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(a) Repeat the Schrieffer–Wolff transformation for the case of constant hybridization Vk =
V and particle–hole symmetry to show that the Kondo model with source terms now
becomes

HK[η̄, η] =
∑

kσ

ϵkc†
kσ cσ + J

(
ψ†(0) + V−1η̄

)
σ⃗

(
ψ(0) + V−1η

)
· S⃗. (16.119)

(b) By differentiating this expression with respect to η̄σ , show that in the Kondo model
the original f -electron operator has now become a composite operator involving a
combined conduction electron and spin-flip, as follows:

fα ≡ δHK[η̄, η]
δη̄α

= J
V

(
σαβ · S⃗

)
ψ(0)β . (16.120)

When a Fermi liquid develops, it is this object that behaves like a resonant bound-state
fermion.

Solution

(a) In the Anderson model, we can absorb the source term into the hybridization, writing
it in the form

V =
∑

(Vψ†
σ (0) + η̄σ )fσ + H.c., (16.121)

so that in the hybridization we have replaced ψσ (0) → ψσ (0)+ 1
V ησ . If we now repeat

the Schrieffer–Wolff transformation, the spin exchange term in the Kondo model takes
the form

HK[η̄, η] =
∑

kσ

ϵkc†
kσ cσ + J

(
ψ†(0) + V−1η̄

)
σ⃗

(
ψ(0) + V−1η

)
· S. (16.122)

(b) If we now differentiate HK with respect to η̄, we obtain

fσ ≡ δHK[η̄, η]
δησ

∣∣∣∣
η,η̄=0

= J
V

[
(σ⃗ · S⃗)ψ(0)

]

σ
. (16.123)

16.9 “Poor man’s” scaling

We now apply the scaling concept to the Kondo model. This was originally carried out by
Anderson and Yuval [12–14] using a method formulated in the time rather than the energy
domain. The method presented here follows Anderson’s “poor man’s” scaling approach
[31, 32], in which the evolution of the coupling constant is followed as the bandwidth of
the conduction sea is reduced. The Kondo model is written

H =
∑

|ϵk|<D

ϵkc†
kσ ckσ + H(I)
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H(I) = J(D)
∑

|ϵk|,|ϵk′ |<D

c†
kασ⃗αβck′β · S⃗f , (16.124)

where the density of conduction electron states ρ(ϵ) is taken to be constant. The poor
man’s renormalization procedure follows the evolution of J(D) that results from reducing
D by progressively integrating out the electron states at the edge of the conduction band.
In the poor man’s procedure, the bandwidth is not rescaled to its original size after each
renormalization. This avoids the need to renormalize the electron operators so that, instead
of (16.84), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluc-
tuations using the t-matrix formulation for the induced interaction )H, derived in the
previous section. Formally, the induced interaction is given by

)Hab = 1
2

[Tab(Ea) + Tab(Eb)],

where

Tab(E) =
∑

λ∈|H⟩

[
H(I)

aλH(I)
λb

E − EH
λ

]

,

where the energy of state |λ⟩ lies in the range [D′, D]. There are two possible intermedi-
ate states that can be produced by the action of H(I) on a one-electron state: either (I) the
electron state is scattered directly or (II) a virtual electron–hole pair is created in the inter-
mediate state. In process I, the t-matrix can be represented by the Feynman diagram

k β

b

kα

σ σσ a

k λ

for which the t-matrix for scattering into a high-energy electron state is

T (I)(E)k′βσ ′;kασ =
∑

ϵk′′ ∈[D−δD,D]

[
1

E − ϵk′′

]
J2(σ aσ b)βα(SaSb)σ ′σ

≈ J2ρδD
[

1
E − D

]
(σ aσ b)βα(SaSb)σ ′σ . (16.125)

In process II,

σσb a
,

k β

k λ

kα

σ

the formation of a particle–hole pair involves a conduction electron line that crosses itself,
leading to a negative sign. Notice how the spin operators of the conduction sea and antifer-
romagnet reverse their relative order in process II, so that the t-matrix for scattering into a
high-energy hole state is given by
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T (II)(E)k′βσ ′;kασ = −
∑

ϵk′′ ∈[−D,−D+δD]

[
1

E − (ϵk + ϵk′ − ϵk′′ )

]
J2(σ bσ a)βα(SaSb)σ ′σ

= −J2ρδD
[

1
E − D

]
(σ bσ a)βα(SaSb)σ ′σ , (16.126)

where we have assumed that the energies ϵk and ϵk′ are negligible compared with D.
Adding (16.125) and (16.126) gives

