
17 Heavy electrons

Although the single-impurity Kondo problem was essentially solved by the early 1970s,
it took a further decade before the physics community was ready to accept the notion that
the same phenomenon could occur in a dense Kondo lattice of local moments, forming
quasiparticles with greatly enhanced masses that we now call heavy electrons. The early
resistance to change was rooted in a number of misconceptions about spin physics and
the Kondo effect. Some of the first heavy-electron systems to be discovered are supercon-
ductors, yet it was well known that small concentrations of magnetic ions, typically a few
percent, suppress conventional superconductivity, so the appearance of superconductivity
in a dense magnetic system appeared at first sight to be impossible. Indeed, the observation
of superconductivity in UBe13 in 1973 [1] was dismissed as an artifact, and ten more years
passed before it was revisited and acclaimed as a heavy-fermion superconductor, in which
the Kondo effect quenches the local moments to form a new kind of heavy-fermion metal
[2, 3]. In this chapter, we will study some of the key physics of Kondo lattices that makes
this possible.

17.1 The Kondo lattice and the Doniach phase diagram

Local-moment metals normally develop antiferromagnetic order at low temperatures. A
magnetic moment induces a cloud of Friedel oscillations in the spin density of a metal
with a magnetization profile given by

⟨M⃗(x)⟩ = −J
∫

d3x′χ (x − x′)⟨S⃗(x′)⟩, (17.1)

where J is the strength of the Kondo coupling and

χ (x) =
∫

q⃗
χ (q)eiq·x,

χ (q) = 2
∫

k

f (ϵk) − f (ϵk+q)
ϵk+q − ϵk

(17.2)

is the the non-local susceptibility of the metal. If a second local moment is introduced
at location x, then it couples to ⟨M(x)⟩, shifting the energy by an amount JS⃗(x) · ⟨M⃗(x)⟩,
giving rise to a long-range magnetic interaction called the RKKY interaction (named after
Ruderman, Kittel, Kasuya, and Yosida [4]):
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Illustrating how the polarization of spin around a magnetic impurity gives rise to Friedel oscillations, inducing an RKKY
interaction between the spins.

!Fig. 17.1

HRKKY = 1
2

∑

x,x′

JRKKY (x−x′)︷ ︸︸ ︷
−J2χ (x − x′) S⃗(x) · S⃗(x′), (17.3)

where the factor of 1
2 arises because of the summation over x and x′. The sharp discon-

tinuity in electron occupancy at the Fermi surface manifests itself as q = 2kF Friedel
oscillations in the RKKY interaction (see Example 17.1),

JRKKY (r) ∼ J2ρ
cos 2kFr

|r|3 , (17.4)

where r is the distance from the impurity and ρ is the conduction electron density of states
per spin (see Figure 17.1). The oscillatory nature of this magnetic interaction tends to
frustrate the interaction between spins, so that, in alloys containing a dilute concentration
of magnetic transition metal ions, the RKKY interaction gives rise to a frustrated, glassy
magnetic state known as a spin glass, but in dense systems the RKKY interaction typically
gives rise to an ordered antiferromagnet with a Néel temperature TN ∼ J2ρ.

The first heavy-electron materials to be discovered are now called Kondo insulators [5].
In the late 1960s, Anthony Menth, Ernest Buehler, and Ted Geballe at AT&T Bell Lab-
oratories [6] discovered an unusual metal, SmB6, containing magnetic Sm3+ ions. While
apparently a magnetic metal with a Curie–Weiss susceptibility at room temperature, on
cooling SmB6 transforms continuously into a paramagnetic insulator with a tiny 10 meV
gap. The subsequent discovery of similar behavior in SmS under pressure led Brian Maple
and Dieter Wohlleben [7], working at the University of California, San Diego, to pro-
pose that quantum mechanically coherent valence fluctuations in rare-earth ions destabilize
magnetism, allowing the f -spin to delocalize into the conduction sea. SmS and SmB6 are
special cases, where the additional heavy f -quasiparticles dope the metal to form a highly
correlated insulator. More typically, however, this process gives rise to a heavy-fermion
metal.

The first heavy-fermion metal, CeAl3 was discovered by Klaus Andres, John Graebner,
and Hans Ott in 1976 [3]. Like many other heavy-fermion metals, this metal displays:

• a Curie–Weiss susceptibility χ ∼ (T + θ )−1 at high temperatures
• a paramagnetic spin susceptibility χ ∼ constant at low temperatures, in this case below

1 K
• a dramatically enhanced linear specific heat CV = γ T at low temperatures, where in

CeAl3 γ ∼ 1600 mJ/(mol K2) is about 1600 times larger than in copper
• a quadratic temperature dependence of the low-temperature resistivity ρ = ρ0 + AT2.

