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• According to (17.104), the enhancement of the density of states at the Fermi energy is

ρ∗(0) = ρ + "

π ("2 + λ2)

= ρ + sin2(πq)
πTK

(17.112)

per spin channel. When the temperature is changed or a magnetic field is introduced, one
can neglect changes in " and λ, since the free energy is stationary. This implies that, in
the large-N limit, the susceptibility and linear specific heat are those of a non-interacting
resonance of width ". The change in linear specific heat "CV = "γ T and the change
in the paramagnetic susceptibility "χ are given by

"γ =
[

Nπ2k2
B

3

]

ρi(0) =
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Nπ2k2
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]
sin2(πq)

πTK

"χ =
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N
j(j + 1)(gµB)2
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]
ρi(0) =
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N

j( j + 1)(gµB)2
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]
sin2(πq)

πTK
. (17.113)

Notice how it is the Kondo temperature that determines the size of these two quantities.
The dimensionless Wilson ratio of these two quantities is

W =
[

(πkB)2

(gµB)2j(j + 1)

]
"χ

"γ
= 1.

At finite N, fluctuations in the mean-field theory can no longer be ignored. These
fluctuations induce interactions among the quasiparticles, and the Wilson ratio becomes

W = 1

1 − 1
N

.

The dimensionless Wilson ratios of a large variety of heavy-electron materials lie
remarkably close to this value.

17.6 Mean-field theory of the Kondo lattice

17.6.1 Diagonalization of the Hamiltonian

We can now make the jump from the single-impurity problem to the lattice. The virtue of
the large-N method is that, while approximate, it can be readily scaled up to the lattice.
We’ll now recompute the effective action for the lattice, using equation (17.70). Let us
assume that the hybridization and constraint fields at the saddle point are uniform, with
Vj = V and λj = λ at every site. In fact, even if we start with a Vj = Ve−iφj with a
different phase at each site, we can always absorb the phase φj using the Read–Newns
gauge transformation (17.57) to absorb the additional phase onto the f -electron field. We
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then have a translationally invariant mean-field Hamiltonian. We begin by rewriting the
mean-field Hamiltonian in momentum space as follows:

HMFT =
∑

kσ

(
c†

kσ , f †
kσ

)
h(k)︷ ︸︸ ︷(

ϵk V
V̄ λ

) (
ckσ

fkσ

)
+ NNs

( |V|2
J

− λq
)

(17.114)

=
∑

kσ

ψ†
kσ h(k) ψkσ + NNs

( |V|2
J

− λq
)

.

Here, f †
kσ = 1√

Ns

∑
j f †

jσ eik·Rj is the Fourier transform of the f -electron field and we have
introduced the two-component notation

ψkσ =
(

ckσ

fkσ

)
, ψ

†
kσ =

(
c†

kσ , f †,kσ

)
, h(k) =

(
ϵk V
V̄ λ

)
. (17.115)

We should think of HMFT as a renormalized Hamiltonian, describing the low-energy
quasiparticles moving through a self-consistently determined array of resonant scattering
centers. Later, we will see that the f -electron operators are composite objects, formed as
bound states between spins and conduction electrons.

The mean-field Hamiltonian can be diagonalized in the form

HMFT =
∑

kσ

(
a†

kσ , b†
kσ

)(
Ek+ 0

0 Ek−

) (
akσ

bkσ

)
+ Nn

(
V̄V
J

− λq
)

. (17.116)

Here a†
kσ = ukc†

kσ + vkf †
kσ and b†

kσ = −vkc†
kσ + ukf †

kσ are linear combinations of c†
kσ and

f †
kσ , playing the role of quasiparticle operators with corresponding energy eigenvalues

det
[

E±
k 1 −

(
ϵk V
V̄ λ

)]
= (Ek± − ϵk)(Ek± − λ) − |V|2 = 0 (17.117)

or

Ek± = ϵk + λ

2
±
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2

)2

+ |V|2
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2

, (17.118)

and eigenvectors taking the BCS form

{
uk
vk

}
=

⎡

⎢⎢⎣
1
2
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1
2

. (17.119)

The hybridized dispersion described by these energies is shown in Figure 17.10.
Note the following:

• Hybridization builds an upper and a lower band, separated by a direct hybridization gap
of size 2V and a much smaller indirect gap. If we put ϵk = ±D, we see that the upper
and lower edges of the gap are given by
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(a) Dispersion for the Kondo lattice mean-field theory. (b) Renormalized density of states, showing hybridization
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!Fig. 17.10
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+ V2 ≈ λ ± V2

D
(D >> λ), (17.120)

so the indirect gap has a size "g ∼ 2V2/D, where D is the half-bandwidth. From our
mean-field solution to the Kondo impurity problem, we can anticipate V2/D ∼ V2ρ ∼
TK , so that "g ∼ TK , the single-ion Kondo temperature, which implies that V ∼ √

