr′σ − J̃K

N

∑

r

c†
rσ frσ f †

rσ ′crσ ′ , (21)

which explicitly commutes with the constraint n f r = Q and
the number of conduction electrons ncr at site r. With the
normalization Tr[λaλb] = (1 − 1

N )δab set by the Cartan sub-
algebra, the coupling constants of the Read-Newns form and
the original model in Eq. (3) are related by J̃K = JK (N − 1).

The Cartan elements are now represented by 'µ
r = nµ

f r −
Q/N , so that the gauge transformation in Eq. (4) that imposes
the flux insertion is given by

U µ = exp

[
2π i
Lx

∑

r

xr
(
nµ

cr + nµ
f r

)
]

. (22)

Equation (22) is effectively a large-gauge transformation
that counts the f -spinons as quasiparticles. The conduction
electrons and spinons transform identically under the flux
insertion:

U †
µ

(
c†

rσ
f †
rσ

)
Uµ = exp(−iAσ · r)

(
c†

rσ
f †
rσ

)
. (23)

In other words, the structure of the unitary transformation,
forced upon us by the Kondo coupling, means that the spinons
behave exactly as charged particles under the flux attachment,
consistent with a fractionalization of spins into heavy elec-
trons in the Fermi liquid phase. Remarkably then, the seeds
of fractionalization are present in the original Oshikawa [1]
gauge transformation.

The final form of the Luttinger sum rule

V µ
FS

(2π )D
= νµ + νµ

f , mod(1), (24)

where νµ
f = Ns

V

∑
r nµ

f r = Ns(mµ + q) is the number of
spinons with spin index µ per unit cell, is not a surprise
because the U(1) × SU(N ) gauge transformation in Eq. (22)
audits every spinon entangled into the Fermi sea.

Traditionally, the Kondo-Fermi surface expansion is inter-
preted by identifying the Kondo-Hamiltonian as the strong
coupling renormalization of a periodic Anderson model with
the same filling [3]. However, a Kondo lattice Hamiltonian has
no knowledge of its high energy origins. From a renormaliza-
tion group perspective, the Kondo lattice lies on the common
scaling trajectory of many high-energy “microscopic” Hamil-
tonians. Indeed, the model is entirely agnostic as to the origin
of the local moments, and they need not have an electronic
origin at all; for instance, they equally could be nuclear spins,
with a Kondo interaction derived from hyperfine interactions.
The main point is that, since the Kondo lattice has no knowl-
edge of its high-energy origins, fractionalization in the Kondo
lattice is an emergent property. This alternate interpretation
allows us to contemplate the possibility that different kinds
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of spin fractionalization may develop in the approach to mag-
netism or spin liquid behavior.

IV. KONDO-HEISENBERG MODEL

We now consider an extension of our results to a Kondo-
Heisenberg model: a Kondo lattice with additional Heisenberg
interactions HKH = HKL + HH , where now

HH =
∑

⟨rr′⟩
Jr,r′'⃗r · '⃗r′ . (25)

From Doniach’s original arguments [10], we know that,
for large enough TK , the Kondo interaction will stabilize a
Fermi liquid, in which case, we expect Oshikawa’s [1] result
to generalize to the Kondo-Heisenberg model. We are par-
ticularly interested in the case of frustrated Kondo lattices,
where in the limit of small TK , rather than forming a state
of long-range magnetic order, the system develops into a spin
liquid, preserving the Fermi surface of the underlying spinons.
We shall show that Oshikawa’s [1] theorem can be extended
to this case.

Naïvely, one might expect flux insertion to only affect
charge particles, leaving the Heisenberg term alone. However,

the unitary transformation that accomplishes flux insertion in
Eq. (4), Uµ = exp[ 2π i

Lx

∑
r xr(nµ

r + 'µ
r + q)], adds a charge

and a spin flux to the system, thus affecting the Heisenberg
interaction terms. Under the gauge transformation, the local
moments transform under the adjoint representation of SU(N).
To keep track of these transformations, its simpler to switch
to a Coqblin-Schrieffer representation of the local moments
'σσ ′

r = f †
rσ frσ ′ − Q

N δσσ ′ , so that the Heisenberg interaction
takes the form

HH = 1
N

∑

⟨rr′⟩
J̃r,r′'σσ ′

r 'σ ′σ
r′ , (26)

where J̃r,r′ = Jr,r′ (N − 1). Under the flux insertion, frσ →
exp(iAσ · r) frσ , so that under the gauge transformation in
Eq. (26),