Andres, Graebner, and Ott proposed that the ground-state excitations of CeAl3 were those
of a Landau Fermi-liquid, in which the effective mass of the quasiparticles is about 1000
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bare electron masses. The Landau Fermi-liquid expressions for the magnetic susceptibility
χ and the linear specific heat coefficient γ are

χ = (µB)2 N∗(0)
1 + Fa

0

γ = π2k2
B

3
N∗(0), (17.5)

where N∗(0) = m∗
m N(0) is the renormalized density of states and Fa

0 is the spin-dependent
part of the s-wave interaction between quasiparticles. What could be the origin of this huge
mass renormalization? Like other cerium heavy-fermion materials, the cerium atoms in
this metal are in a Ce3+(4f 1) configuration, and because they are spin–orbit coupled, they
form huge local moments with a spin of J = 5/2. In their paper, Andres, Ott, and Graebner
suggested that a lattice version of the Kondo effect is responsible.

Three years later, in 1979, Frank Steglich and collaborators, working at the Technical
Hochshule in Darmstadt, Germany [2], discovered that the heavy-fermion metal CeCu2Si2
becomes superconducting at 0.5 K. This pioneering result was initially treated with great
scepticism, but today we recognize it as the discovery of electronically mediated supercon-
ductivity, establishing not only that heavy fermions form within a Kondo lattice, but that
they can also pair to form heavy-fermion superconductors.

These discoveries prompted Neville Mott [8] and Sebastian Doniach [9] to propose that
heavy-electron systems should be modeled as a Kondo–lattice, where a dense array of
local moments interact with the conduction sea via an antiferromagnetic interaction J. The
simplest Kondo lattice Hamiltonian [10] is

H =
∑

kσ

ϵkc†
kσ ckσ + J

∑

j

S⃗j · c†
jασ⃗αβcjβ , (17.6)

where

c†
jα = 1√

N s

∑

k

c†
kαeik·Rj (17.7)

creates an electron at site j. Mott and Doniach pointed out that there are two energy scales
in the Kondo lattice: the Kondo temperature TK and the RKKY scale ERKKY :

TK = De−1/(2Jρ)

ERKKY = J2ρ. (17.8)

For small Jρ, ERKKY >> TK , leading to an antiferromagnetic ground state, but when
Jρ is large, TK >> ERKKY , stabilizing a ground state in which every site in the lattice
resonantly scatters electrons. Working at Stanford, Remi Jullien, John Fields, and Sebastian
Doniach were later able to confirm the correctness of this argument in a simplified one-
dimensional “Kondo necklace” model [11], finding that the transition between the two
regimes is a continuous quantum phase transition in which the characteristic scale of the
antiferromagnet and paramagnet drops to zero at the transition (see Figure 17.2). This led
Doniach to conjecture [9] that the general transition between the antiferromagnet and the
dense Kondo state is a continuous quantum phase transition. In the Kondo lattice ground
state which ensues, Bloch’s theorem ensures that the resonant elastic scattering at each
site will generate a renormalized f -band, of width ∼ TK . In contrast with the impurity
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T N ~
 J

2 ρ

Jρ

Doniach phase diagram for the Kondo lattice, illustrating the antiferromagnetic regime and the heavy-fermion regime
forTK < TRKKY andTK > TRKKY , respectively. The effective Fermi temperature of the heavy Fermi liquid is
indicated by a solid line. Experimental evidence suggests that in many heavy-fermion materials this scale drops to
zero at the antiferromagnetic quantum critical point.

!Fig. 17.2

Kondo effect, here elastic scattering at each site acts coherently. For this reason, as the
heavy-electron metal develops at low temperatures, its resistivity drops towards zero (see
Figure 17.3(a)).

One of the fascinating aspects of the Kondo lattice concerns the Luttinger sum rule.
Richard Martin [14], working at the Xerox Palo Alto Research Center, pointed out that
the Kondo impurity and lattice models can both be regarded as the result of adiabatically
increasing the interaction strength U in a corresponding Anderson model, while preserving
the valence of the magnetic ion. During this process, the conservation of charge gives
rise to “node-counting” sum rules. In the previous chapter we saw that, for an impurity,
the scattering phase shift at the Fermi energy counts the number of localized electrons,
according to the Friedel sum rule,

∑

σ

δσ

π
= nf = 1.

This sum rule survives to large U, and reappears as the constraint on the scattering phase
shift created by the Kondo. In the lattice, the corresponding sum rule is the ‘Luttinger sum
rule’, which states that the Fermi surface volume counts the number of electrons, which at
small U is just the number of localized (4f, 5f , or 3d) and conduction electrons. When U
becomes large, the number of localized electrons is now the number of spins, so that
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Schematic illustration of the Kondo effect. (a) Single spin in a conduction sea “ionizes” into a Kondo singlet and a
heavy fermion orbiting in the vicinity of the Kondo singlet, forming a Kondo resonance at the Fermi surface. (b)
Immersion of a lattice of spins in a conduction sea injects a resonance at each site in the lattice, giving rise to a new
band of delocalized heavy fermions with a hybridization gap. The density of carriers is increased in the Kondo lattice.