TKD.
• In the special case when the chemical potential lies in the gap, a Kondo insulator is

formed.
• The effective mass of the Fermi surface is opposite to the conduction sea, so a conduction

sea of electrons is transformed into a heavy-fermion sea of holes.
• The Fermi surface volume expands in response to the formation of heavy electrons

(see Figure 17.11). The enlarged Fermi surface volume now counts the total number
of occupied quasiparticle states,

Ntot = ⟨
∑

kλσ

nkλσ ⟩ = ⟨n̂f + n̂c⟩, (17.121)

where nkλσ = a†
kλσ akλσ is the number operator for the quasiparticles and nc is the total

number of conduction electrons. This means

Ntot = N
VFSa3

(2π )3 = Q + nc, (17.122)

where a3 is the volume of the unit cell. This is rather remarkable, for the expansion of
the Fermi surface implies an increased charge density in the Fermi sea. Since charge is
conserved, we are forced to conclude that there is a compensating +Q|e| charge density
per unit cell provided by the Kondo singlets formed at each site, as illustrated in Figure
17.11.
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!Fig. 17.11 Spin quenching in the Kondo lattice: (a) high-temperature state: small Fermi surface (FS) with a background of spins;
(b) low-temperature state where a large Fermi surface develops against a background of positive charge. Each spin
“ionizes” into Q heavy electrons, leaving behind a background of Kondo singlets, each with charge+Qe.

• We can construct the mean-field ground state from the quasiparticle operators, as
follows:

|MF⟩ =
∏

|k|<kFσ

b†
kσ |0⟩ =

∏

|k|<kFσ

(−vkc†
kσ + ukf †

kσ )|0⟩. (17.123)

However, this state only satisfies the constraint on the average. We can improve it by
imposing the constraint, forming a Gutzwiller wavefunction [36–38],

|GW⟩ = PQ
∏

|k|<kFσ

(−vkc†
kσ + ukf †

kσ )|0⟩, (17.124)

where, using (17.48),

PQ =
∏

j

PQ(j) =
∫ 2π

0

∏

j

dαj

2π
ei

∑
j αj(n̂f (j)−Q). (17.125)

The action of the constraint gives rise to a highly incompressible Fermi liquid, in which
the compressibility is far smaller than the density of states.

17.6.2 Mean-field free energy and saddle point

Let us now use the results of the previous section to calculate the mean-field free energy
FMFT and determine self-consistently the parameters λ and V which set the scales of the
Kondo lattice. Using (17.70) we obtain

FMF = −NT
∑

k,iωr

Tr ln
[

−G−1
k (iωr)

︷ ︸︸ ︷

−iωr +
(

ϵk V
V λ

)]
+ Ns

(
N|V|2

J
− λQ

)
, (17.126)

where Ns is the number of sites in the lattice. Note that translational invariance means that
momentum is conserved and the Green’s function is diagonal in momentum, so we can
rewrite the trace over the momentum as a sum over k. Let us remind ourselves of the steps
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taken between (17.70) and (17.71). We begin by re-writing the trace of the logarithm as a
determinant, which we then factorize in terms of the energy eigenvalues:

Tr ln
[
−iωr1 +

(
ϵk V
V λ

)]
= ln det

[
−z1 +

(
ϵk V
V λ

)]
= ln

[ (Ek+−iωr)(Ek−−iωr)︷ ︸︸ ︷
(ϵk − iωr)(λ − iωr) − V2

]

=
∑

n=±
ln(Ekn − iωr). (17.127)

Next, by carrying out the summation over Matsubara frequencies, using the result
−T

∑
iωr

ln(Ekn − iωr) = −T ln(1 + e−βEkn ), we obtain

F
N

= −T
∑

k,±
ln

[
1 + e−βEk±

]
+ Ns

(
V2

J
− λq

)
. (17.128)

Let us discuss the ground state, in which only the lower band contributes to the free
energy. As T → 0, we can replace −T ln(1 + e−βEk ) → θ (−Ek)Ek, so the ground-state
energy E0 = F(T = 0) involves an integral over the occupied states of the lower band:

E0

NNs
=

∫ 0

−∞
dEρ∗(E)E +

(
V2

J
− λq

)
, (17.129)

where we have introduced the density of heavy-electron states ρ∗(E) = ∑
k,± δ(E − E(±)

k ).
Now by (17.117) the relationship between the energy E of the heavy electrons and the
energy ϵ of the conduction electrons is

E = ϵ + V2

E − λ
.