δHint
k′βσ ′;kασ = T̂ (I) + T̂ (II) = −J2ρ|δD|

D
[σ a, σ b]βαSaSb

= −1
2

J2ρ|δD|
D

2iϵabcσ c
︷ ︸︸ ︷
[σ a, σ b]βα

iϵabdSd
︷ ︸︸ ︷
[Sa, Sb]

= J2ρ|δD|
D

2δcd︷ ︸︸ ︷
ϵabcϵabd σ c

βαSd

= 2
J2ρ|δD|

D
σ⃗βα · S⃗σ ′σ . (16.127)

In this way we see that the virtual emission of a high-energy electron and hole generates
an antiferromagnetic correction to the original Kondo coupling constant:

J(D − |δD|) = J(D) + 2J2ρ
|δD|

D
= J(D) − 2J2ρ

δD
D

, (16.128)

since we have reduced the bandwidth, δD = −|δD|. In other words,

∂Jρ

∂ ln D
= −2(Jρ)2 (16.129)

or, in terms of the dimensionless coupling constant g = ρJ,

∂g
∂ ln D

= β(g) = −2g2 + O(g3). (16.130)

Now since β(g = 0) = 0 at g = 0, scaling comes to halt: we say that g = 0 is a fixed point.
It is instructive to rewrite the scaling equation in the form

∂ ln g
∂ ln(D0/D)

= 2g + O(g2), (16.131)

where D0 is the initial bandwidth. From this form, we see that the direction of the scaling
depends on the sign of g = Jρ (see Figure 16.16). As we reduce the size D of the cut-off,

• for antiferromagnetic g > 0, the magnitude of g grows. We say that the fixed point is
repulsive. In other words, spin fluctuations antiscreen the antiferrromagnetic interaction,
causing it to grow at low energies.

• for ferromagnetic g < 0, scaling reduces the magnitude of g, driving one ever closer to
the weak coupling fixed point at g = 0. In this case, the fixed point is attractive and spin
fluctuations screen the interaction, causing J to scale logarithmically slowly to zero at
low energies.
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J < 0

D ~ TK FL

J > 0FM

decoupled
moment

weak coupling weak coupling strong coupling

S =

S = 0

D >> TK
D <<TK

AFM 1 J(D)

Fixed point

Fixed point

∞0

1
2!Fig. 16.16 Schematic illustration of renormalization group flow in the Kondo model. For J < 0 (ferromagnetic), the coupling

constant scales to an attractive fixed point at J = 0, forming a decoupled local moment. For J > 0
(antiferromagnetic), scaling proceeds from a repulsive weak-coupling fixed point, via a crossover to an attractive
strong-coupling fixed point in which the local moment is screened by the conduction electrons, removing its internal
degrees of freedom to form a Fermi liquid. In the diagram, FM= ferromagnet, AFM= antiferromagnet, and FL =
Fermi liquid.

To examine these two cases in more detail, we integrate the scaling equation between
the initial bandwidth D0 and D′, writing

∫ g(D)

g0

dg′

g′2 = −2
∫ ln D′

ln D0

d ln D′′ (16.132)

or
(

1
g0

− 1
g(D′)

)
= −2 ln(D′/D0), (16.133)

where g0 = Jρ = g(D0) is the unrenormalized coupling constant at the original bandwidth
D0. In this case,

g(D′) = g0

1 − 2g0 ln D0
D′

. (16.134)

Let us look at the ferromagnetic and antiferromagnetic cases seperately.

Ferromagnetic interaction, g < 0

In this case,

g(D′) = − |go|
1 + 2|go| ln(D0/D′)

, (16.135)

which corresponds to a very gradual decoupling of the local moment from the surround-
ing conduction sea. The interaction is said to be marginally irrelevant, because it scales
logarithmically to zero, and at all scales the problem remains perturbative.
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Antiferromagnetic interaction, g > 0

For the antiferromagnetic case (g > 0), the solution to the scaling equation is

g(D′) = go

1 − 2go ln(D/D′)
= 1

2
1

ln(D′/D0) + 1
2g0

= 1
2

1

ln
[

D′
D0 exp(−1/(2g0)

] , (16.136)

where we have divided numerator and denominator by 2g0. It follows that

2g(D′) = 1
ln(D′/TK)

,

where we have introduced the Kondo temperature

TK = D0 exp
[
− 1

2go

]
. (16.137)

The Kondo temperature TK is an example of a dynamically generated scale.
Were we to take this equation literally, we would say that g diverges at the scale D′ = TK .