!Fig. 17.4

dramatic drop in the resistivity. The thermodynamics of the dense and dilute systems are
essentially identical, but the transport properties display the effects of coherence.

The most direct evidence that the Fermi surface of f -electron systems counts the
f -electrons derives from quantum oscillation (de Haas–van Alphen and Shubnikov–de
Haas oscillation) measurements of the Fermi surface [16, 17]. Typically, in the heavy Fermi
liquid, the measured de Haas–van Alphen orbits are consistent with band-structure calcu-
lations in which the f -electrons are assumed to be delocalized. By contrast, the measured
masses of the heavy electrons often exceed the band-structure calculated masses of the nar-
row f -band by an order of magnitude or more. Perhaps the most remarkable discovery of
recent years is the observation that the volume of the f -electron Fermi surface appears to
“jump” to a much smaller value when the f -electrons antiferromagnetically order, indi-
cating that, once the Kondo effect is interrupted by magnetism, the heavy f -electrons
relocalize [18].

Example 17.1 The RKKY interaction between two moments in a Fermi liquid is given by

JRKKY (x) = −J2
∫

d3q
(2π )3 eiq·xχ (q), (17.10)

where, as shown in Chapter 7, χ (q) = 2ρF[q/2kF] is the static magnetic susceptibility and

F(x) = 1
2

+ 1 − x2

4x
ln

∣∣∣∣
1 + x
1 − x

∣∣∣∣ (17.11)
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is the Lindhard function. Use the Fourier transform
∫ ∞

0
dy sin(αy) ln

∣∣∣∣
1 + y
1 − y

∣∣∣∣ = π
sin α

α
(17.12)

to show that the real-space RKKY interaction between local moments is given by

JRKKY (r) = J2ρ
1

2π2r3

[
cos 2kFr − sin 2kFr

2kFr

]
, (17.13)

where r is measured in lattice units.

Solution

We begin by using the isotropy of χ (q) = χ (q) to carry out the angular integral in the
Fourier transform:

χ (x) =
∫

q
eiq·xχ (q) =

∫ ∞

0

4πq2dq
(2π )3

sin qr
qr︷ ︸︸ ︷∫

d+

4π
eiq·x χ (q) = 1

2π2r

∫ ∞

0
dq q sin(qr)χ (q)

= 2ρ

2π2r

∫ ∞

0
dq q sin(qr)F

[
q

2kF

]
. (17.14)

If we change variable to y = q/(2kF), so that dq q = (2kF)2y dy, we obtain

χ (r) = ρ

π2r
(2kF)2

∫ ∞

0
dy y sin(2kFry)F[y] = ρ

π2r
(2kF)2G[2kFr], (17.15)

where

G[α] =
∫ ∞

0
dy sin(αy)

(
y
2

+ (1 − y2)
4

ln
∣∣∣∣
1 + y
1 − y

∣∣∣∣

)
. (17.16)

Notice that near y ∼ 1 the singular part of the integrand goes as dy(y − 1) ln(y − 1), and
since the singular part of the integral has dimension [y2] ≡ [α−2], we expect this integral
to have a 1/α2 ∼ 1/(kFr)2 dependence. To Fourier transform the last two terms in (17.16),
we use the result ∫ ∞

0
dy sin(αy) ln

∣∣∣∣
1 + y
1 − y

∣∣∣∣ = π
sin α

α
. (17.17)

(This result is obtained as the inverse Fourier transform of sin α/α.) By differentiating
both sides twice with respect to α, we then obtain

∫ ∞

0
dy sin(αy)(1 − y2) ln

∣∣∣∣
1 + y
1 − y

∣∣∣∣ = π

(
1 + d2

dα2

)
sin α

α

= −2π

(
cos α

α2 − sin α

α3

)
, (17.18)

with the expected 1/α2 dependence. To complete the job we need to Fourier transform the
first term in (17.16). If we differentiate

∫ ∞
−∞ dx cos αy = 2πδ(α) with respect to α, we

obtain ∫ ∞

0
dy y sin αy = −πδ′(α). (17.19)
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Combining (17.18) and (17.19), we obtain

G[α] = π

2

[
sin α

α3 − cos α

α2 − δ′(α)
]

. (17.20)

When inserted into (17.15) we finally obtain

JRKKY (r) = −J2χ (r) = J2ρ

2πr3

[
cos 2kFr − sin 2kFr

2kFr

]
, (17.21)

where we have dropped the δ′(2kFr) term. Notice that at small distances JRKKY (r) < 0 is a
ferromagnetic interaction.