'σσ ′

r → U †
µ'σσ ′

r Uµ = exp[−i(Aσ − Aσ ′) · r]'σσ ′
r , (27)

which describes the transformation of the spin operator un-
der the adjoint representation of SU(N), corresponding to a
slow twist of the local moments about the µ axis, created by
the spin component of Uµ, through an angle 2π (x/Lx ) that
increases from 0 to 2π across the sample.

Using these results, we can write Heisenberg-Kondo model with a flux insertion in the µ spin channel as

HKH[#µ] = −
∑

rr′

tr,r′ exp[−iAσ · (r − r′)]c†
rσ cr′σ + J̃K

N

∑

r

c†
rσ crσ ′'σσ

r (28)

+ 1
N

∑

⟨rr′⟩
J̃r,r′ exp[−i(Aσ − Aσ ′

) · (r − r′)]'σσ ′

r 'σ ′σ
r′ . (29)

The gauge field inside the Heisenberg term

exp[−iA · (r − r′)(δσµ − δσ ′µ)] = exp[−iA · (r − r′)δσµ] exp[iA · (r − r′)δσ ′µ],
(

r′ σ−−⇀↽−−
σ ′

r
)

, (30)

can be interpreted as the product of two Peierls’ insertions associated with a spinon exchange: a σ spinon moving from r′ to r,
and a σ ′ spinon moving in the opposite direction. The derivation and final form of the Luttinger sum rule for the Fermi liquid
now follows precisely the same route as in the Kondo model. The key identity in Eq. (15) still holds, allowing us to generalize
the Oshikawa [1] result in Eq. (1) to the Fermi liquid phases of the SU(N ) Kondo-Heisenberg model.

Since our flux insertion works for arbitrary N, it allows us
to explicitly examine how the wave function |"0⟩ evolves at
large N , allowing us to the explicit evolution under the flux
attachment and subsequent gauge transformation:

|"0⟩
#0−→|"#⟩′

Uµ−→|"⟩. (31)

At large N , the ground state wave function is accurately deter-
mined by a Gutzwiller wave function:

|"0⟩ = PG

∏

k∈FS,σ

(αkc†
kσ + βk f †

kσ )|0⟩, (32)

where the product runs over all wave vectors enclosed by the
Fermi surface, and PG =

∏
r δn f (r),Q projects out the compo-

nent of the wave function with n f (r) = Q at each site, while
the hybridized operators αkσ c†

kσ + βk f †
kσ define the quasipar-

ticles of the mean-field Hamiltonian. In fact, the Gutzwiller
projection PG can be replaced by an average constraint in the
large N limit, but here, we shall keep it for greater generality.

In the large N limit, the dynamics of the wave function
are determined by evolution under a time-dependent, trans-
lationally invariant mean-field Hamiltonian which preserves
the momenta of the quasiparticle states, leaving the Fermi
surface unchanged. After the flux insertion, the mean-field
wave function then has the form

|"#⟩′ = PG

∏

k∈FS,σ

(αkσ [#]c†
kσ + βkσ [#] f †

kσ )|0⟩, (33)

where the coefficients αkσ [#] and βkσ [#] differ from their
zero field value by terms of order O(1/L). Now if we
Fourier transform Eq. (26), the transformation of the elec-
tron and spinon fields under Uµ in momentum space is
given by

Uµ

(
c†

kσ

f †
kσ

)

U †
µ =

(
c†

k+Aσ σ

f †
k+Aσ σ

)

, (34)
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so that under the unitary transformation Uµ, Uµ|ψ#⟩′ = |ψ#⟩
is given by

|ψ#⟩ = PG

∏

k∈FS,σ

(
αkσ [#]c†

k+Aσ σ + βkσ [#] f †
k+Aσ σ

)
|0⟩.