This interpretation is too literal, because the scaling has only been calculated to order g2.
Nevertheless it does show that the Kondo interaction can only be treated perturbatively at
energies large compared with the Kondo temperature. We also see that, once we have
written the coupling constant in terms of the Kondo temperature, all reference to the
original cut-off energy scale vanishes from the expression. This cut-off independence of
the problem is an indication that the physics of the Kondo problem does not depend on
the high-energy details of the model: there is only one relevant energy scale, the Kondo
temperature.

By calculating the higher-order diagrams shown in Figure 16.17, it is straightforward,
though somewhat technical (see Exercise 16.8), to show that the beta function to order g3

is given by
∂g

∂ ln D
= β(g) = −2g2 + 2g3 + O(g4). (16.138)

One can integrate this equation to obtain

ln
(

D′

D

)
=

∫ g

go

dg′

β(g′)
= −1

2

∫ g

go

dg′
[

1
g′2 + 1

g′ + O(1)
]

, (16.139)

Diagrams contributing to the third-order term in the beta function. See Exercise 16.8. !Fig. 16.17
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where we have expanded the numerator in 1
β(g) ≈ − 1

g2(1−g) − 1
g2 (1 + g) + O(1). A bet-

ter estimate of the temperature TK where the system scales to strong coupling is obtained
by setting D′ = TK and g = 1 in this equation, which gives

ln
(

TK

D

)
= −1

2

∫ 1

g0

dg′
[

1
g′2 + 1

g′

]
= − 1

2go
+ 1

2
ln 2go + O(1), (16.140)

where we have dropped the terms of order unity on the right-hand side. Thus, up to
a prefactor, the dependence of the Kondo temperature on the bare coupling constant is
given by

TK = D0
√

2goe− 1
2go . (16.141)

The square-root
√

g0 dependence on the coupling constant is often dropped in qualitative
discussions, but it is important for more quantitative comparisons.

Example 16.6 Consider the symmetric Anderson model. At energy scales greater than
U/2 the impurity is mixed-valent. However, once the cut-off D ∼ U/2, one must carry out
a Schrieffer–Wolff transformation.

(a) Show that the Kondo coupling constant of the symmetric Anderson model is g0 =
Jρ = 4)/(πU), where ) = πρV2 is the bare resonant level width of the Anderson
model.

(b) Using (16.141) with a cut-off D = U/2, derive the following form (16.72) for the
Kondo temperature of the symmetric Anderson model:

TK =
√

2U)

π
exp

(
−πU

8)

)
.

Solution

(a) In the symmetric Anderson model, Ef = −U/2. Assuming that the hybridization
Vk = V is constant, then from (16.108) the Kondo coupling constant is given by

g0 = Jρ = V2ρ

[
1

Ef + U/2
+ 1

−Ef

]
= 4

V2ρ

U
= 4)

πU
, (16.142)

where ) = πρV2.
(b) Using (16.141) with D = U/2, we obtain

TK = U
2

√
8)

πU
exp

(
− 8)

πU

)
=

√
2U)

π
exp

(
−πU

8)

)
. (16.143)

16.9.1 Kondo calculus: Abrikosov pseudo-fermions and the
Popov–Fedatov method

The awkward feature of spin operators is that they do not satisfy Wick’s theorm, so that we
cannot treat them directly in a Feynman diagram expansion. Kondo calculus requires that
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we overcome this difficulty, and a variety of methods have been developed. One tool that is
particularly useful is the Abrikosov pseudo-fermion representation [44], in which the spin
operator, is factorized in terms of a spin- 1

2 fermion field f †
σ , as follows:

S⃗ = f †
α

(
σ⃗

2

)

αβ

fβ . (16.144)

This has the advantage that one can now take advantage of Wick’s theorem. In Abrikosov’s
representation of a spin- 1

2 operator, the up and down states are now represented by the
states

|σ ⟩ = f †
σ |0⟩ (σ =↑, ↓). (16.145)

However, in using the f -electron one has inadvertently expanded the Hilbert space, intro-
ducing two unphysical states: the empty state |0⟩ and the doubly occupied state | ↑↓⟩ =
f †
↓ f †

↑ |0⟩, which need to be eliminated by requiring that

nf = 1. (16.146)

Conveniently, this constraint commutes with the spin operator, and hence is a constant of
the motion, provided the f -electrons only enter as spin operators in the Hamiltonian. An
ingenious way of imposing this constraint has been developed by Popov and Fedotov [53].
Their method introduces a complex chemical potential for the pseudo-fermions:

µ = −iπ
T
2

.