17.2 The Coqblin–Schrieffer model

17.2.1 Construction of the model

The stabilization of the heavy-fermion state in f -electron materials owes its origins to the
strong spin–orbit coupling, which locks the spin and orbital angular momentum into a large
half-integer moment that is unquenched by crystal fields. For example, in Ce3+ ions, the
4f 1 electron is spin–orbit coupled into a state with j = 3− 1

2 = 5
2 , giving a spin degeneracy

of N = 2j + 1 = 6. Ytterbium heavy-fermion materials involve the Yb:4f 13 configuration,
which is most readily understood as a single hole in the filled 4f 14 f -shell, with one hole
in the upper spin–orbit multiplet with angular momentum j = 3 + 1

2 = 7
2 , or N = 8. The

large spin degeneracy N = 2j + 1 of the local moments has the effect of enhancing the
Kondo temperature to a point where the zero-point spin fluctuations destroy magnetism.

The presence of large spin–orbit coupling requires a generalization of the Kondo model
developed by Coqblin and Schrieffer [19]: they considered a spin–orbit coupled version
of the infinite U Anderson model in which the z component of the electron angular
momentum, M ∈ [−j, j], runs from −j to j:

H =
∑

k,M

ϵkc†
kMckM + Ef

∑

M

|f 1 : M⟩⟨f 1 : M| +
∑

k,M

V
[
c†

kM|f 0⟩⟨f 1 : M| + H.c.
]

. (17.22)

In this model, both the f - and the conduction electrons carry spin indices M that run
from −j to j. This strange feature is a consequence of rotational invariance, which causes
total angular momentum J⃗ to be conserved by hybridization process: this means that the
hybridization is diagonal in a basis where partial-wave states of the conduction sea are
written in states of definite j. In this basis, spin–orbit coupled f -states hybridize diagonally
with partial wave-states of the conduction electrons in the same spin–orbit coupled j states
as the f -electron. Suppose |kσ ⟩ represents a plane wave of momentum k; then one can
construct a state of definite orbital angular momentum l by integrating the plane wave with
a spherical harmonic, as follows:

|klmσ ⟩ =
∫

d+

4π
|kσ ⟩Ylm(k̂). (17.23)
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When spin–orbit interactions are strong, one must work with a partial wave of definite j,
obtained by combining these states in the following linear combinations:

|kM⟩ =
∑

σ=± 1
2

|klM − σ , σ ⟩
(

lM − σ ,
1
2
σ

∣∣∣∣ jM
)

, (17.24)

where (lm, 1
2σ

∣∣ jM) is the Clebsch–Gordan coefficient between the spin–orbit coupled state
|jM⟩ and the l–s coupled state |lm, σ ⟩. These coefficients can be explicitly evaluated as

(
lM − σ ,

1
2

σ

∣∣∣∣ jM
)

=

⎧
⎨

⎩

√
1
2 + 2Mσ

(2l+1) , j = l + 1
2

sgn σ
√

1
2 − 2Mσ

2l+1 , j = l − 1
2

(
M ∈ [−j, j], σ = ±1

2

)
.

(17.25)
Putting this all together, a partial-wave state of definite j, M can then be written as

c†
kM =

∑

σ=± 1
2

∫
d+

4π
c†

k,σ Yσ ,M(k̂), (17.26)

where

Yσ ,M(k) =
(
l, M − σ ;

1
2
σ
∣∣ jM

)
Yl,M−σ (k̂) (17.27)

is a spin–orbit coupled spherical harmonic. Note that the spin–orbit coupled partial-wave
states form a complete basis for an impurity model involving a single spherically symmet-
ric magnetic site. This is no longer the case in a lattice, where the set of partial waves at
different sites is overcomplete, and an electron which sets off in one partial-wave state at
one site can arrive in another partial-wave state at another site.

When Ef << 0, the valence of the ion approaches unity (nf → 1) and one can integrate
out the virtual fluctuations f 1 ! f 0 + e− via a Schrieffer–Wolff transformation, to obtain
the Coqblin–Schrieffer model,

HCS =
∑

kM

ϵkc†
kMckM − J

∑

k,k′,M,M′
(f †

Mck′M)(c†
kM′ fM′) (M, M′ ∈ [−j, j]), (17.28)

where J = V2/|Ef | is the amplitude for the virtual process. The second term describes a
virtual fluctuation in which an f -electron with jz = M′ jumps out into the conduction sea,
creating a state with excitation energy of order |Ef |, only to be subsequently replaced by an
electron with jz = M. Notice how the f -charge Q = nf of the impurity is conserved, by the
spin-exchange interaction, [H, nf ] = 0, so that the interaction in the Coqblin–Schrieffer
model only involves the spin degrees of freedom. It is sometimes useful to rewrite the
Coqblin–Schrieffer model in the form