(35)
If we translate this state in the x direction, then since

Tx

(
c†

kσ

f †
kσ

)
T −1

x = exp(−ikx )
(

c†
kσ

f †
kσ

)
, (36)

it follows that the momentum of the final state Px is given by

Tx|ψ#⟩ = exp(−iPx )|ψ#⟩, (37)

where

Px =
∑

k∈FS,σ

(
kx + Aσ

x

)
= P(0)

x + 2π

Lx

V
(2π )D

V µ
FS, (38)

so we see that the shift in momentum per quasiparticle is
precisely Aσ

x = 2π
Lx

in the µ band.

V. U(1) SPIN LIQUID

The fascinating aspect of this result is that it also allows
us to apply the flux attachment idea to a pure Heisenberg
model HH . The Heisenberg model with a spin twist HH [#µ] =
U †

µHHUµ is written

HH [#µ] = 1
N

∑

⟨rr′⟩
J̃r,r′ exp[−i(Aσ − Aσ ′

) · (r − r′)]'σσ ′

r 'σ ′σ
r′ ,

Aσ = δσµ 2π

Lx
x̂ (39)

and the corresponding gauge transformation is then

U s
µ = exp

[
2π i
Lx

∑

r

xr
(
'µ

r + q
)
]

. (40)

In this case, the translated gauge transformation takes the form

(
TxU s

µT −1
x

)
= exp

[

−2π i
Lx

∑

r

(
'µ

r + q
)
]

U s
µ, (41)

so the change in momentum associated with the flux insertion
is then

$Px = 2π

Lx

∑

r

(
'µ

r + q
)

= 2π

Lx
V (mµ + q) mod 2π , (42)

where V = LxLy . . . LD is the volume, and mµ = 1
V

∑
r 'µ

r is
the magnetization, and we have assumed ns = 1 local moment
per unit cell. Using Abrikosov fermions, 'µ

r + q = nµ
f r is the

number of µ-spinons at site r, so we can interprete V (mµ + q)
as the number of spinons with spin component µ. In other
words, under a flux attachment, each spinon with spin compo-
nent µ in the ground state acquires a momentum 2π

L .
A U(1) spin liquid can be thought of as an incompressible

neutral Fermi liquid. In Appendix A, we demonstrate that such
a state is energetically favored in the large N limit over the
dimer phase, and the π -flux phase on a square lattice over a

range of q. To see how its momentum changes under a flux
attachment, consider the model ground state provided by a
Gutzwiller wave function

|"0⟩ = PG

∏

k∈FS,σ

f †
kσ |0⟩, (43)

where, as in the Kondo lattice, PG =
∏

r δn f (r),Q is a
Gutzwiller projection onto states with Q elementary spinons
at each site. Now the translation operator commutes with PG,
and since Tx f †

kσ T −1
x = exp(−ikx ) f †

kσ , it follows that this state
has the initial momentum P(0)

x =
∑

k∈FS,σ kx. In the large N
limit (see Appendix B), the time evolution of the state is given
by a time-dependent mean-field Hamiltonian that is explicitly
translationally invariant, so that under a flux attachment, the
canonical momenta of the spinons are entirely unchanged.
In a one-band fluid of spinons, the corresponding Gutziller
ground state is then unchanged after the flux attachment
|"#⟩′ = |"0⟩. If we now revert back to the original gauge,
since Uµ f †

kσU −1
µ = f †

k+Aσ ,σ , it follows that

|"#⟩ = Uµ|"#⟩′ = PG

∏

k∈FS,σ

f †
k+Aσ ,σ |0⟩, (44)

corresponding to a Fermi sea in which the spinon momenta
are shifted by Aσ = 2π/Lxδ

σµx̂, i.e.,

$Px = 2π

Lx
V

V µ
FS

(2π )D
. (45)

By comparing this result with Eq. (46), we then obtain

V µ
FS

(2π )D
= (mµ + q) mod 1. (46)

We emphasize that this result remains valid at arbitrary N if
the ground state is smoothly connected to the U(1) spin liquid
state in Eq. (44). For SU(2), a similar result was also obtained
in Ref. [11].