The partition function of the Hamiltonian is written as an unconstrained trace over the
conduction and pseudofermion Fock spaces:

Z = Tr
[
e−β(H+iπ T

2 (nf −1))
]

. (16.147)

Now since the Hamiltonian conserves nf , we can divide this trace into contributions from
the d0, d1, and d2 subspaces, as follows:

Z = eiπ/2Z(f 0) + Z(f 1) + e−iπ/2Z(f 2).

But since Sf = 0 in the f 2 and d0 subspaces, Z(f 0) = Z(f 2), so that the contributions to
the partition function from these two unwanted subspaces exactly cancel. In the Popov–
Fedotov approach, the bare f -propagators have the form

Gf (iω̃n) = 1
iωn + µ

= 1
iωn − iπT/2

= 1

i2πT(n + 1
4 )

, (16.148)

corresponding to a shifted Matsubara frequency ω̃n = 2πT(n+ 1
4 ). You can test this method

by applying it to a free spin in a magnetic field (see Example 16.7). The method can also
be extended to deal with spin-1 operators using −µ = iπT/3.

Example 16.7 Test the Popov–Fedotov trick [53]. Consider the magnetization of a free
electron with Hamiltonian

H = ϵσ f †
σ fσ . (16.149)



626 Local moments and the Kondo effect

Show that with ϵσ = −σB you obtain the wrong field dependence of the magnetization
M = tanh

( B
2T

)
, but that with the Popov–Fedotov form ϵσ = −σB + iπT

2 you recover the
Brillouin formula for a free spin,

M = tanh
(

B
T

)
. (16.150)

Solution

If we write

F = −T
∑

σ=±
ln

[
1 + e−βϵσ

]
, (16.151)

then the magnetization is given by

M = −∂F
∂B

=
∑

σ

σ f (ϵσ ). (16.152)

If we evaluate this expression with ϵσ = −σB, we obtain the wrong form for the
magnetization:

M = 1
e−βB + 1

− 1
eβB + 1

= (eβB − e−βB)
2 + 2 cosh βB

. (16.153)

We can see the problem: the extra contribution to the partition function from the empty and
doubly occupied sites gives Z = 2 + 2 cosh βB rather than Z = 2 cosh βB. If we simplify
this expression, we obtain

M = sinh βB
1 + cosh βB

= 2 sinh(βB/2) cosh(βB/2)

2 cosh2(βB/2)
= tanh

(
B

2T

)
,

which has the wrong field dependence. By contrast, if we use ϵσ = −σB + iπT
2 we obtain

M = 1
ie−βB + 1

− 1
ieβB + 1

= (eβB − e−βB)
2 cosh βB

= tanh
(

B
T

)
, (16.154)

recovering the Brillouin function.

Example 16.8 Explicitly calculate the Kondo scattering amplitude

−Γ = + +

to second order in J, using the Popov–Fedotov scheme. By examining the scattering
amplitude on the Fermi surface, show that the Kondo coupling constant is logarithmically
enhanced according to the formula

Jρ → Jρ + 2(Jρ)2 ln

[
Deπ/2−ψ( 1

2 )

2πT

]

, (16.155)

where ψ(x) is the digamma function.



16.9 “Poor man’s” scaling 627

Solution

We represent the conduction electron and f -electron propagators by the diagrams

= Gc(iωn,k) = 1
iωn − k

= G f (iωn) = ,1
iωn − λ f

(16.156)

where λf ≡ iπT
2 is the imaginary chemical potential that cancels the doubly occupied and

empty states. The first-order Kondo scattering amplitude is given by

Γ0 =

σ σ

= −J βα · S σ σ S σ σ ≡ 2 σ σ

.