HCS =
∑

kM

ϵkc†
kMckM + J

∑

k,k′,M,M′
c†

kMck′M′

SM′M︷ ︸︸ ︷(
f †
M′ fM − 1

N
nf δM,M′

)
+V̂ (M, M′ ∈ [−j, j]),

(17.29)

where SM′M is the SU(N) generalization of a traceless Pauli spin operator. This form of
the model emphasizes that the interaction is a pure spin-exchange process. In writing this
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expression, we have omitted the elastic scattering term V̂ = J
( nf

N

)∑
k,k′,M(c†

kMck′M −δk,k′ )
which results from the rearrangement of the operators. This term does not renormalize, and
may be absorbed into a potential scattering phase shift of the conduction electrons off the
impurity, or a shift of the chemical potential (in the Kondo lattice).

Example 17.2 In a certain tetragonal crystalline environment, the low-lying ground state
of a Ce3+ ion is a |j = 5/2, MJ = ± 3

2 ⟩ state. The hybridization of this state with Bloch
waves of momentum |k| = k is described by the Hamiltonian

Hmv = V
∑

M=± 3
2

∫
k2dk
2π2

[
c†

kMfM + H.c.
]

, (17.30)

where V is the strength of hybridization near the Fermi energy and c†
kM creates a conduction

electron in an l = 3, j = 5/2, MJ = ± 3
2 partial-wave state of wavevector k.

(a) Recast Hmv using a plane-wave basis for the conduction electrons.
(b) Show that the hybridization vanishes along the z-axis of momentum space. Why does

this happen?

Solution

(a) We begin by rewriting the partial-wave states as plane waves. Using (17.26), we have

c†
kM =

∑

σ=± 1
2

∫
d+

4π
c†

k,σ YσM(k), (17.31)

where

YσM(k) =
(

3, M − σ ;
1
2
σ

∣∣∣∣
5
2

M
)

Y3,M−σ (k̂)

= sgn σ

√
1
2

− sgn(Mσ )
14

Y3,M−σ (k̂)
(

σ = ±1
2

, M = ±3
2

)
.

(17.32)

The hybridization Hamiltonian is then written

Hmv = V
∑

kσ ,M

[
c†

kσ YσM(k̂)fM + H.c.
]

. (17.33)

(b) Now the Clebsch–Gordan coefficients are either ±√
3/7 or ±√

4/7, so that

YσM(k) =
(

Y 1
2

3
2
(k̂) Y 1

2 − 3
2
(k̂)

Y− 1
2

3
2
(k̂) Y− 1

2 − 3
2
(k̂)

)

=

⎛

⎝

√
3
7 Y3,1(k̂)

√
4
7 Y3,−2(k̂)

−
√

4
7 Y3,2(k̂) −

√
3
7 Y3,−1(k̂)

⎞

⎠ . (17.34)

The spherical harmonics are given by (Mathematica: SphericalHarmonicY)

Y3,±1(k̂) = ∓
√

21
64π

(k̂x ± ik̂y)(4k̂2
z − 1) ∝ ∓(k̂x ± ik̂y)

Y3,±2(k̂) =
√

105
32π

(k̂x ± ik̂y)2k̂z ∝ ∓(k̂x ± ik̂y)2. (17.35)
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We see that, near the z-axis of momentum space, the off-diagonal components of Y
vanish quadratically with k, whereas the diagonal components vanish linearly, so that

Y(k̂) ∼
(

k̂x + ik̂y 0
0 (k̂x − ik̂y)

)

, (17.36)

which vanishes linearly with (k̂x, k̂y) along the z-axis. This mismatch occurs because
plane waves traveling along the z-axis carry ± 1

2 units of angular momentum in their
direction of motion, and therefore cannot hybridize with the high-spin MJ = ± 3

2
f -states, giving rise to a vorticity in the hybridization. This phenomenon is believed
to be important for the semi-metallic behavior in the compounds CeNiSn and CeRhSb
[20], sometimes called failed Kondo insulators.

17.2.2 Enhancement of the Kondo temperature

To get an idea of how the Kondo effect is modified by the large degeneracy, consider the
first-order renormalization of the interaction, which is given by the diagrams

Je f f (D ) =
J

+

J
N

J

= J + NJ2ρ ln ,D
D (17.37)

where the cross on the intermediate conduction electron state indicates that all states in the
energy window |ϵk| ∈ [D′, D] are integrated out. The important point to notice here is that
the rate of renormalization has been enhanced by a factor of N, due to the multiplicity of
intermediate hole states. We can immediately see that the second term is comparable with
the first at a scale D′ ≡ TK = D exp

[
− 1

NJρ

]
, with an N-fold enhancement of the coupling

constant. More precisely, we see that the beta function β(g) = ∂g(D′)/∂ ln D′ = −g2,
where g(D′) = NρJeff (D′). A more extensive calculation shows that the beta function to
third order takes the form