VI. DISCUSSION

It is interesting to consider the implications of our results
for the FL∗ phase of the Kondo lattice model, in which decou-
pled spin liquid and conduction electrons co-exist in a state
of unbroken symmetry. Earlier work on S = 1

2 Kondo systems
[12,13] has interpreted this phase as a Z2 spin liquid coexisting
with a Fermi liquid. Flux insertion then drives a transition
between two topologically degenerate ground states charac-
terized by the presence or absence of vizon states that carry
Z2 flux. However, is the FL∗ phase necessarily topologically
ordered?

Our result on the Kondo-Heisenberg model suggests an
alternate interpretation of the FL∗ phase as the coexistence of
a U(1) spin liquid with an electronic Fermi liquid [14]. There
are in principle two phases:

(1) the heavy Fermi liquid, a Higgs phase in which the
U(1) gauge field of the spinons is locked to the electromag-
netic U(1) fields of the conduction electrons, giving rise to a
single unified Fermi surface of heavy electrons; and

(2) the FL∗ in which the U(1) gauge fields of the con-
duction electrons and spinons are decoupled, so that one is
neutral, the other charged.

033284-6



LUTTINGER SUM RULES AND SPIN … PHYSICAL REVIEW RESEARCH 3, 033284 (2021)

FIG. 2. (a) Flux attachment in the Kondo-Heisenberg model. Threading a flux results in a twist in the U(1) gauge potential and a twist in
the spin orientations, imparting momentum to the electrons and the spinons. (b) The total momentum is proportional to the combined Fermi
surface volume of the electrons and spinons (red). In the FL∗ phase, the spinons decouple from the electrons to form a U(1) spin liquid,
resulting in a smaller Fermi surface (purple) that only counts the electrons.

Oshikawa’s [1] theorem, extended to the Kondo-
Heisenberg model makes no judgment on which phase
one is in, simply predicting that the combined volume of the
Fermi surfaces (see Fig. 2)

V µ
FS

(2π )D
=

V µ,S
FS

(2π )D
+

V µ,e
FS

(2π )D
= Ns(mµ + q) + νµ. (47)

If the spin liquid decouples from the electronic fluid, then
assuming that the U(1) spin liquid is isomorphic to that of the
pure Heisenberg model in Sec. V, the volume of the spinon

Fermi surface is given by V µ,S
FS

(2π )D = Ns(mµ + q). In this case,
the remaining electronic fluid has a Fermi surface volume

V µ,e
FS

(2π )D
= νµ. (48)

From this perspective, the FL∗ is understood simply as two de-
coupled fluids, both of which respond to the flux attachment.
One of the interesting aspects of this line of reasoning is that
it goes against a commonly held view-point that fractional-
ization in higher dimensional systems is intimately associated
with a topological ground state. It suggests instead that frac-
tionalization does not require such inevitable linkage, and it
opens the way for an interpretation of the Kondo effect as a
nontopological fractionalization of local moments.

Such U(1) spin liquids are expected from large N
treatments [9,15–18] and found in variational studies of
Heisenberg-related models [19]. The breakdown of the Kondo
effect and the the resulting decoupling between between
spinons and electrons in these spin liquids would have sharp
experimental signatures owing to the coexistence of a charge-
neutral spinon Fermi surface. Such spin liquids are among
the prime candidates to account for the anomalous signa-
tures in thermal conductivity [20], spin susceptibility [19],
and anomalous quantum oscillations [21–23] that have been
observed in various experiments. While this paper makes no
claim on the resolution of these experimental puzzles, an exact
result on the volume of the spinon Fermi surface in a U(1) spin
liquid is a valuable benchmark to compare against. Indeed, in
a two-fluid picture [24], Fermi surface volumes intermediate
between the large and small Fermi surface may be fit to a
heuristic form VFS = Nsq + f ν to estimate f , the fraction of
the spins that are gauge coupled to the electrons.

One of the unsolved questions is whether Oshikawa’s [1]
approach can be extended to other models. Central to the cur-
rent derivation of the Luttinger sum rule is the identification
of a U(1) gauge symmetry associated with each of the N
spin components and the presence of translational symmetry.
There are two models that fail these requirements:

(1) the Kondo impurity model, where fractionalization
and the large N limit tell us that the scattering phase shift is
given by δ = πQ/N [7]; and

(2) the family of symplectic SP(2N ) symmetric Kondo
lattices, important for extending the notion of pairing to the
large N limit [25,26].