As we sum over momenta k within a given energy shell, there is a one-to-one correspon-
dence between each conduction electron state and each quasiparticle state, so we can write
ρ∗(E)dE = ρ(ϵ)dϵ, where the density of heavy-electron states is

ρ∗(E) = ρ
dϵ

dE
= ρ

(
1 + V2

(E − λ)2

)
. (17.130)

Here we have approximated the underlying conduction electron density of states by a con-
stant ρ = 1/(2D). The originally flat conduction electron density of states is now replaced
by a hybridization gap, flanked by two sharp peaks of approximate width πρV2 ∼ TK

(Figure 17.10). Note that the lower bandwidth is lowered by an amount −V2/D. With this
information, we can carry out the integral over the energies, to obtain

E0

NNs
= ρ

∫ 0

−D−V2/D
dEE

(
1 + V2

(E − λ)2

)
+

(
V2

J
− λq

)
, (17.131)

where we have assumed that the upper band is empty and the lower band is partially filled.
Carrying out the integral, we obtain
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E0

NNs
= −ρ

2

(
D + V2

D

)2

+ "

π
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−D
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1

E − λ
+ λ

(E − λ)2

)
+

(
V2

J
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)

= −D2ρ

2
+ "

π
ln

(
λ

D

)
+

(
V2

J
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)
, (17.132)

where we have replaced " = πρV2 and have dropped terms of order O("2/D). We can
rearrange this expression, absorbing the bandwidth D and Kondo coupling constant into a

single Kondo temperature TK = De− 1
Jρ , as follows:

E0

NNs
= −D2ρ

2
+ "

π
ln

(
λ

D

)
+

(
πρV2

πρJ
− λq

)

= −D2ρ

2
+ "

π
ln

(
λ

D

)
+

(
"

πρJ
− λq

)

= −D2ρ

2
+ "

π
ln

(
λ

De− 1
Jρ

)

− λq

= −D2ρ

2
+ "

π
ln

(
λ

TK

)
− λq. (17.133)

This describes the energy of a family of Kondo lattice models with different J(D) and cutt-
off D, but fixed Kondo temperature. If we impose the constraint ∂E0

∂λ = ⟨nf ⟩ − Q = 0, we
obtain "

πλ − q = 0, so

E0(V)
NNs

= "

π
ln

(
"

πqeTK

)
− D2ρ

2
(" = πρ|V|2). (17.134)

Let us pause for a moment to consider this energy functional qualitatively. There are two
points to be made:

• The energy surface E0(V) is actually independent of the phase of V = |V|eiφ(see Figure
17.12), and has the form of a “Mexican hat” (Figure 17.12) at low temperatures. The
minimum of this functional will then determine a familiy of saddle-point values V =
|V0|eiφ , where φ can have any value. If we differentiate the ground-state energy with
respect to ", we obtain

0 = 1
π

ln
(

"

πqTK

)

or

" = πqTK ,

confirming that " ∼ TK .
• The mean-field value of the constraint field λ is determined relative to the Fermi energy

µ. Were we to introduce a slowly varying external potential field to the conduction
electron sea, then the chemical potential would be locally shifted so that µ → µ+eφ(t).
So long as the field φ(t) is varied at a rate that is slow compared with the Kondo
temperature, the constraint field will always track with the chemical potential, and, since
the constraint field is pinned to the chemical potential, λ → λ + eφ(t). In the process,
the constraint term will become

λ(n̂f (j) − Q) → λ(n̂f (j) − Q) + eφ(t)(n̂f (j) − Q). (17.135)
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V = |V |eiφ

E[V ]

φ

“Mexican hat” potential for the Kondo Lattice, evaluated at constant ⟨nf ⟩ = Q as a function of a complex
hybridizationV = |V|eiφ .

!Fig. 17.12

Since the f -electrons now couple to the external potential eφ we have to ascribe a phys-
ical charge e = −|e| to them. By contrast, the −Q term in the constraint must be
interpreted as a background positive charge |e|Q ≡ |e| per site. These lines of rea-
soning indicate that we should think of the Kondo effect as a many-body ionization
phenomenon, in which the neutral local moment splits up into a negatively charged
heavy electron and a stationary positive background charge that we can associate with
the formation of a Kondo singlet.

17.6.3 Kondo lattice Green’s function

Let’s now take a look at the matrix Green’s function, given by

Gk(τ ) = −⟨ψkσ (τ )ψ†
kσ (0)⟩ ≡

[
Gc(k, τ ) Gcf (k, τ )
Gfc(k, τ ) Gf (k, τ )

]
, (17.136)

where Gc(k, τ ) = −⟨ck(τ )c†
kσ (0)⟩, Gcf (k, τ ) = −⟨ck(τ )f †

kσ (τ )⟩, and so on. The anomalous
off-diagonal members of this Green’s function remind us of the Gor’kov functions in BCS
theory, and develop with the coherent hybridization. Using the two-component notation
(17.115), and the results of Section 12.4.3, this Green’s function can be written

Gk(τ ) = −(∂τ + hk)−1
F.T.

