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In the new basis, the action becomes

S =
∫ β

0
dτ

∫
d3xψ̄(x)

[
∂τ − ∇2

2m
− µ

]
ψ(x).

The discrete and continuous measures, (12.133) and (12.134), respectively, are equiva-
lent: ∏

k,n

dc̄kndckn ≡ D[ψ̄ , ψ]

because the space of continuous functions ψ(x) is spanned by a complete but discrete
set of basis functions:

ψ(x, τ ) = 1√
βV

∑

k,n

cknei(k·x−ωnτ ).

We can integrate over all possible functions ψ(x, τ ) by integrating over all values of the
discrete vector ckn.

12.4.3 Gaussian path integral for fermions

For non-interacting fermions the action only involves bilinears of the Fermi fields, so the
path integral is of Gaussian form and can always be evaluated. To discuss the most general
case, we shall include source terms in the original Hamiltonian, writing

H(τ ) =
∑

λ

[
ελĉ†

λĉλ − j̄λ(τ )ĉλ − ĉ†
λjλ(τ )

]
,

where ĉ†
λ is Schrödinger field that creates a fermion in the eigenstate with energy ελ. With

source terms, the partition function becomes a generating functional,

Z[j̄, j] = Tr
[

T exp
{
−

∫ β

0
dτH(τ )

}]
.

Derivatives of the generating functional generate the irreducible Green’s functions of the
fermions; for instance,

δlnZ[j̄, j]
δj̄(1)

= 〈c(1)〉 (12.135)

δ2lnZ[j̄, j]
δj(2)δj̄(1)

= 〈T[c(1)c†(2)]〉 − 〈c(2)〉〈c†(1)〉, (12.136)

where

〈. . .〉 = 1
Z[j̄, j]

Tr
[

T exp
{
−

∫ β

0
dτH(τ )

}
. . .

]
.

Transforming to a path integral representation,

Z[j̄, j] =
∫

D[c̄, c]e−S (12.137)

S =
∫

dτ

[
c̄(τ )(∂τ + h)c(τ ) − j̄(τ )c(τ ) − c̄(τ )j(τ )

]
, (12.138)
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where hαβ = εαδαβ is the one-particle Hamiltonian. One can carry out functional
derivatives on this integral without actually evaluating it. For example, we find that

〈c(1)〉 = 1
Z[ j̄, j]

∫
D[c̄, c]c(1)e−S (12.139)

〈T[c(1)c†(2)]〉 = 1
Z[ j̄, j]

∫
D[c̄, c]c(1)c̄(2)e−S. (12.140)

Notice how the path integral automatically furnishes us with time-ordered expectation
values.

Fortunately, the path integral is Gaussian, allowing us to use the general result obtained
in Appendix 12D,

∫ ∏

j

dξ̄jdξj exp[−ξ̄ · A · ξ + j̄ · ξ + ξ̄ · j] = det A exp[ j̄ · A−1 · j]. (12.141)

In the case considered here, A = ∂τ + h, so we can do the integral to obtain

Z[j̄, j] =
∫

D[c̄, c] exp
[
−

∫
dτ

[
c̄(τ )(∂τ + h)c(τ ) − j̄(τ )c(τ ) − c̄(τ )j(τ )

]]

= det[∂τ + h ] exp
[
−

∫
dτdτ ′ j̄(τ )G[τ − τ ′] j(τ ′)

]
, (12.142)

where

G[τ − τ ′] = −(∂τ + h)−1. (12.143)

By differentiating (12.142) with respect to j and j̄, we are able to identify

δ2 ln Z

δj(τ ′)δj̄(τ )

∣∣∣∣
j̄,j=0

= (∂τ + h)−1 = 〈c(τ )c†(τ ′)〉 = −G[τ − τ ′], (12.144)

so the inverse of the Gaussian coefficient in the action −[∂τ + h]−1 directly determines the
imaginary-time Green’s function of these non-interacting fermions. Higher-order moments
of the generating functional provide a derivation of Wick’s theorem.

From the partition function in (12.142), the free energy is then given by

F = −Tln Z = −Tln det[∂τ + h] = −TTr ln[∂τ + h] = TTr ln[−G−1],

where we have used the result ln det[A] = Tr ln[∂τ + h].
To explicitly compute the free energy, it is useful to transform to Fourier components:

cλ(τ ) = 1√
β

∑

n

cλne−iωnτ

jλ(τ ) = 1√
β

∑

n

jλne−iωnτ . (12.145)
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In this basis,

(∂τ + ελ) −→ (−iωn + ελ)

G = −(∂τ + ελ)−1 −→ (iωn − ελ)−1, (12.146)

so that

S =
∑

λ,n

[
[−iωn + ελ]c̄λncλn − j̄λncλn − c̄λnjλn

]
, (12.147)

whereupon

det[∂τ + h] = =
∏

λ,n

(−iωn + ελ)

Z[j̄, j] =
∏

λ,n

(−iωn + ελ) exp
[∑

λ,n

(−iωn + ελ)−1 j̄λnjλn

]
. (12.148)

If we set j = 0 in Z, we obtain the free energy in terms of the fermionic Green’s function:

F = −T
∑

λ,n

ln[−iωn + ελ].

As in the case of a single field, by replacing the Matsubara sum with a contour integral we
obtain

F =
∑

λ

∮
dz

2π i
f (z)ln[ελ − z] (12.149)

= −T
∑

λ

ln[1 + e−βελ ]. (12.150)

If we differentiate Z with respect to its source terms, we obtain the Green’s function:

− δ2lnZ

δj̄λnδjλ′n′
= [G]λn,λ′n′ = δλλ′δnn′

1
iωn − ελ

.

Example 12.6 Consider the Grassman integral

I = det
(

A B
C D

)
=

∫ ∏

j=1,N

dᾱjdαj
∏

k=1,M

dβ̄kdβk exp
[

(ᾱ, β̄)
(

A B
C D

)(
α

β

)]
, (12.151)

where A and B are square matrices of dimension N and M, respectively, and α and β

are column Grassman vectors of length N and M, respectively. By integrating out the β

variables first, prove the identity

det
(

A B
C D

)
= det

[
A − BD−1C

]
det D. (12.152)

Solution

By expanding the argument of the exponential in I, we can rewrite the integral in the form

I =
∫ ∫ ∏

j=1,N

dᾱjdαj exp
[
−ᾱAα

]
Y[ᾱ, α], (12.153)

Muammar
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If we expand the logarithm of the partition function diagrammatically, then we get a series
of linked-cluster diagrams,

ln(Z/Z0) = + + + + . . . ,

(12.158)
where the point interaction is represented by the Feynman diagram

1 2 = gδ(1 − 2).
(12.159)

Rather that thinking of an instantaneous contact interaction, we can regard this diagram as
the exchange of a force-carrying boson, writing the diagram as

1 2 ,= (i)2

vertices
×

Tφ(1)φ(2)

−gδ(1 − 2)

(12.160)

where the vertices (−i) derive from an interaction S′
I =

∫
x,τ ρ(x)φ(x), between the fermions

and the boson with imaginary-time Green’s function

G(1 − 2) = −〈Tφ(1)φ(2)〉 = −gδ(1 − 2). (12.161)

But this implies that the exchange boson has a white-noise correlation function
〈Tφ(1)φ(2)〉 = δ(1 − 2): this kind of white-noise correlation is exactly what we expect
for a field governed by a simple Gaussian path integral, where

∫
D[φ]φ(1)φ(2)e−Sφ

∫
D[φ]e−Sφ

= gδ(1 − 2), (12.162)

with the Gaussian action

Sφ =
∫

x

∫ β

0
dτ

φ(x)2

2g
. (12.163)

By adding Sφ + S′
I to the free fermion action, we can thus represent original point

interaction by a fluctuating white-noise potential,

− g
2
ρ(x)2 → ρ(x)φ(x) + φ(x)2

2g
. (12.164)

If we now insert this transformed interaction into the action, the transformed path integral
expression of the partition function becomes

Z =
∫

D[ψ , φ] exp
[
−

∫

x,τ

(
ψ̄(x)[∂τ + h + φ(x)]ψ(x) + 1

2g
φ(x)2

)]
. (12.165)

c
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where

SE[!̄, !] =
∑

j

∫
dτ

!̄j!j

g
− ln det[∂τ + hE[!̄, !]]