At first sight, the absence of a conserved momentum
would seem to preclude using flux attachment on the impurity
Kondo model; however, by representing the impurities as left-
moving particles in a fluid of right-moving electrons, as in
Bethe-Ansatz solutions of this problem [15], it may be pos-
sible to restore translational invariance required for flux
attachment.

Likewise, the absence of many U(1) subgroups in SP(2N )
appears to sabotage the application of Oshikawa’s [1] theorem
to this case. However, here, too, there may be a way out,
for the total number of “up” electrons and spinons is still a
conserved U(1) invariant, so that if we attach a flux to all the
up electrons and spinons, a Fermi surface sum rule may still
be possible. These topics can be considered in future work.
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APPENDIX A: STABILITY OF THE U(1) SPIN LIQUID
IN THE LARGE N LIMIT

The nearest-neighbor Heisenberg model is described by the
path integral

Z =
∫

D[ f †, f , λ] exp
[

−
∫ β

0
dτ L(τ )

]
,

L =
∑

r

[ f †
rσ (∂τ + λr ) frσ − λrQ] + HH , (A1)
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TABLE I. Summary of large N mean-field results.

State Fermionic excitations Gap equation Ground state energy

Dimer ϵ± = λ ∓ χ χ = J̃H q 2E
J̃H NL2 = −q2

π -Flux ϵk± = λ ± 2χ
√

cos2 kx + cos2 ky
2|χ |
J̃H

=
∫

d2k
(2π )2 nk−

√
cos2 kx + cos2 ky

2E
J̃H NL2 = −[

∫
d2k

(2π )2 nk−
√

cos2 kx + cos2 ky]2

U(1) SL ϵk = λ − 2χ (cos kx + cos ky ) 2|χ |
J̃H

=
∫

d2k
(2π )2 (cos kx + cos ky ) n f

k
2E

J̃H NL2 = −
[ ∫

d2k
(2π )2 (cos kx + cos ky ) n f

k

]2

with a summation convention over spin indices σ = (1, N ).
The Heisenberg-Hamiltonian HH is represented in terms of
the Abrikosov-Fermi fields f †, f as

HH = − J̃H

N

∑

⟨rr′⟩
( f †

rσ fr′σ )( f †
r′σ ′ fr′σ ′ ), (A2)

while the constraint on the local fermion number is imple-
mented by an integral over the chemical potential λr [7].
Decoupling the four-fermion term by a Hubbard-Stratonovich
transformation to the resonating valence bond fields χrr′ and
approximating the integral by the saddle point action leads to
the mean-field Hamiltonian

HMF = −
∑

⟨rr′⟩
χrr′ f †

rσ fr′σ + N
J̃H

∑

⟨rr′⟩
|χrr′ |2

+
∑

r

λr( f †
rσ frσ − Q), (A3)

which becomes exact in the limit of large N . We compare the
energies of the spin liquid (SL), dimer, and π -flux phases of
this Hamiltonian on a square lattice in two dimensions with
linear dimension L in units of the lattice constant. Each of
these phases has λr = λ.

For the dimer or Peierls phase [27], χrr′ = 0 on all but
one of the nearest-neighbor bonds to each site, as shown in
Fig. 3(a). For the π -flux phase [9], χrr′ = |χ | exp(iπ/4) if
r → r′ is oriented along the arrows in Fig. 3(b). For the uni-
form U(1) spin liquid, χrr′ = χ ∈ R for all bonds [Fig. 3(c)].
Table I summarizes the results of the large N mean-field
analysis for these states when q = Q/N ! 1

2 , and the ground
state energies are compared in Fig. 3(d). Near half-filling, the
Peierls phase has the lowest energy. However, for low filling
up to q ∼ 0.3, the lowest energy state is the uniform U(1) spin
liquid. For intermediate filling 0.3 < q < 0.48, the flux phase
is most stable.