(16.157)

Here the minus sign derives from the Feynman rules for an interaction vertex, and we have
used the shorthand S⃗ ≡ σ⃗

2 for the f -electron spin matrix elements.
The second-order scattering processes are given by

ΓI =

b

β

σ σ

α

a

= J2 σbσa
βα

S bS a
σ σ

π1(iνn)

(16.158)

ΓII =

b

α β

σσ a

= −J2 σaσb
βα

S bS a
σ σ

π2(iνn) ,

(16.159)

where iνn is the total energy in the particle–particle and particle–hole channels, respec-
tively. Note the −1 prefactor in /II and the inversion of the order of the conduction
electron Pauli matrices, which both derive from the crossing of the incoming and outgoing
conduction electron lines. Here,

iωr

iνn − iωr

= π1(iνn) = T
iωr ,k

1
iωr − k

1
iνn − iωr − λ f

,

(16.160)

and

iωr

iνn + iωr

= π2(iνn) = −T
iωr ,k

1
iωr − k

1
iνn + iωr − λ f

(16.161)

are the Kondo polarization bubbles in the particle–particle and particle–hole channels,
respectively.
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Now let us calculate the polarization bubbles (16.160) and (16.161). If we reverse the
sign of iωr → −iωr in the internal summation in (16.160) we obtain

π1(iνn) = −T
∑

iωr ,k

1
iωr + ϵk

1
iνn + iωr − λf

, (16.162)

and assuming a particle–hole symmetric conduction electron density of states, we can
replace ϵk → −ϵk, so that

π1(iνn) = π2(iνn) = −T
∑

iωr ,k

1
iωr − ϵk

1
iνn + iωr − λf

. (16.163)

Now this is a well-known fermion bubble, and we can use our standard method of contour
integration to carry out the summation over the internal Matsubara frequency iωr, to obtain

π2(iνn) =
∑

k

f (λ) − f (ϵk)
iνn − (λf − ϵk)

=
∫

dϵρ(ϵ)
f (λ) − f (ϵ)

iνn − (λf − ϵ)
, (16.164)

where ρ(ϵ) is the density of states per spin. The summation over energy in this integral is
a bit tricky. If we use a flat density of states, then at zero temperature

π2(iνn) = ρ

2

∫ D

−D

sgnϵ

iνn + ϵ
= ρ ln

(
D

|νn|

)
,

so the frequency provides the lower logarithmic cut-off. When we do the calculation at a
finite temperature, we expect that if T >> |νn| then the temperature becomes the cut-off,
so that our back-of-the-envelope estimate of this integral is

π2(iνn) ∼ ρ ln
(

D
max(|νn|, T)

)
.

To calculate the precise form of the integral takes more work, but can be done for a
Lorentzian density of states ρ(ϵ) = ρ0(ϵ), where 0(x) = D2/(ϵ2 + D2). Here we quote
the result (see Appendix 16A):

∫
dϵ0(ϵ)

(
f (λf ) − f (ϵ)

ϵ − ξ

)
= ln

D
2πT

− ψ

(
1
2

+ ξβ

2π i

)
− i

π

2
tanh(βλf /2), (16.165)

provided Im ξ > 0 (for the opposite sign, one takes the complex conjugate of the above).
Putting in λf = iπT/2, ξ = i(πT/2 − νn), we then obtain

π2(iνn) = ρ

∫
dϵ0(ϵ)

[
f (λf ) − f (ϵ)

ϵ − (λf − iνn)

]
= ρ

[
ln

D
2πT

− ψ

(
1
2

+ πT/2 − νn

2πT

)
+ π

2

]

= ρ

[
ln

Deπ/2

2πT
− ψ

(
1
2

+ πT/2 − νn

2πT

)]
(πT/2 − νn > 0). (16.166)

Strictly speaking, our result only holds for Im ξ > 0, i.e. when π/2 − νn = |A| > 0. The
other sign, where π/2 − νn = −|A| < 0, is obtained by taking the complex conjugate
of the result for positive π/2 − νn = |A|. But since the right-hand side is real, taking the



16.9 “Poor man’s” scaling 629

complex conjugate has no effect, so we see that the result only depends on the magnitude
|πT/2 − νn|, enabling us to write

π2(iνn) = ρ

[
ln

Deπ/2

2πT
− ψ

(
1
2

+ |νn − πT/2|
2πT

)]
. (16.167)

Notice that the analytic continuation of this expression contains a branch cut along the line
Im z = iπT/2, a consequence of using a non-Hermitian Hamiltonian (this can be fixed by
using a shifted Matsubara frequency for the f -lines). It follows that

π2(z) =

⎧
⎨

⎩
ρ

[
ln Deπ/2

2πT − ψ
(

1
2 + z−iπT/2

2π iT

)]
(Im z > πT/2)

ρ
[
ln Deπ/2

2πT − ψ
(

1
2 − z∗+iπT/2

2π iT

)]
(Im z < πT/2).

(16.168)

Adding up the second-order amplitudes, we obtain

−/(zpp, zph)βσ ′;ασ = −J
(
σ⃗βα · S⃗σ ′σ

)
+ J2ρ[π2(zpp)(σ bσ a)βα

− π2(zph)(σ bσ a)βα]
(

SbSa
)

σ ′σ
. (16.169)

Notice that the logarithmically divergent parts of the particle–hole and particle–particle
scattering are the same, while the low-energy parts differ by finite amounts. However, if
we examine the onshell scattering on the Fermi surface, i.e. with zph = zpp = iπT/2, then
we obtain

− / = −J
(
σ⃗βα · S⃗σ ′σ

)
+ J2ρ ln

Deπ/2−ψ(1/2)

2πT
[σ b, σ a]βα(SbSa)σ ′σ

= −J
(
σ⃗βα · S⃗σ ′σ

)
+ J2ρ ln

Deπ/2−ψ(1/2)

2πT
2iσ c

βα

iSc
︷ ︸︸ ︷
ϵbac(SbSa)σ ′σ

= −
[

J + 2J2ρ ln
Deπ/2−ψ(1/2)

2πT

] (
σ⃗βα · S⃗σ ′σ

)
, (16.170)

explicitly demonstrating the logarithmic renormalization of the coupling constant.

16.9.2 Universality and the resistance minimum

Provided the Kondo temperature is far smaller than the cut-off, then at low energies it is
the only scale governing the physics of the Kondo effect. For this reason, we expect all
physical quantities to be expressed in terms of universal functions involving the ratio of
the temperature or field to the Kondo scale. For example, the susceptibility

χ (T) = 1
T

F
(

T
TK

)
(16.171)

and the quasiparticle scattering rate

1
τ (T)

= 1
τo

G
(

T
TK

)
(16.172)
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both display universal behavior. If we change the cut-off of the model, adjusting the bare
coupling constant g0 so that TK is fixed, the physical quantities will be unchanged. If we
replace g0 → g(D) in (16.140), then all models with J(D)ρ = g(D), where

ln
(

TK

D

)
= − 1

2g(D)
+ 1

2
ln 2g(D), (16.173)

will have the same Kondo temperature and thus the same low-temperature behavior. How-
ever, we can view this another way: as the temperature is lowered, quantum processes
become coherent at increasingly lower energies, and the effective cut-off for quantum pro-
cesses is T . Thus, as the temperature is lowered, the coupling constant g0 is renormalized
to a new value,

g0 → g(T), (16.174)

where

ln
(

TK

T

)
= − 1

2g(T)
+ 1

2
ln 2g(T). (16.175)

In this way, lowering the temperature drives the system along the renormalization trajectory
from weak to strong coupling.

We can check the existence of universality by examining these properties in the weak-
coupling limit, where T >> TK . Here, we find

1
τ (T)

= 2πJ2ρS(S + 1)ni = 2π

ρ
S(S + 1)nig2

0

(
S = 1

2

)
(16.176)

χ (T) = ni

T
[1 − 2Jρ] = ni

T

[
1 − 2g0

]
, (16.177)

where ni is the density of impurities.
Now scaling, if it’s correct, implies that at lower temperatures Jρ → Jρ + 2(Jρ)2 ln D

T ,
so that to next leading order we expect

1
τ

= ni
2π

ρ
S(S + 1)

[
Jρ + 2(Jρ)2 ln

D
T

]2

(16.178)

χ (T) = ni

T

[
1 − 2Jρ − 4(Jρ)2 ln

D
T

+ O((Jρ)3)
]

. (16.179)

These results are confirmed in second-order perturbation theory as the result of adding
in the one-loop corrections to the scattering vertices. The first result was obtained by
Jun Kondo in his pioneering study [9]. Kondo was looking for a consequence of the
antiferromagnetic superexchange interaction predicted by Anderson [7], so he computed
the electron scattering rate to third order in the magnetic coupling. The logarithm which
appears in the electron scattering rate means that, as the temperature is lowered, the rate at
which electrons scatter off magnetic impurities rises. It is this phenomenon that gives rise
to the famous Kondo resistance minimum.

But we can use universality to go much further, and actually deduce the form of the uni-
versal functions F[x] and G[x] in (16.171) and (16.172), at least in weak coupling when the
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temperature is large compared with the Kondo temperature, T/TK >> 1. Let us rearrange
(16.175) into

g(T) = 1

2 ln
(

T
TK

)
+ ln 2g(T)

, (16.180)

which we may iterate to obtain

2g(T) = 1

ln
(

T
TK

)
+ 1

2 ln
(

1
ln T

TK
+ln 2g

) = 1

ln
(

T
TK

) + ln(ln(T/TK))

2 ln2
(

T
TK

) + · · · , (16.181)

where the expansion has been made assuming ln T/TK >> ln g. At high temperature, by
substituting TK = De−1/2Jρ we can check that the leading-order term is simply

2g(T) = 1

ln
(

T
TK

) = 1
1

2Jρ + ln T/D
= 2Jρ

1 + 2Jρ ln T/D

= 2
[

Jρ + 2(Jρ)2 ln
(

D
T

)]
+ O[(Jρ)3] , (16.182)

the leading logarithmic correction to g(T). By using scaling we are thus able to re-sum
diagrams far beyond leading-order perturbation theory. Using this expression to make the
replacement Jρ → g(T) in the leading-order perturbation theory (16.176), we obtain

χ (T) = ni

T

[
1 − 1

ln(T/TK)
− 1

2
ln(ln(T/TK))

ln2(T/TK)
+ · · ·

]
(16.183)

1
τ (T)

= ni
πS(S + 1)

2ρ

[
1

ln2(T/TK)
+ ln(ln(T/TK))

ln3(T/TK)
+ · · ·

]
. (16.184)

From the second result, we see that the electron scattering rate has the scale-invariant form
in (16.172)

1
τ (T)

= 1
τ0

G(T/TK), (16.185)

where 1
τ0

∝ ni
ρ represents the intrinsic scattering rate off the Kondo impurity. The quan-

tity 1/ρ is essentially the Fermi energy of the electron gas, and 1/τ0 ∼ ni
ρ is the unitary

scattering rate, the maximum possible scattering rate that is obtained when an electron
experiences a resonant π/2 scattering phase shift. From this result, we see that, at abso-
lute zero, the electron scattering rate will rise to the value 1

τ (T) |T=0 = ni
ρ G(0), indicating

that at strong coupling the scattering rate is of the same order as the unitary scattering
limit. We shall now see how this same result comes naturally out of a strong-coupling
analysis.
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Example 16.9

(a) Use the Popov–Fedotov scheme to compute the leading correction to the impurity
magnetic susceptibility, given by the diagrams

χ = + +

=
µ2

B
T 1 − 2Jρ + O(J2) .

(16.186)

(b) Based on scaling arguments, what is the form of the J2 correction to the susceptibility?
(c) What diagrams are responsible for the logarithmic correction to the susceptibility?

Solution

(a) For these calculations, let us temporarily set µB = 1. We need to calculate the
f -electron susceptibility, given by

χ f δ
ab = σa σb = −T

iωn

Tr[σaG f (iωn)σbG f (iωn)] = χ f δ
ab.

(16.187)

So

χf = −2T
∑

iωn

1
(iωn − λf )2 = ∂

∂λf

−f (λf )
︷ ︸︸ ︷

2T
∑

iωn

1
iωn − λf

= 2
(

−∂f (λf )
∂λf

)
= 2fλ(1 − fλ)

T
= 1

T
, (16.188)

where the factor of 2 derives from the trace over the spin degrees of freedom and we
have used fλ(1 − fλ) = 1/[(i + 1)(−i + 1)] = 1

2 . Similarly, the conduction electron
susceptibility given by

χcδ
ab = σa σb = −T

k,iωn

Tr σaGk(iωn)σbGk(iωn)

= −2δabT
∑

k,iωn

1
(iωn − ϵk)2 = 2δab

∑

k

∂

∂ϵk

−f (ϵk)︷ ︸︸ ︷

T
∑

iωn

1
iωn − ϵk

= 2δab
∑

k

(
−∂f (ϵk)

∂ϵk

)
= 2ρδab. (16.189)
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Now the first-order diagrams are given by

χAδ
ab = σa σb = (χ f δ

ac) − J
2

(χcδ
cb) = − Jρ

T
(16.190)

and

χBδ
ab = σa σb = (χcδ

ac) − J
2

(χ f δ
cb) = − ·Jρ

T
(16.191)

Adding the results together, the first-order correction to the impurity susceptibility is
given by

χ = µ2
B

T
(1 − 2Jρ) + O((Jρ)2), (16.192)

where we have reinstated µB.
(b) We expect the second-order corrections to the susceptibility to be obtained by

renormalizing the coupling constant. Following the results of Example 16.7, the
renormalization is given by

Jρ → Jρ + 2(Jρ)2 ln
[

D
T

]
. (16.193)

Since the renormalization group only provides leading logarithmic accuracy, we have
dropped the dimensionless constants inside the logarithm. We therefore expect that the
second-order corrections to the susceptibility will take the form

χ (T) = µ2
B

T

[
1 − 2

(
Jρ + 2(Jρ)2 ln

[
D
T

])]

= µ2
B

T

[
1 − 2Jρ + 4(Jρ)2 ln

[
D
T

]]
+ O[(Jρ)3]. (16.194)

(c) The logarithmic corrections to the susceptibility derive from the vertex insertions into
the first-order diagrams, given by

+

+ .+

+

(16.195)

There are other contributions to the susceptibility, such as self-energy corrections and
corrections to the external magnetic vertex, but none will be logarithmically divergent
corrections. Moreover, the conservation of spin will mean that many self-energy and
vertex corrections will cancel one another.
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Using (16.224), it follows that

M = χ̃s = δ↑
π

− δ↓
π

= 2
α − 0ρ

π
= γ̃ − (χc − γ̃ ) = 2γ̃ − χc, (16.227)

from which the Yamada–Yoshida identity

2γ̃ = χc + χs (16.228)

follows. Notice that, if we restore µB, then χs → χs/µ
2
B = χ̃s.

(c) Notice that, in the non-interacting impurity (U = 0), χc = χ̃s = γ . In the limit that
U < 0 is large and negative, the spin susceptibilty is suppressed to zero, so that the
charge Wilson ratio is

χc

γ̃
= 2. (16.229)

This is a result of the charge Kondo effect.

16.10.3 Experimental observation of the Kondo effect

Experimentally, there is now a wealth of observations that confirm our understanding of
the single-impurity Kondo effect. Here is a brief itemization of some of the most important
observations (Figure 16.19).
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T/TK!Fig. 16.19 Temperature dependence of excess resistivity associated with scattering from an impurity spin [54]. The resistivity

saturates at the unitarity limit at low temperatures, due to the formation of the Kondo resonance. The notation A-M
denotes dilute magnetic impurities M dissolved in host metal A. Reprinted and adapted Figure VII. 14 from R. M.
White and T. Geballe, Long-range order in solids, in Solid State Physics, ed. H. Ehrenreich, F. Seitz, and D. Turnbull,
vol. 15, p. 283, 1979. Copyright 1979 Elsevier.
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• A resistance minimum appears when local moments develop in a material. For example,
in Nb1−xMox alloys, a local moment develops for x > 0.4, and the resistance is seen to
develop a minimum beyond this point [2, 5].

• Universality is seen in the specific heat CV = ni
T F(T/TK) of metals doped with dilute

concentrations of impurities. Thus the specific heat of Cu-Fe (iron impurities in cop-
per) can be superimposed on the specific heat of Cu-Cr, with a suitable rescaling of the
temperature scale [54].

• Universality is observed in the differential conductance of quantum dots [55, 56] and
spin-fluctuation resistivity of metals with a dilute concentration of impurities [57]. Actu-
ally, both properties are dependent on the same thermal average of the imaginary part of
the scattering t-matrix:

ρi = ni
ne2

m

∫
dω

(
− ∂f

∂ω

)
2 Im [T(ω)]

G = 2e2

!

∫
dω

(
− ∂f

∂ω

)
πρ Im [T(ω)]. (16.230)

Putting πρ
∫

dω
(
− ∂f

∂ω

)
Im T(ω) = t(ω/TK , T/TK), we see that these properties have

the form

ρi = ni
2ne2

πmρ
t(T/TK)

G = 2e2

!
t(T/TK), (16.231)

where t(T/TK) is a universal function. This result is born out by experiment (Figure
16.19).

16.11 Multi-channel Kondo physics

In practice, magnetic moments in real materials exhibit many different variants on the
original S = 1

2 Kondo model, a point first emphasized by Philippe Nozières and André
Blandin [18]. Here we end with a brief discussion of two important variants of the original
SU (2) Kondo spin model:

• The multi-channel Kondo model, in which the spin interacts with k different screening
channels.

• The spin-S Kondo model, in which the impurity has spin S > 1
2 . This is important in

multi-electron orbitals, in which the localized electrons are coupled together to form a
large spin S by the Hund’s interaction.

The k-channel spin-S Kondo model (Figure 16.20) which incorporates both of these
features is written

H = J
k∑

λ=1

σ⃗λ(0) · S⃗ +
∑

k,σ=±
λ=1,k

ϵkc†
kλσ ckλσ . (16.232)