β(g) = dg
d ln D′ = −g2 + g3

N
. (17.38)

The beta function describes a family of Kondo models with different cut-offs D′ but the
same low-energy physics. We can determine TK as the temperature where the coupling
constant becomes of order unity, g ∼ 1. If we integrate out the conduction electrons with
energy greater than TK , we find

∫ D

TK

d ln D′ = ln
(

D
TK

)
=

∫ NJρ

1

dg
−g2 + g3/N

≈
∫ NJρ

1
dg

[
− 1

g2 − 1
Ng

]

= 1
NJρ

− 1 − 1
N

ln(NJρ), (17.39)

which leads to the Kondo temperature

TK = De(NJρ)
1
N exp

[
− 1

NJρ

]
, (17.40)
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so that large degeneracy enhances the Kondo temperature in the exponential factor. By con-
trast, the RKKY interaction strength is given by TRKKY ∼ J2ρ, and it does not involve any
N-fold enhancement factors. Thus, in systems with large spin degeneracy, the enhancement
of the Kondo temperature favors the formation of the heavy-fermion ground state.

In practice, rare-earth ions are exposed to the crystal fields of their host, which splits the
(N = 2j+1)-fold degeneracy into many multiplets. Even in this case, the large degeneracy
is helpful, because the crystal field splitting is small compared with the bandwidth. At
energies D′ large compared with the crystal field splitting Tx, D′ >> Tx, the physics is that
of an N-fold degenerate ion, whereas at energies D′ small compared with the crystal field
splitting, the physics is typically that of a Kramers doublet, i.e.

N − 2

2

xT

∂g
∂ ln D

=
{ −g2 (D >> Tx)

− 2
N g2 (D << Tx),

(17.41)

from which we see that, at low-energy scales, the leading-order renormalization of g is
given by

1
g(D′)

= 1
NJρ

− ln
(

D
Tx

)
− 2

N
ln

(
Tx

D′

)
,

where the first logarithm describes the high-energy screening with spin degeneracy N, and
the second logarithm describes the low-energy screening with spin degeneracy 2. This
expression is ∼ 0 when D′ ∼ T∗

K , the Kondo temperature, so that

0 = 1
NJρ

− ln
(

D
Tx

)
− 2

N
ln

(
Tx

T∗
K

)
,

from which we deduce that the renormalized Kondo temperature has the form [21]

T∗
K = D exp

(
− 1

2J0ρ

)(
D
TX

)N
2 −1

.

Here the first factor is the expression for the Kondo temperature of a spin factor 1
2 Kondo

model. The second captures the enhancement of the Kondo temperature derived from the
renormalization on scales larger than the crystal field splitting. For Tx ∼ 100 K, D ∼
1000 K and N = 6, the enhancement factor is of order 106/2−1 = 100. In short, spin–orbit
coupling substantially enhances the Kondo temperature even in the presence of crystal
fields, and this is an important source of stabilization for the Kondo lattice in local-moment
rare-earth and actinide materials. The absence of this effect in transition metal systems
means that they are much more prone to the formation of spin glasses rather than heavy-
fermion metals.1

1 To obtain heavy-fermion behavior in transition metal systems, one needs magnetic frustration. A good example
of such behavior is provided by the pyrochlore transition metal heavy-fermion system LiV2O3; see [22].
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17.3 Large-N expansion for the Kondo lattice

17.3.1 Preliminaries

In the early 1980s, Anderson [23] pointed out that the large spin degeneracy N = 2j + 1
furnishes a small parameter 1/N which could be used to develop a controlled expansion
about the limit N → ∞. Anderson’s observation opened up a new approach to the heavy-
fermion problem: the large-N expansion [24, 25].

In 1983, two groups, Dennis Newns and Nicholas Read at Imperial College, London,
working with Sebastian Doniach at Stanford University [26], and Piers Coleman, the
author, working with Philip W. Anderson at Princeton [27], realized that, in the large-N
limit, the RKKY interaction in the Kondo model could be ignored relative to the Kondo
effect. The basic idea is simple: since the Kondo temperature in the N-fold degenerate
Coqblin–Schrieffer model is given by (17.40),

TK = De(NJρ)
1
N exp

[
− 1

NJρ

]
, (17.42)

then to take the large-N limit at fixed Kondo temperature, one must keep J̃ = NJ fixed.
However, if one takes N → ∞, the rescaled RKKY interaction J2ρ = 1

N2 J̃2ρ ∼ O(1/N2)
is of order 1/N2, and hence vanishes in the large-N limit (Figure 17.5(b)), so the Kondo
lattice is stable against magnetism in the large-N limit.