When q ≪ 1, the dispersion of the filled states is approx-
imately quadratic, and we obtain the following analytical
expressions for the ground state energy

E
NV J̃H

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−
[ 1−(1−2πq)3/2

3π

]2
≃ −q2, π -flux

− q2

2 , dimer

−2q2
(
1 − πq

2

)2 ≃ −2q2, SL

, (A4)

so for small q, the uniform spin liquid is the most energeti-
cally favorable state. We note that, while the dimer phase is
stable only near q = 1

2 , similar phases may be present and
favorable at other rational fillings. For instance, r-site ring
polymer states have energy E/(NV J̃H ) = −q2 at q = 1/r. At
q = 1

4 , the four-site plaquette states have lower energy than

the uniform U(1) spin liquid. As q becomes smaller, the likely
ground state involves larger and larger decoupled clusters with
vanishing energy differences $E from the U(1) spin liquid.
Above temperatures of the order of $E , the system behaves
like a spin liquid. Additionally, on finite-sized systems, in-
commensuration between the cluster size and the system size
may frustrate the valence bond crystal and favor the spin
liquid.

APPENDIX B: FLUX INSERTION IN THE LARGE N LIMIT
OF HEISENBERG MODEL

In this section, we explicitly demonstrate the flux inser-
tion and concomitant change in momentum in the Heisenberg

FIG. 3. (a) π -flux phase: the phase of the bond order parameter
χ is positive along the direction of the arrows. The unit cell (yellow)
is expanded to include two inequivalent sites A and B, corresponding
to a reduced Brillouin zone. (b) Peierls phase in which the spin on
each site forms a dimer with its nearest neighbor and decouples from
the lattice. (c) Comparison of ground state energies for the spin liquid
(red), flux phase (purple), and dimer phase (blue). The dashed curve
is an analytical approximation for the spin liquid ground state energy
valid at small q. For a range of filling q < qc1 ∼ 0.3, the uniform
U(1) spin liquid is stable with respect to the flux and dimer phases.
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model on a square lattice in the limit of large N , in terms
of the mean-field Hamiltonian in Eq. (A3). We discuss the
response of the global U(1) gauge corresponding to the phase
of the bond order parameters to the insertion of the flux and
explicitly show that the volume of the spinon Fermi surface
is given by Eq. (2). As opposed to the main text, we consider
a flux that couples to P of the N spin degrees of freedom, so
that the effect of the flux threading on the relative change in
the ground state energy, for instance, is nonvanishing in the
large N limit.

The Heisenberg model in the presence of such a flux is
given by

HH [#{µ}] = − J̃H

N

∑

⟨rr′⟩
( f †

rσ fr′σ )( f †
r′σ ′ fr′σ ′ )

× exp[−i(Aσ − Aσ ′
) · (r − r′)], (B1)

where Aσ = (2π/Lx )x̂
∑

{µ} δσµ, with the sum over P spin
channels to which the flux is coupled, where {µ} =
{µ1 . . . , µP}. In the large N limit, this is exactly captured by
the mean-field Hamiltonian

HMF[#{µ}] = −
∑

⟨rr′⟩
χrr′ exp[−iAσ · (r − r′)] f †

rσ fr′σ

+ N
J̃H

∑

⟨rr′⟩
|χrr′ |2 +

∑

r

λr( f †
rσ frσ − Q).

(B2)

The saddle point condition for a uniform order parameter
leads to the self-consistency equation

χrr′ =|χ | exp[−iA · (r − r′)]

= J̃H

2NV

∑

⟨rr′⟩
⟨ f †

r′σ frσ ⟩ exp[iAσ · (r − r′)], (B3)

where A is the global (spin-independent) U(1) gauge poten-
tial, and V is the volume of the system (with the unit cell
volume set to unity). With this, the mean-field Hamiltonian
is diagonal in momentum space

HMF[#{µ}] =
∑

k

ϵk+A+Aσ f †
kσ fkσ

+ 2NV |χ |2

J̃H
− λQV, (B4)

where ϵk = −2χ (cos kx + cos ky) + λ is the dispersion of the
f -fermions. Recall that the ground state is the same as before
the flux insertion since momentum is conserved throughout
the process. The final state |ψ#⟩′ = 3k∈FS,σ f †

kσ |0⟩ and the
canonical x momentum P0

x =
∑

k∈FS,σ k = 0 as before the
flux insertion. The gauge transformation that removes the flux
is now given by

U s
{µ} = exp

[
2π i
Lx

∑

r,{µ}
xr

(
'µ

r + q
)
]

. (B5)

To transform back to the original gauge, we note that

U s
{µ} f †

kσU s†
{µ} = 1√

V

∑

r

U s
{µ} f †

rσU s†
{µ} exp(ik · r)

= 1√
V

∑

r

f †
rσ exp[i(k + Aσ ) · r] = f †

k+Aσ σ .