=
∑

j

∫
dτ

!̄j!j

g
− Tr ln[∂τ + hE[!̄, !]]. (12.179)

effective action

Here we have made the replacement ln det → Tr ln. This quantity is called the effective
action of the field !. The additional fermionic contribution to this action can profoundly
change the distribution of the field !. For example, if SE develops a minima around
! = !o #= 0, then ! = −A/g will acquire a vacuum expectation value. This makes
the Hubbard–Stratonovich transformation an invaluable tool for studying the development
of broken symmetry in interacting Fermi systems.

12.5.4 Generalizations to real variables and repulsive interactions

The method outlined in the previous section can also be applied to real fields. If we have
an interaction between real fields, we can introduce a real white-noise field as follows:

HI = −g
2

∑

j

A2
j →

∑

j

{

−g
2

A2
j +

q2
j

2g

}

. (12.180)

Then, by redefining qj = Qj + gAj, one obtains

− g
2

∑

j

A2
j →

∑

j

{

QjAj +
Q2

j

g

}

. (12.181)

For example, we can use the Hubbard–Stratonovich transformation to replace an attractive
interaction between fermions by a white-noise potential with variance g:

HI = −g
2

∑

j

(nj)2 →
∑

jσ

Vjnj +
V2

j

2g
,

where nj = nj↑ + nj↓.
But what about repulsive interactions? These require a little more care, because we can’t

just change the sign of g in (12.181), for the integral over the white-noise fields will no
longer be convergent. Instead, after introducing the dummy white-noise fields as before,

HI = g
2

A2
j →

∑

j

{
g
2

A2
j +

q2
j

2g

}

, (12.182)
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so that

i2
δ ln S[φ]

δφ(2)δφ(1)
= 〈ψ0|T{Sρ(1)ρ(2)}|ψ0〉

S[φ]
− 〈ψ0|Sρ(1)|ψ0〉

S[φ]
〈ψ0|Sρ(2)|ψ0〉

S[φ]

= 〈Tρ(1)ρ(2)〉 − 〈ρ(1)〉〈ρ(2)〉
= 〈T(ρ(1) − 〈ρ(1)〉)(ρ(2) − 〈ρ(2)〉) = 〈Tδρ(1)δρ(2)〉〉. (7.192)

With this result and (7.82), we can now identify

δ2 ln S [φ]
δφ(2)δφ(1) = Tδρ(1)δρ(2) = 1 2 .

(7.193)

7.6.1 Magnetic susceptibility of non-interacting electron gas

One of the fundamental qualities of a Fermi liquid is its non-local response to an applied
field. Suppose, for example, that one introduces a localized delta-function disturbance in
the magnetic field, δBz(x) = Bδ3(x). Since the fermions have a characteristic wavevector
of order kF , this local disturbance will “heal” over a length scale of order l ∼ 1/kF . Indeed,
since the maximum wavevector for low-energy particle–hole excitations is sharply cut off
at 2kF , the response produces oscillations in the spin density with a wavelength λ = 2π/kF

that decay gradually from the site of the disturbance. These oscillations are called Friedel
oscillations (Figure 7.5). In the case of the example just cited, the change in the spin density
in response to the shift in the chemical potential is given by

δM(%x) = χs(%x)B, (7.194)

-–2
–1

0
1

2

Bδ3(x)

kF r
2π

Friedel oscillations in the spin density, in response to a delta-function disturbance in the magnetic field at the origin.
These oscillations may be calculated from the Fourier transform of the Lindhard function.

!Fig. 7.5
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There are a number of important pieces of physics encoded in the above expression that
deserve special discussion:

• Spin conservation. The total spin of the system is conserved, so that the application
of a strictly uniform magnetic field to the fluid cannot change the total magnetization.
Indeed, in keeping with this expectation, if we take !q → 0 we find lim!q→0 χ (!q, ν) = 0.

• Static susceptibility. When we take the limit ν → 0, we obtain the magnetization
response to a spatially varying magnetic field. The static susceptibility is given by

χ (q) = 2µ2
B

∫

k

fk − fk+q

(εk+q − εk)
. (7.203)

This response is finite, because the spins can always redistribute themselves in response
to a non-uniform field. When we take the wavelength of the applied field to infinity,
i.e. q → 0, we recover the Pauli susceptibililty:

χ → 2µ2
B

∫

k

(
−df (ε)

dε

)
= 2µ2

B

∫

k
δ(εk) = 2µ2

BN(0), (7.204)

where N(0) = mkF
2π2 is the density of states per spin. The detailed momentum-dependent

static susceptibility can be calculated (see Section 7.6.2), and is given by

χ (q) = 2µ2
BN(0)F(

q
2kF

)

F(x) = 1
4x

(1 − x2); ln
∣∣∣∣
1 + x
1 − x

∣∣∣∣ + 1
2

. (7.205)

The function F(x) is known as the Lindhard function [5]; see Figure 7.6. It has the
property that F(0) = 1, while F′(x) has a weak logarithmic singularity at |x| = 1.

• Dissipation and the imaginary part of the susceptibility. The full dynamical spin
susceptibility has both a real and an imaginary part, given by

χ (q, ν) = χ ′(q, ν) + iχ ′′(q, ν),

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.2

0.4

0.6

0.8

1
F

q

2kF

q/(2kF)

The Lindhard function. The Fourier transform of this function governs the magnetic response of a non-interacting
metal to an applied field. Notice the weak singularity around q/(2kF) = 1 that results from the match between
the Fermi surface and the wavevector of the magnetic response.

!Fig. 7.6
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χ (q, ν)

ν/(4 F)

2

1

2

0

q/(2kF)

1

F

q ~ 0

q ~ 2k

!Fig. 7.7 Density plot of the imaginary part of the dynamical spin susceptibility calculated from (7.212), showing the band of
width 2kF that spreads up to higher energies. Excitations on the left side of the band correspond to low-momentum-
transfer excitations of electrons from just beneath the Fermi surface to just above the Fermi surface. Excitations on the
right-hand side of the band correspond to high-momentum-transfer processes, right across the Fermi surface.

where the imaginary part determines the dissipative part of the magnetic response. The
dissipation arises because an applied magnetic field generates a cloud of electron–hole
pairs which carry away the energy. If we use the Cauchy–Dirac relation 1/(x + iδ) =
P(1/x) − iπδ(x) in (7.202 ), we obtain

χ ′′(q, ν) = 2µ2
B

∫

k
πδ[ν − (εk+q − εk)](fk − fk+q). (7.206)

This quantity defines the density of states of particle–hole excitations. The excitation
energy of a particle–hole pair is given by

εk+q − εk = q2

2m
+ qk

m
cos θ ,

where θ is the angle between k and q. This quantity is largest when θ = 0, k = kF , and
smallest when θ = π , k = kF , so that

q2

2m
+ qkF

m
> ν >

q2

2m
− qkF

m
defines a band of allowed wavevectors where the particle–hole density of states is finite,
as shown in Figure 7.7. Outside this region, χ0(q, ν) is purely real.

7.6.2 Derivation of the Lindhard function

The dynamical spin susceptibility

χ (q, ν) = 2µ2
B

∫

k

fk − fk+q

(εk+q − εk − ν)
(7.207)

can be rewritten as

χ (q, ν) = 2µ2
B

∫

k
fk

[
1

(εk+q − εk − ν)
+ 1

(εk−q − εk + ν)

]
. (7.208)
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• the hydrogen atom in N dimensions
• an electron gas with N = 2S + 1 spin components
• spin systems with spin S in the limit that S becomes large
• quantum chromodynamics with N rather than three colours.

In each of these cases, the limit N → ∞ corresponds to a new kind of semiclassical limit,
where certain variables cease to undergo quantum fluctuations. The parameter 1/N plays
the role of an effective !:

1
N

∼ !. (7.213)

This does not, however, mean that quantum effects have been lost, merely that their
macroscopic consequences can be lumped into certain semiclassical variables.

We shall now examine the second of these examples. The idea is to take an interacting
Fermi gas where each fermion has N = 2S + 1 possible spin components. The interacting
Hamiltonian is still written

H =
∑

k,σ

εkc†
kσ ckσ + 1

2

∑
Vqc†

k+qσ c†
k′−qσ ′ck′σ ′ckσ , (7.214)

but now the spin summations run over N = 2S + 1 values rather than just two. As N is
made very large, it is important that both the kinetic energy and the interaction energy scale
extensively with N. For this reason, the original interaction Vq is rescaled, writing

Vq = 1
N

Vq, (7.215)

where it is understood that, as N → ∞, V is to be kept fixed. The idea is to now calculate
quantities as an expansion in powers of 1/N, and at the end of the calculation to give N
the value of specific interest, in our case N = 2. For example, if we are interested in a
Coulomb gas of spin– 1

2 electrons, then we study the family of problems where

Vq = 1
N

ẽ2

q2 = Vq

N
(7.216)

and ẽ2 = 2e2/ε0. At the end, we set N = 2, boldly hoping that the key features of the
solution around N = 2 will be shared by the entire family of models. In practice, this only
holds true if the density of the electron gas is large enough to avoid instabilities such as
the formation of Wigner crystal. For historical reasons, the approxation that appears in the
large-N limit is called the random phase approximation (RPA), a method developed during
the 1950s. The early version of the RPA was developed by David Bohm and David Pines
[6], while its reformulation in a diagrammatic language was later given by Hubbard [7].2

The large-N treatment of the electron gas recovers the RPA electron gas in a controlled
approximation.

With the above substitution, the Feynman rules are unchanged, except that now we
associate a factor 1/N with each interaction vertex. Before we start, however, there are
a few preliminaries; in particular, we need to know how to handle long-range Coulomb

2 A more detailed discussion of this early history can be found in the book by Nozières and Pines [8].
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interactions. We’ll begin considering a general Ṽq with a finite interaction range. To be
concrete, we can consider a screened Coulomb interaction

Vq = ẽ2

q2 + δ2 , (7.217)

where we take δ → 0 at the end of the calculation to deal with the infinite-range interaction.

7.7.1 Jellium: introducing an inert positive background

To deal with long-range Coulomb interactions (and take δ → 0 in (7.217)), we will need
to make sure that the charge of the entire system is actually neutral. The resulting medium
is a radically simplified version of matter playfully referred to as “jellium” (a term first
introduced by John Bardeen). In jellium, there is an inert and completely uniform back-
ground of positive charges, with charge +|e| and number density ρ+(x) = ρ+ adjusted so
that ρ+ = ρe, the density of electrons. The Coulomb interaction Hamiltonian of jellium
takes the form

HI = 1
2

∫

"x,"y
V(x − y) : (ρ̂(x) − ρ+)(ρ̂(y) − ρ+) : = 1

2

∫

"x,"y
V(x − y) : δρ(x)δρ(y) :, (7.218)

where ρ̂(x) is the density of electrons and δρ(x) = ρ̂(x) − ρ+ is the fluctuation of the
density. We see that the Coulomb energy of jellium is only sensitive to the fluctuations
in the density. The presence of the background charge has the the effect of shifting the
chemical potential of the electrons upward by an amount

#µ =
∫

V(x − x′)ρ+(x′) = Vq=0 ρ+. (7.219)

This chemical potential shift can be treated as a scattering potential that is diagonal
in momentum, #Vk,k′ = −#µδk,k′ , which introduces an additional uniform potential
scattering term into the electron self-energy:

= −∆µ = −Vq=0 ρ+.

(7.220)

If we compare this term with the “tadpole” diagrams in the self-energy,

= −i(2S + 1)Vq=0
k

G(k) = Vq=0 ρe,

(7.221)

where the double line indicates the use of the full fermion propagator G(k), we see that,
when we combine the two, provided ρe = ρ+, they cancel one another:

+ = 0.
(7.222)
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Thus by introducing a uniform positively charged background, we entirely remove the
tadpole insertions.

Let us now examine how the fermions interact in this large-N Fermi gas. We can expand
the effective interaction as follows:

iVeff (q)
=

iVq
N

+

iVq
N

χ

iVq
N

+

iVq
N

χ

iVq
N

χ

iVq
N

.+ . . .

(7.223)
The self-energy diagram for the interaction line is called a polarization bubble, and has the
following diagrammatic expansion:

=

O(N) O(1) O(1) O(1/N)

+ + + +  . . .χ = iNχ(q).

(7.224)
By summing the geometric series that appears in (7.223), we obtain

Veff = 1
N

V(q)
1 + V(q)χ (q)

. (7.225)

This modification of the interaction by the polarization of the medium is an example of
screening. In the large-N limit the higher-order Feynman diagrams for χ (q) are smaller by
factors of 1/N, so in the large-N limit these terms can be neglected, giving

iχ(q)N = iχ0(q)N + O(1) = + O(1).
(7.226)

The large-N approximation, where we replace χ (q) → χ0(q), is the random phase
approximation (RPA).

In the case of a Coulomb interaction, the screened interaction becomes

Veff (q, ν) = 1
N

ẽ2

q2εRPA(q, ν)
, (7.227)

where we have identified the quantity

εRPA(q, ω) = 1 + V(q)χ (q) = 1 + ẽ2

q2 χ0(q) (7.228)

as the dielectric function of the charged medium. Notice how, in the interacting medium,
the interaction between the fermions has become frequency-dependent, indicating that the
interactions between the particles are now retarded. In our discussion of the Lindhard
function, we showed that χ0(q) = N(0)F(q/(2kF)), ν/(4εF)), where F is the dimensionless
Lindhard function and N(0) = mkF

2π2!2 is the density of states per spin at the Fermi surface,
so we may write

εRPA(q, ω) = 1 + λ

(
F(q̃, ν̃)

q̃2

)
, (7.229)
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• The Bardeen–Pines interaction can be used to formulate an effective Hamiltonian for the
low-energy physics of jellium, known as the Bardeen–Pines Hamiltonian:

HBP =
∑

kσ

εkc†
kσ ckσ + 1

2

∑

k,k′
Veff (q, εk − εk′ )c†

k−qσ c†
k′+qσ ′ck′σ ′ckσ . (7.256)

Bardeen–Pines Hamiltonian

The Bardeen–Pines Hamiltonian is the predecessor of the Bardeen–Cooper–Schrieffer
(BCS) model, and demonstrates that, while the intrinsic electron–electron interaction
is repulsive, “overscreening” by the lattice causes it to develop a retarded attractive
component (see Exercise 7.8).

7.7.4 Zero-point energy of the RPA electron gas

Let us now examine the linked-cluster expansion of the ground state energy. Without the
tadpole insertions, the only non-zero diagrams are then

.

∆E
V =




+ + + + . . .

O(1)




+




+ + . . .

O(1/N)


 +




2O(1/N  )

+ . . .



+ . . .

(7.257)

These diagrams are derived from the zero-point fluctuations in charge density, which
modify the ground state energy E → E0 + Ezp. We shall select the leading contribution,

Ezp

V = + + + + . . . .

O(1)
(7.258)

The nth diagram in this series has a symmetry factor p = 2n, and a contribution
(−χ0(q)V(q))n associated with the n polarization bubbles and interaction lines. The energy
per unit volume associated with this series of diagrams is thus

Ezp = i
∞∑

n=1

1
2n

∫
d4q

(2π )4 (−χ0(q)V(q))n. (7.259)