Building on this idea, and taking advantage of Edward Witten’s large-N approach to the
Gross–Neveu problem [24] and earlier path-integral formulations of the Kondo problem
[28, 29], Nicholas Read and Dennis Newns formulated a large-N path integral approach
for the Kondo lattice [26, 30, 31], work later extended by Assa Auerbach and Kathryn
Levin at the University of Chicago [32]. We shall later examine how this method can be
extended to include valence fluctuations in the infinite Anderson model using slave bosons
[30, 31, 33–35].

The basic idea is to take a limit where every term in the Hamiltonian grows extensively
with N. In the path integral for the partition function, the corresponding action then grows
extensively with N, so that

mm
(a) (b)

m1

m1

m1

m

O (I / N 2)

m

~
J / N

J = 
~
J / N

~
J / Ni j

m1!Fig. 17.5 Diagrams from [27]: (a) The Kondo exchange process is of order O(1/N) so that (b) the RKKY interaction, which
exchanges spin between two sites, is of order O(1/N2) and may be neglected in the large-N limit.
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Schematic diagram illustrating the convergence of a quantum path integral about a semiclassical trajectory in the
large-N limit.

!Fig. 17.6

Z =
∫

D[ψ]e−NS =
∫

Dψ exp
[
− S

1/N

]
≡

∫
D[ψ] exp

[
− S

!eff

]
. (17.43)

Here

1
N

∼ !eff

behaves as an effective Planck’s constant for the theory, focusing the path integral into a
non-trivial “semiclassical” or mean-field solution as !eff → 0. As N → ∞, the quantum
fluctuations of intensive variables â, such as the electron density per spin, become smaller
and smaller, scaling as ⟨δa2⟩/⟨a2⟩ ∼ 1/N, causing the path integral to focus around a non-
trivial mean-field trajectory. In this way, one can obtain new results by expanding around
the solvable large-N limit in powers of 1

N . For the Kondo model, we are lucky, because
much of the important physics of is already captured by the large-N limit (Figure 17.6).

For simplicity, we shall consider a toy Kondo lattice, in which all electrons have a spin
degeneracy N = 2j + 1, interacting with the local moment at each site via a Coqblin–
Schrieffer interaction,

H =
∑

kα

ϵkc†
kαckα + J

N

∑

j,αβ

c†
jβcjαSαβ (j), (17.44)

where c†
jα = 1√

Ns

∑
k c†

kαe−ik·R⃗j creates an electron localized at site j, and the spin of the
local moment at position Rj is represented by pseudo-fermions:

Sαβ (j) = f †
jαfjβ − nf (j)

N
δαβ . (17.45)

This representation requires that we set a value for the conserved f -occupancy nf (j) at each
site. In preparation for a path integral approach, we rewrite the interaction in the factorized
form encountered in (17.28), so that now
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H =
∑

kα

ϵkc†
kαckα − J

N

∑

j,αβ

:
(

c†
jβ fjβ

) (
f †
jαcjα

)
:, (17.46)

Read–Newns model for the Kondo lattice

where the potential scattering terms resulting from the rearrangement of the f -operators
have been absorbed into a shift of the chemical potential. Notice the following:

• In this factorized form, the antiferromagnetic Kondo interaction is attractive.
• The coupling constant has been scaled to vary as J/N, to ensure that the interaction

grows extensively with N. The interaction involves the product of two terms that scale
as O(N), scaling as J/N × O(N2) ∼ O(N).

• The model has a global SU(N) symmetry associated with the conservation of the total
magnetization.

• This model neglects the effects of spin–orbit coupling and the non-conservation of spin
that is present in a typical rare-earth or actinide Kondo lattice material.

• The Coqblin–Schrieffer model also has a local gauge invariance: the absence of f -charge
fluctuations allows us to change the phase of the f -electrons independently at each site:

fjσ → eiφj fjσ . (17.47)

The appearance of local gauge symmetries in a strongly correlated electron problem is
actually a general phenomenon. Here, the incompressible nature of the f -electrons gives
rise to a constraint on the Hilbert space, which manifests itself as a gauge field.

Finally, before we continue, we need to decide what value to give the conserved charge
nf = Q. Most times, in the physical models of interest, nf = 1 at each site, so one might
be inclined to explicitly maintain this condition. However, the large-N expansion requires
that the action is extensive in N, and this forces us to consider more general classes of
solution where nf = Q also scales with N so that the f -filling factor q = Q/N is finite as
N → ∞. With this device, even if we only impose the constraint ⟨nf ⟩ = Q on the average,

the RMS fluctuations
√

⟨δn2
f ⟩ ∼ O(

√
N) can be neglected relative to Q ∼ O(N). Thus if

we’re interested in a Kramers doublet Kondo model, we take the half-filled case q = 1
2 ,

Q = N/2, but if we want to understand a j = 7/2 Yb3+ atom without crystal fields, then
in the physical system N = 2j + 1 = 8, and we should fix q = Q/N = 1

8 .