(B6)

We transform the ground state to this gauge |ψ#⟩ ≡
U s

{µ}|ψ#⟩′ = 3k∈FS,σ f †
k+Aσ ,σ |0⟩ and evaluate the physical

momentum

Px =
∑

k∈FS,σ

(k + Aσ ) =
∑

k∈FS,σ

Aσ = PV
VFS

(2π )2

2π

Lx
, (B7)

when P out of N spin components are coupled to the flux. In
this case, the change in momentum on flux insertion can be
independently computed following the arguments in the main
text [Eqs. (42)–(46)] to yield

$Px = V
(

2π

Lx

)
Pq, (B8)

when the ground state is unpolarized. Comparing with
Eq. (B7), we find the volume of the Fermi surface to be
VFS = (2π )2q, consistent with Eq. (46).

As the flux is inserted, the global U(1) gauge potential A
adjusts in response to preserve a zero total spinon current.
Symmetry dictates that A ∥ x̂, and the new self-consistent
value of A is determined by the saddle point condition ∂AE =
0 leading to

∑

kσ

(∂Aϵk+A+Aσ )n f
k

= −2|χ | ∂

∂A

∑

kσ

cos(A + Aσ ) cos kxn f
k

= 2|χ |
(

∑

k

cos kxn f
k

)[
∑

σ

sin(A + Aσ )

]

= 0

⇒ P sin
(

A − 2π

Lx

)
+ (N − P) sin A = 0. (B9)

Since Lx ≫ 1, we find that the saddle point value of A is

A = −2π

Lx
ρ, (B10)

where ρ = P
N . The global U(1) gauge potential adjusts to

oppose the inserted flux and is proportional to the fraction of
spin components coupled to the flux. In fact, this keeps the
net charge current fixed at zero, as expected for a response to
a spin twist. The flux imparts momentum to the µ-fermions
and elicits a diamagnetic response from all the fermions. This
can be seen explicitly by calculating the ground state energy
in the presence of the flux:

E − 2NV |χ |2

J̃H

= −2|χ |
∑

kσ

[
cos

(
kx + A + Aσ

x

)
+ cos ky

]
n f

k

= −2|χ |I0V
∑

σ

[
cos

(
A + Aσ

x

)
+ 1

]
, (B11)
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where I0 ≡ (1/V )
∑

k cos kxn f
k . When P of the N spin components couple to the flux,

E
V

= −2|χ |I0[P cos(A + Ax ) + (N − P) cos A − N] + 2N |χ |2

J̃H
. (B12)

With A ≈ −ρAx, the saddle point condition ∂|χ |E = 0 yields |χ | = ( 1
2 )I0J̃H {ρ cos[(1 − ρ)Ax] + (1 − ρ) cos(ρAx ) + 1}. As a

result, the ground state energy is

E
NV

= −2|χ |2

J̃H

= −1
2

J̃H I2
0 {ρ cos [(1 − ρ)Ax] + (1 − ρ) cos [ρAx] + 1}2

≈ −2J̃H I2
0

{
1 − 1

8
[ρ(1 − ρ)2 + (1 − ρ)ρ2]A2

x

}2

= E0

NV
+ 1

2
ρD̃{µ}A2

x + O
(
A4

x

)
, (B13)

where E0 = −2NV J̃H I2
0 is the energy in absence of the flux, and D̃{µ} = 2J̃H I2

0 (1 − ρ). The quantity jx = −(1/V )∂E/∂Ax =
−PD̃{µ}Ax can be interpreted as the diamagnetic spin current response of the P spin channels to the flux insertion, while D̃{µ} is
their spin stiffness.
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