−−−−−−→ Gk(z) = (z − hk)−1 (17.137)

or, more explicitly,

Gk(z) = (z − hk)−1 =
(

z − ϵk −V
−V z − λ

)−1

=
(

Gc(k, z) Gcf (k, z)
Gfc(k, z) Gf (k, z)

)

= 1
(z − ϵk)(z − λ) − V2

(
z − λ V

V z − ϵk

)
, (17.138)
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where we have taken the liberty of analytically extending iωr → z into the complex
plane. Now we can read off the Green’s functions. In particular, the hybridized conduction
electron Green’s function is

Gc(k, z) = =
z − λ

(z − k)(z − λ) − V2

=
1

z − k − V 2

z−λ
≡ 1

z − k − Σc(z ,) (17.139)

which we can interpret physically as conduction electrons scattering off resonant f -states
at each site, giving rise to a momentum-conserving self-energy:

Σc(z) =
O(1)

V V
=

V2

z − λ . (17.140)

We can treat this process as a pole at energy z = λ in the condution t-matrix. We shall
argue later that this pole represents the formation of a composite fermion. A similar process
occurs in the impurity Kondo model, but in that case the scattering is local, and connects
all wavevectors, whereas in the lattice, coherence implies momentum is conserved. Notice
that the denominator in each of the Green’s functions involves the same quasiparticle poles,
since (z−ϵk)(z−λ)−V2 = (z−E+

k )(z−E−
k ), and hence near the Fermi surface at EkF = 0

the conduction Green’s function can be written

Gc(z ∼ Ek) = Zk

z − E−
k

, (17.141)

where

Zk = (1 − ∂z1c(z))−1 |z=0 = 1

1 + V2

λ2

∼ TK

D
∼ m

m∗ << 1, (17.142)

where we have identified the scales V2/D ∼ TK (hence V2 ∼ DTK) and λ ∼ TK with
the single-ion Kondo temperature. We see that the strength of the quasiparticle pole in the
conduction electrons, related to the mass renormalization, is very small.

Similarly, the f -Green’s function is

G f (k, z) = =
z − k

(z − k)(z − λ) − V2 =
1

iωr − λ − V2

z− k

. (17.143)

Finally, the anomalous Green’s functions are given by

Gc f (k, z) = =
1

z − k
VG f (k, iωn) = V

(z − k)(z − λ) − V2 , (17.144)
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which we can interpret as the result of hybridization. We will return to use these expressions
to calculate the low-energy part of the tunneling spectrum.

17.7 Kondo insulators

The Kondo insulator is the simplest version of the Kondo lattice, in which the formation of
Kondo singlets leads to a fully gapped, insulating state. While the term “Kondo insulator”
dates back to the early 1990s [5], these are the oldest heavy-fermion materials. The first
heavy-fermion or Kondo insulator, SmB6, was discovered in 1969 by Menth, Buehler, and
Geballe at AT&T Bell Laboratories [6], followed closely by SmS under pressure [7]. It was
these materials that inspired Neville Mott to propose that Kondo insulators involve a kind
of excitonic ordering between localized f -electrons and conduction electrons [8], driving
the emergent hybridization that we have been discussing. A predecessor of the large-N
path integral approach to Kondo insulators was proposed in 1979 by Claudine Lacroix and
Michel Cyrot at the Laboratoire Louis Néel in Grenoble [28]. At the time of writing this
book, SmB6 has once again been thrust into the main-stream of research, with the proposal
[39] that this is an example of a topological insulator – a topological Kondo insulator with
robust conducting surfaces [40, 41]. This is a topic we will return to in Chapter 18 when
we consider mixed valence.

17.7.1 Strong-coupling expansion

In many ways, the Kondo insulator is the simplest ground state of the Kondo lattice. Let us
begin by returning to the SU(2) Kondo lattice model:

H = −t
∑

(i,j)σ

(c†
iσ cjσ + H.c.) + J

∑

j,αβ

σ⃗j · S⃗j (σ⃗j ≡ (c†
jβσ⃗βαcjα)), (17.145)

corresponding to a tight-binding Kondo lattice where the electrons at each site are coupled
antiferromagnetically to a local moment. We can gain a lot of insight by examining the
strong-coupling limit, in which the dispersion of the conduction sea is much smaller than
J, so that t/J << 1 is a small parameter. In this limit, the intersite hopping is a perturbation
to the onsite Kondo insteraction:

H
t/J→0−→ J

∑

j,αβ

σ⃗j · S⃗j + O(t), (17.146)

and the ground state corresponds to the formation of a spin singlet at each site, denoted by
the wavefunction

|KI⟩ =
∏

j

1√
2

(
⇑j↓j − ⇓j↑j

)
, (17.147)

where the double and single arrows denote the localized moment and conduction electron,
respectively, as illustrated in Figure 17.13(a).