17.4 The Read–Newns path integral

To construct the path integral, we need to first take care of the constraint nf = Q. We want
to write the partition function as a trace:

Z = Tr

⎡

⎣e−βH
∏

j

PQ(j)

⎤

⎦ , (17.48)
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where PQ(j) projects out the states with nf (j) = Q at site j. The constraints PQ(j) commute
with the Hamiltonian and can be rewritten as a Fourier transform:

PQ(j) = δnfj,Q =
∫ 2π

0

dαj

2π
exp

[
−iαj(nfj − Q)

]
=

∫ 2π iT

0

dλj

2π iT
exp

[
−βλj(nfj − Q)

]
,

(17.49)
where λj = iαjT plays the role of a local chemical potential, integrated between λj = 0 and
λj = 2π iT along the imaginary axis. Substituting this expression for PQ(j) in the partition
function, we obtain

Z =
∫

D[λ]Tr
[
e−βH[λ]] , (17.50)

where now

H[λ] =
∑

kα

ϵkc†
kαckα − J

N

∑

j,αβ

:
(

c†
jβ fjβ

) (
f †
jαcjα

)
: +

∑

j

λj(nfj − Q) (17.51)

and formally D[λ] = ∏
j

dλj
2π iT . Now, following the lines of Chapter 11, we rewrite the trace

as a path integral:

Z =
∫

D[ψ†, ψ , λ] exp

⎡

⎢⎢⎣−
∫ β

0
dτ

L[ψ†,ψ ,λ]︷ ︸︸ ︷(
ψ†∂τψ + H[ψ̄ , ψ , λ]

)
⎤

⎥⎥⎦ , (17.52)

where ψ† ≡ ({c†}, {f †}) schematically represent the conduction and f -electron fields, while
ψ is its conjugate. Inside the path integral we shall use ψ† and ψ to represent the Grassman
co-ordinates of the path integral, with the understanding that when used outside the path
integral these symbols represents the corresponding field operators. Written in full, the
Lagrangian is

L[ψ†, ψ , λ] =
∑

k,σ

c†
kσ (∂τ + ϵk)ckσ +

∑

j

f †
jσ (∂τ + λj)fjσ

− J
N

∑

j,αβ

(
c†

jβ fjβ
) (

f †
jαcjα

)
−

∑

j

λjQ. (17.53)

The next step is to carry out a Hubbard–Stratonovich transformation on the interaction:

− J
N

∑

αβ

(
c†

jβ fjβ
) (

f †
jαcjα

)
→

∑

α

[
V̄j

(
c†

jαfjα
)

+
(

f †
jαcjα

)
Vj

]
+ N

V̄jVj

J
. (17.54)

In the original Kondo model, we started out with an interaction between electrons and
spins. Now, by carrying out the Hubbard–Stratonovich transformation, we have formulated
the interaction as the exchange of a charged boson:
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J
N ≡ ,

J
N δ(τ − τ )

c†β fβ f †αcα

− J
N k,k ,α,β

(c†β fβ)( f †αcα)
(17.55)

where the solid lines represent the conduction electron propagators and the dashed lines
represent the f -electron operators. Notice how the bare amplitude associated with the
exchange boson is frequency-independent, i.e. the interaction is instantaneous. Physically,
we may interpret this exchange process as due to an intermediate valence fluctuation.

The path integral now involves an additional integration over the hybridization fields V
and V̄:

Z =
∫

D[V̄ , V , λ]
∫

D[ψ†, ψ] exp
[
−

S[V̄ ,V ,λ, ψ†,ψ]︷ ︸︸ ︷∫ β

0
(ψ†∂τψ + H[V̄ , V , λ])

]

H[V̄ , V , λ] =
∑

k

ϵkc†
kσ ckσ +

∑

j

[
V̄j

(
c†

jσ fjσ
)

+
(

f †
jσ cjσ

)
Vj

+λj(nfj − Q) + N
V̄jVj

J

]
, (17.56)

Read–Newns path integral for the Kondo lattice

where we have suppressed summation signs for repeated spin indices (summation
convention).

The importance of the Read–Newns path integral is that it allows us to develop a mean-
field description of the many-body Kondo scattering processes that captures the physics and
is asymptotically exact as N → ∞. In this approach, the condensation of the hybridization
field describes the formation of bound states between spins and electrons that cannot be
dealt with in perturbation theory. Bound states induce long-range temporaral correlations
in scattering and, indeed, once the hybridization condenses, the interaction lines break up
into independent anomalous scattering events, denoted by

δV̄(1)δV(2)
→ V̄(1) V̄(2) .

The hybridization V in the Read–Newns action carries the local U(1) gauge charge of the
f -electrons, giving rise to an important local gauge invariance:


