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• A scaling approach, which starts with the interacting but isolated atom (V(k) = 0), and
considers the effect of immersing it in an electron sea, gradually integrating out lower
and lower-energy electrons.

The adiabatic approach involves “dialing up” the interaction, as shown by the hori-
zontal arrow in Figure 16.11. From the adiabatic perspective, the ground state remains
in a Fermi liquid. In principle, one might imagine the possibiity of a phase transition at
some finite interaction strength U, but in a single-impurity model, with a finite number
of local degrees of freedom, we don’t expect any symmetry-breaking phase transitions.
In the scaling approach, we follow the physics as a function of ever-decreasing energy
scale, loosely equivalent to “dialing down” the temperature, as shown by the vertical arrow
in Figure 16.11. The scaling approach starts from an atomic perspective: it allows us to
understand the formation of local moments and, at lower temperatures, how a Fermi liquid
can develop through the interaction of an isolated magnetic moment with an electron sea.

We shall first discuss one of the most basic manifestations of the Kondo effect: the
appearance of a Kondo resonance in the spectral function of the localized electron. This
part of our analysis will involve rather qualitative reasoning based on the ideas of adiabatic-
ity introduced in earlier chapters. Afterwards we adopt the scaling approach, deriving the
Kondo model and describing low-energy coupling between the local moments and conduc-
tion electrons by using a Schrieffer–Wolff transformation of the Anderson model. Finally,
we discuss the concept of renormalization and apply it to the Kondo model, following the
evolution of the physics from the local moment to the Fermi liquid.

16.6.1 Adiabaticity and the Kondo resonance

The adiabatic approach allows us to qualitatively understand the emergence of a remark-
able resonance in the excitation spectrum of the localized f -electron, the Kondo resonance.
This resonance is simply the adiabatic renormalization of the Friedel–Anderson resonance
seen in the non-interacting Anderson model. Its existence was first inferred by Abrikosov
and Suhl [44, 45], and the term Abrikosov–Suhl resonance is the historically correct name
for the resonance.

To understand the Kondo resonance, we shall study the effects of interactions on the
f -spectral function

Af (ω) = 1
π

Im Gf (ω + iη), (16.73)

where Gf (ω − iδ) = is the advanced f -Green’s function. From a spectral decomposition
(Section 9.7.1), we know that

Af (ω) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

energy distribution for adding one f -electron︷ ︸︸ ︷
∑

λ

∣∣∣⟨λ|f †
σ |φ0⟩

∣∣∣
2
δ(ω − [Eλ − E0]) (ω > 0)

∑

λ

|⟨λ|fσ |φ0⟩|2 δ(ω − [E0 − Eλ])

︸ ︷︷ ︸
energy distribution for removing one f -electron

(ω < 0),
(16.74)
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where Eλ and E0 are the excited and ground-state energies, respectively. For negative ener-
gies, ω < 0, this spectrum corresponds to the energy spectrum of electrons emitted in
X-ray photoemission, while for positive energies, ω > 0, the spectral function can be mea-
sured from inverse X-ray photoemission [46, 47]. The weight beneath the Fermi energy
determines the f -charge of the ion:

⟨nf ⟩ = 2
∫ 0

−∞
dωAf (ω). (16.75)

In a magnetic ion such as a cerium atom in a 4f 1 state, this quantity is just a little below
unity.

Figure (16.12.) illustrates the effect of the interaction on the f -spectral function. In the
non-interacting limit (U = 0), the f -spectral function is a Lorentzian of width (. If we turn
on the interaction U, being careful to shift the f -level position beneath the Fermi energy to
maintain a constant occupancy, the resonance splits into three peaks: two at energies ω =
Ef and ω = Ef + U corresponding to the energies for a valence fluctuation, plus an addi-
tional central Kondo resonance associated with the spin fluctuations of the local moment.

When the interaction is much larger than the hybridization width, U >> (, one
might expect no spectral weight left at low energies. But it turns out that the spectral

Kondo

Infinite U Anderson

Af (ω)

TK
∆

ω

ω = Εf  + U

e– +  f1
 → f2

f1
 → f 0 + e– 

ω = Εf

0

U

Schematic illustration of the formation of a Kondo resonance in the f -spectral functionAf (ω) as interaction strength
U is turned on. Here, the interaction is turned on while maintaining a constant f -occupancy, by shifting the bare
f -level position beneath the Fermi energy. The lower part of diagram is the density plot of the f -spectral function,
showing how the non-interacting resonance atU = 0 splits into upper and lower atomic peaks atω = Ef and
ω = Ef + U.

!Fig. 16.12
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function at the Fermi energy is an adiabatic invariant determined by the scattering phase
shift δf :

Af (ω = 0) = sin2 δf

π(
. (16.76)

This result, due to Langreth [48, 49], guarantees that a Kondo resonance is always present
at the Fermi energy. Now the total spectral weight

∫ ∞
−∞ dωAf (ω) = 1 is conserved, so if

|Ef | and U are both large compared with (, most of this weight will be lie far from the
Fermi energy, leaving a small residue Z << 1 in the Kondo resonance. If the area under
the Kondo resonance is Z, since the height of Kondo resonance is fixed at ∼ 1/(, the
renormalized hybridization width (∗ must be of order Z(. This scale is set by the Kondo
temperature, so that Z( ∼ TK .

The Langreth relation (16.76) follows from the analytic form of the f -Green’s func-
tion near the Fermi energy. For a single magnetic ion, we expect that the interactions
between electrons can be increased continuously without any risk of instabilities, so that
the excitations of the strongly interacting case remain in one-to-one correspondence with
the excitations of the non-interacting case U = 0, forming a local Fermi liquid. In this
local Fermi liquid, the interactions give rise to an f -electron self-energy, which at zero
temperature takes the form

)I(ω − iη) = )I(0) + (1 − Z−1)ω + iAω2, (16.77)

at low energies. As discussed in Chapter 7, the quadratic energy dependence of )I(ω) ∼ ω2

follows from the Pauli exclusion principle, which forces a quadratic energy dependence of
the phase space for the emission of a particle–hole pair. The wavefunction renormaliza-
tion Z, representing the overlap with the state containing one additional f -quasiparticle,
is less than unity, Z < 1. Using the result (16.77), the low-energy form of the f -electron
propagator is

G−1
f (ω − iη) = ω − Ef − i( − )I(ω) = Z−1[ω −

E∗
f︷ ︸︸ ︷

Z(Ef + )I(0)) −i

(∗
︷︸︸︷
Z( −iO(ω2)

]

Gf (ω − iη) = Z
ω − E∗

f − i(∗ − iO(ω2)
. (16.78)

This corresponds to a renormalized resonance of reduced weight Z < 1, located at postion
E∗

f with renormalized width (∗ = Z(. Now by (16.32) and (16.34), the f -Green’s func-
tion determines the t-matrix of the conduction electrons, t(ω + iη) = V2Gf (ω + iη) =
−(πρ)−1eiδ(ω) sin δ(ω), so the phase of the f -Green’s function at the Fermi energy deter-
mines the scattering phase shift δf , hence Gf (0 + iη) = (Gf (0 − iη))∗ = −|Gf (0)|eiδf . This
implies that the scattering phase shift at the Fermi energy is

δf = Im
(

ln[−G−1
f (ω − iη)]

)∣∣∣
ω=0

= tan−1

(
(∗

E∗
f

)

. (16.79)

Eliminating E∗
f = (∗ cot δf from (16.78), we obtain

Gf (0 + iη) = − Z
(∗ e−iδf sin δf = − 1

(
e−iδf sin δf , (16.80)
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Spectral functions for three different cerium f -electron materials, measured using X-ray photoemission (below the
Fermi energy) and inverse X-ray photoemission (above the Fermi energy). CeAl is an antiferromagnet and does not
display a Kondo resonance. Reprinted with permission from J. W. Allen, et al., Phys. Rev., vol. 28, p. 5347, 1983.
Copyright 1983 by the American Physical Society.

!Fig. 16.13

so that

Af (0) = 1
π

Im Gf (0 − iη) = sin2 δf

π(
(16.81)

is an adiabatic invariant.
Photoemission studies do reveal the three-peaked structure characteristic of the Ander-

son model in many Ce systems, such as CeIr2 and CeRu2 [47] (see Figure 16.13). Materials
in which the Kondo resonance is wide enough to be resolved are the more mixed-valent
materials in which the f -valence departs significantly from unity. Three-peaked structures
have also been observed in certain U 5f materials such as UPt3 and UAl2 materials [50], but
it has not yet been resolved in UBe13. A three-peaked structure has recently been observed
in 4f Yb materials, such as YbPd3, where the 4f 13 configuration contains a single f -hole,
so that the positions of the three peaks are reversed relative to Ce [51].

16.7 Renormalization concept

The Anderson model illustrates a central theme of condensed matter physics: the existence
of physics on several widely spaced energy scales. In particular, the scale at which local
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moments form in f -electron systems is of the order of the Coulomb energy U, a scale of
order 10eV, while the Kondo effect occurs at a scale a thousand times smaller, of order
10K∼ 1 meV. When energy scales are well separated like this, we use the renormalization
group to fold the key effects of the high-energy physics into a small set of parameters that
control the low-energy physics [12, 16, 17, 31].

Renormalization is built on the idea that the low-energy physics of a system only
depends on certain gross features of the high-energy physics. The family of systems
with the same low-energy excitation spectrum constitute a universality class of models
(Figure 16.14). We need the concept of universality, for without it we would be lost: we
could not hope to capture the physics of real-world systems with our simplified Hamilto-
nian models. The Anderson model is itself a renormalized Hamiltonian, notionally derived
from the elimination of high-energy excitations from “the” microscopic Hamiltonian.

To carry out renormalization, the Hamiltonian of interest H(D) is parameterized by its
cut-off energy scale D, the energy of the largest excitations. Renormalization involves
reducing the cut-off to a slightly smaller value, D → D′ = D/b, where b > 1. The
excitations in the energy window E ∈ [D′, D] that are removed by this process are said

Af (ω)

Af (ω)

Af (ω)

Af (ω)

ω

Ef +U

Ef +U

D

Microscopic model

Anderson model

Infinite U Anderson model

Kondo model

D' < Ef + U

D'' < -EF, EF + U

ω

ω

ω

D0–D0

–D'

–D'' D''

D'

–D

Ef 

Ef 

Ef 

!Fig. 16.14 Scaling concept. Low-energy model Hamiltonians are obtained from the detailed original model by integrating out
the high-energy degrees of freedom. At each stage, the physics described by the model spans a successively lower
frequency window in the excitation spectrum.
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to have been integrated out of the Hilbert space, and in so doing they give rise to a new
effective Hamiltonian H̃L that continues to faithfully describe the remaining low-energy
degrees of freedom. The energy scales are then rescaled to obtain a new H(D′) = bH̃L, and
the whole process is repeated.

Generically, the Hamiltonian can be divided into a block-diagonal form:

H =
[

HL

V

∣∣∣∣
V†

HH

]
, (16.82)

where HL and HH act on states in the low-energy and high-energy subspaces, respectively,
and V and V† provide the matrix elements between them. The high-energy degrees of
freedom may be integrated out4 by carrying out a canonical transformation that eliminates
the off-diagonal elements in this Hamiltonian H̃L:

H(D) → H̃ = UH(D)U† =
[

H̃L

0

∣∣∣∣∣
0

H̃H

]

. (16.83)

One then projects out the low-energy component of the block-diagonalized Hamiltonian
H̃L = PH̃P. Finally, by rescaling

H(D′) = bH̃L (16.84)

one arrives at a new Hamiltonian describing the physics on the reduced scale. The transfor-
mation from H(D) to H(D′) is referred to as a renormalization group (RG) transformation.
This term was coined long ago, although the transformation does not form a real group,
since there is no inverse transformation.

Repeated application of the RG procedure leads to a family of Hamiltonians H(D) (see
Figure 16.14). By taking the limit b → 1, these Hamiltonians evolve, or “flow” contin-
uously with D. Typically, H will contain a series of dimensionless parameters (coupling
constants) {gi} which denote the strength of various interaction terms in the Hamilto-
nian. The evolution of these parameters with cut-off is given by a scaling equation. In
the simplest case,

∂gj

∂ ln D
= βj({gi}).

A negative β function denotes a “relevant” parameter which grows as the cut-off is
reduced. A positive β function denotes an “irrelevant” parameter which shrinks towards
zero as the cut-off is reduced. There are two types of event that can occur in such a scaling
procedure:

• Crossover. When the cut-off energy scale D passes the characteristic energy scale of a
particular class of high-frequency excitations, then at lower energies these excitations
may only occur via a virtual process. When the effects of the virtual fluctuations asso-
ciated with these high-energy process are included in the Hamiltonian, it changes its
structure.

4 The term “integrating out” is originally derived from the path integral formulation of the renormalization
group, in which high-energy degrees of freedom are removed by integrating over these variables inside the
path integral.
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• Fixed point. If the cut-off energy scale drops below the lowest energy scale in the prob-
lem, then there are no further changes to occur in the Hamiltonian, which will now
remain invariant under the scaling procedure (so that the β function of all remaining
parameters in the Hamiltonian must vanish). This fixed-point Hamiltonian describes the
essence of the low-energy physics.

Local-moment physics involves a sequence of such cross-overs (Figure 16.14.). The
highest energy scales in the Anderson model are associated with valence fluctuations into
the empty and doubly occupied states:

f 1 ! f 2 (EI = U + Ef > 0

f 1 ! f 0 (EII = −Ef > 0. (16.85)

The successive elimination of these processes leads to two cross-overs. Suppose (EI is the
largest scale; then, once D < (EI , charge fluctuations into the doubly occupied state are
eliminated and the remaining low-energy Hilbert space of the atom is

D < Ef + U : |f 0⟩, |f 1, σ ⟩
(

σ = ±1
2

)
. (16.86)

The operators that span this space are called Hubbard operators [52], and they are denoted
as follows:

Xσ0 = |f 1, σ ⟩⟨f 0| = Pf †
σ , X0σ = |f 0⟩⟨f 1, σ | = f †

σ P,

Xσσ ′ = |f 1, σ ⟩⟨f 1, σ ′|, (16.87)

where P = (1 − nf ↑nf ↓) projects out doubly occupied states. (Note that the Hubbard
operators Xσ0 = Pf †

σ cannot be treated as simple creation operators, for they do not satisfy
the canonical anticommutation algebra.) The corresponding renormalized Hamiltonian is
the Infinite U Anderson model.

H =
∑

k,σ

ϵknkσ +
[
V(k)c†

kσ X0σ + V(k)∗Xσ0ckσ

]
+ Ef

∑

σ

Xσσ . (16.88)

Infinite U Anderson model

In this model, all the interactions are hidden inside the Hubbard operators.
Finally, once D < (EII , the low-energy Hilbert space no longer involves the f 2 or f 0

states. The object left behind is a quantum top – a quantum mechanical object with purely
spin degrees of freedom and a two-dimensional5 Hilbert space:

|f 1, σ ⟩
(

σ = ±1
2

)
.

5 In the simplest version of the Anderson model, the local moment is S = 1
2 , but in more realistic atoms much

larger moments can be produced. For example, an electron in a Ce3+ ion atom lives in a 4f 1 state. Here spin–
orbit coupling combines orbital and spin angular momentum into a total angular moment j = l − 1

2 = 5
2 . The

cerium ion that forms thus has a spin j = 5
2 with a spin degeneracy of 2j + 1 = 6. In multi-electron atoms, the

situation can become still more complex, involving Hund’s coupling between atoms.
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Now the residual spin degrees of freedom still interact with the surrounding conduction
sea, for virtual charge fluctuations, in which an electron temporarily migrates off of or
onto the ion, lead to spin exchange between the local moment and the conduction sea.
There are two such virtual processes:

e↑ + f 1
↓ ↔ f 2 ↔ e↓ + f 1

↑ (EI ∼ U + Ef

e↑ + f 1
↓ ↔ e↑ + e↓ ↔ e↓ + f 1

↑ (EII ∼ −Ef .
(16.89)

In both cases, spin exchange only takes place in the singlet channel, S = 0, state. From
second-order perturbation theory, we know that these virtual charge fluctuations will selec-
tively lower the energy of the singlet configurations by an amount of order (E = −J,
where

J ∼ V2
[

1
(E1

+ 1
(E2

]
= V2

[
1

−Ef
+ 1

Ef + U

]
. (16.90)

Here V is the size of the hybridization matrix element near the Fermi surface. The selective
reduction in the energy of the singlet channel constitutes an effective antiferromagnetic
interaction between the conduction electrons and the local moment. If we introduce
σ⃗ (0) = ∑

k,k′ c†
kασ⃗αβck′β , measuring the electron spin at the origin, then the effective inter-

action that lowers the energy of singlet combinations of conduction and f -electrons will
have the form Heff ∼ Jσ⃗ (0) · S⃗f . The resulting low-energy Hamiltonian that describes the
interaction of a spin with a conduction sea is the deceptively simple Kondo model:

H =
∑

kσ

ϵkc†
kσ ckσ +

(H︷ ︸︸ ︷
Jψ†(0)σ⃗ψ(0) · S⃗f . (16.91)

Kondo model

This heuristic argument was ventured in 1961 in Anderson’s paper [7] on local moment
formation. At the time, the antiferromagnetic sign in this interaction was entirely unex-
pected, for it had long been assumed that exchange forces always induce a ferromagnetic
interaction between the conduction sea and local moments. The innocuous-looking sign
difference has deep consequences for the physics of local moments at low temperatures,
giving rise to an interaction that grows as the temperature is lowered, ultimately leading to
a final crossover into a low-energy Fermi liquid fixed point. The remaining sections of this
chapter are devoted to following this process in detail.

16.8 Schrieffer–Wolff transformation

We now carry out the transformation that links the Anderson and Kondo models via a
canonical transformation, first introduced by Schrieffer and Wolff [10, 11]. This transfor-
mation is a kind of one-step renormalization process in which the valence fluctuations are
integrated out of the Anderson model. When a local moment forms, hybridization with
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the conduction sea induces virtual charge fluctuations. It’s useful to consider dividing the
Hamiltonian into two terms,

H = H1 + λV ,

where λ is an expansion parameter. Here,

H1 = Hband + Hatomic =
[

HL

0

∣∣∣∣
0

HH

]

is diagonal in the low-energy f 1 (HL) and the high-energy f 2 or f 0 (HH) subspaces, whereas
the hybridization term

V = Hmix =
∑

kσ

[
Vk⃗c†

kσ fσ + H.c.
]

=
[

0

V

∣∣∣∣
V†

0

]

provides the off-diagonal matrix elements between these two subspaces. The idea of the
Schrieffer–Wolff transformation is to carry out a canonical transformation that returns the
Hamiltonian to block-diagonal form:

U
[

HL

λV

∣∣∣∣
λV†

HH

]
U† =

[
H∗

0

∣∣∣∣
0

H′

]
. (16.92)

This is a renormalized Hamiltonian, and the block-diagonal part of this matrix, H∗ =
PLH′PL, in the low-energy subspace provides an effective Hamiltonian for the low-energy
physics. We now set U = eS, referring to S as the action operator. Now since U† = U−1 =
e−S, this implies that the action operator S† = −S is anti-Hermitian. Writing S as a power
series in λ,

S = λS1 + λ2S2 + · · · ,

and using the identity eABe−A = B + [A, B] + 1
2! [A, [A, B]] + · · · , (16.92) can be expanded

in powers of λ as follows:

eS(H1+λV)e−S = H1+λ

(
V+[S1, H1]

)
+λ2

(
1
2

[S1, [S1, H]] + [S1, V] + [S2, H1]
)

+· · · .

Since V is not diagonal, by requiring

[S1, H1] = −V , (16.93)

we can eliminate all off-diagonal components to leading order in λ. To second order,

eS(H1 + λV)e−S = H1 + λ2
(

1
2

[S1, V] + [S2, H1]
)

+ · · · . (16.94)

Since [S1, V] is block-diagonal, we can satisfy (16.92) to second order by requiring S2 = 0,
so that, to this order, the renormalized Hamiltonian has the form

H∗ = HL + λ2(H, (16.95)

where

(H = 1
2

PL[S1, V]PL + · · · (16.96)
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is an interaction term induced by virtual fluctuations into the high-energy manifold.
Writing the action operator in matrix form,

S =
[

0

s

∣∣∣∣
−s†

0

]
, (16.97)

and substituting into (16.93), we obtain V = −sHL +HHs. Now since (HL)ab = EL
aδab and

(HH)ab = EH
a δab are diagonal, it follows that

sab = Vab

EH
a − EL

b
, −s†

ab = V†
ab

EL
a − EH

b
, (16.98)

or, more schematically,

S =
∑

H,L

(
|H⟩ ⟨H|V|L⟩

EH − EL
⟨L| − H.c.

)
+ O(V3). (16.99)

From (16.98) we obtain

(HLL′ = −1
2

(V†s + s†V)LL′ = −1
2

∑

H

(V†
LHVHL′ )

[
1

EH − EL
+ 1

EH − EL′

]
. (16.100)

Some important points about this result:

• We recognize (16.100) as a simple generalization of second-order perturbation theory,
including off-diagonal matrix elements by averaging over initial- and final-state energy
denominators.

• (H can also be written

(HLL′ = 1
2

[T(EL) + T(EL′ )],

where

T̂(E) = PLV
PH

E − H1
VPL

TLL′ (E) =
∑

|H⟩

[
V†

LHVHL′

E − EH

]

(16.101)

is the leading-order expression for the many-body scattering t-matrix induced by scatter-
ing off V . We can thus relate (H to a scattering amplitude, and schematically represent
it by a Feynman diagram, illustrated in Figure 16.15.

• If the separation of the low- and high-energy subspaces is large, we can take EL ∼ EL′ ,
so that

(H = T(EL) = − 1
(EHL

(VPHV), (16.102)

where (EHL = EH − EL is the energy of excitation into the high-energy subspace and
PH = ∑

|H⟩ |H⟩⟨H|.
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|b |a

|λ

V V†!Fig. 16.15 A t-matrix representation of the interaction induced between states |b⟩ and |a⟩ by integrating out the virtual
fluctuations into the high-energy states |λ⟩.

We now apply this method to the Anderson model for which the atomic ground state is a
local-moment f 1 configuration. In this case, there are two high-energy intermediate states,
corresponding to f 0 and f 2 configurations. When a conduction electron or hole is excited
into the localized f -state to create these excited-state configurations, the corresponding
excitation energies are (E(f 1 → f 0) = −Ef and (E(f 1 → f 2) = Ef + U. The hybridiza-

tion V = ∑
kσ

[
V(k)c†

kσ fσ + H.c.
]

generates virtual fluctuations into these excited states.
Using (16.102), the interaction induced by these fluctuations is given by

(H = −VP[ f 2]V
Ef + U

− VP[ f 0]V
−Ef

= −
∑

kα,k′β

V∗
k′Vk

[
f 1+e−↔f 2

︷ ︸︸ ︷
(c†

kαfα)(f †
β ck′β )

Ef + U
+

f 1↔f 0+e−
︷ ︸︸ ︷
(f †

β ck′β )(c†
kαfα)

−Ef

]
Pnf =1, (16.103)

where Pnf =1 = (nf ↑ − nf ↓)2 projects into the subspace of unit occupancy. Using the Fierz
identity6 2δαγ δηβ = δαβδηγ + σ⃗αβ · σ⃗ηγ , we may recast the spin exchange terms in terms
of Pauli matrices, as follows:

(c†
kαfα)(f †

β ck′β ) = (c†
kαfγ )(f †

η ck′β ) ×

1
2 (δαβδηγ +σ⃗αβ ·σ⃗ηγ )

︷ ︸︸ ︷
(δαγ δηβ )

= 1
2

c†
kαck′α − (c†

kασ⃗αβck′β ) · S⃗f , (16.104)

and similarly

(f †
β ck′β )(c†

kαfα) = −1
2

c†
kαck′α − (c†

kασ⃗αβck′β ) · S⃗f (16.105)

(where we have replaced nf = 1 and dropped residual constants in both cases). The
operator

S⃗f ≡ f †
σ

(
σ⃗αβ

2

)
fβ , (nf = 1) (16.106)

describes the spin of the f -electron. The induced interaction is then

(H =
∑

kα,k′β

Jk,k′c†
kασ⃗αβck′β · S⃗f + H′, (16.107)

6 This identity is obtained by expanding an arbitrary two-dimensional matrix A in terms of Pauli matrices. If we
write Aαβ = 1

2 Tr[A1]δαβ + 1
2 Tr[Aσ⃗ ] · σ⃗αβ and read off the coefficients of A inside the traces, we obtain the

inequality.
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where

Jk,k′ = V∗
k′Vk

[
f 1+e−↔f 2
︷ ︸︸ ︷

1
Ef + U

+

f 1↔f 0+e−
︷︸︸︷

1
−Ef

]
(16.108)

is the Kondo coupling constant.
Notice how, in the low-energy subspace, the occupancy of the f -state is constrained to

nf = 1. This fermionic representation (16.106) of the spin operator proves to be very
useful. Apart from a constant, the second term,

H′ = −1
2

∑

k,k′σ

V∗
k′Vk

[
1

Ef + U
+ 1

Ef

]
c†

kσ ck′σ ,

is a residual potential scattering term. This term vanishes for the particle–hole symmetric
case Ef = −(Ef + U), and will be dropped since it does not involve the internal dynamics
of the local moment. Summarizing, the effect of the high-frequency valence fluctuations is
to induce an antiferromagnetic coupling between the local spin density of the conduction
electrons and the local moment:

H =
∑

kσ

ϵkc†
kσ ckσ +

∑

k,k′
Jk,k′c†

kασ⃗ck′β · S⃗f . (16.109)

This is the famous Kondo model. For many purposes, the k-dependence of the coupling
constant can be dropped, so that the model takes the simpler form shown in (16.91):

H =
∑

kσ

ϵkc†
kσ ckσ +

(H︷ ︸︸ ︷
Jσ⃗ (0) · S⃗f , (16.110)

Kondo model

where ψα(0) = ∑
k ckα is the electron operator at the origin and σ⃗ (0) = ψ†(0)σ⃗ψ(0) is

the spin density at the origin. In other words, there is a simple point interaction between
the spin density of the metal at the origin and the local moment.

Example 16.4 Details of the Schrieffer–Wolff transformation.
Show that the action operator S for the canonical transformation H → H∗ = eSHe−S that
effects the Schrieffer–Wolff transformation from the Anderson model (16.5) to the Kondo
model (16.110) is given by [10, 11]

S =
∑

k,σ

[
Vkc†

kσ fσ

(
1 − nf −σ

ϵk − Ef
+ nf σ

ϵk − (Ef + U)

)
− H.c.

]
+ O(V3). (16.111)
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Solution

Using (16.98), we may write the action operator S as

S =
∑

H,L

[
|H⟩ ⟨H|V|L⟩

EH − EL
⟨L| − H.c.

]
+ O(V3), (16.112)

where, L and H denote the low- and high-energy subspaces, respectively. For the Anderson
model, V̂ = ∑

k,σ (Vkc†
kσ fσ + H.c.) is the hybridization, while the low-energy Hilbert

space is the states with nf = 1. The projector into the low-energy subspace H is PL =
(nf ↑ − nf ↓)2, so we may write ⟨H|V|L⟩ = ⟨H|VPL|L⟩, so that

S =
∑

H,L, kσ

(

|H⟩⟨H|
(
Vkc†

kσ fσ + V∗
k f †

σ ckσ )(nf ↑ − nf ↓)2

EH − EL
|L⟩⟨L| − H.c.

)

+ O(V3).

(16.113)

Now the initial state has energy Ef while the excited state is either a state with one con-
duction electron and no f -electrons, with energy ϵk, or a state with two f -electrons and one
conduction hole, with energy 2Ef + U − ϵk, so we may write

S =
∑

kσ

[

Vk
c†

kσ fσ (1 − nf −σ )
ϵk − Ef

+ V∗
k

f †
σ ckσ nf −σ

Ef + U − ϵk
− H.c.

]

+ O(V3), (16.114)

where we have replaced fσ (nf ↑ − nf ↓)2 = fσ (1 − nf −σ )2 = fσ (1 − nf −σ ) and f †
σ (nf ↑ −

nf ↓)2 = f †
σ n2

f −σ = f †
σ nf −σ . Rearranging this a little, we obtain

S =
∑

k,σ

[

Vk

(

(1 − nf −σ )
c†

kσ fσ
ϵk − Ef

+ nf −σ
c†

kσ fσ
ϵk − (Ef + U)

)

− H.c.

]

+ O(V3). (16.115)

Example 16.5 Composite nature of the f -electron.
The Kondo model only involves the spin of the f -electron, and the f -creation and annihila-
tion operators have apparently completely disappeared. To find out what has happened to
them, consider adding a source term for the f -electrons,

HS =
∑

σ

(f †
σ ησ + η̄σ f )σ , (16.116)

into the Anderson impurity model, so that now H → H[η̄, η] = H + HS, so that the
functional derivatives of the partition function

Z[ησ , ησ ] = Z0

〈
T exp

[
−

∫ β

0
dτ f †

σ (τ )ησ (τ ) + η̄σ (τ )fσ (τ )
]〉

(16.117)

generate correlation functions of the fermion operators:

δ

δη̄σ
→ fσ (τ ), − δ

δησ
→ f †

σ (τ ). (16.118)
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(a) Repeat the Schrieffer–Wolff transformation for the case of constant hybridization Vk =
V and particle–hole symmetry to show that the Kondo model with source terms now
becomes

HK[η̄, η] =
∑

kσ

ϵkc†
kσ cσ + J

(
ψ†(0) + V−1η̄

)
σ⃗

(
ψ(0) + V−1η

)
· S⃗. (16.119)

(b) By differentiating this expression with respect to η̄σ , show that in the Kondo model
the original f -electron operator has now become a composite operator involving a
combined conduction electron and spin-flip, as follows:

fα ≡ δHK[η̄, η]
δη̄α

= J
V

(
σαβ · S⃗

)
ψ(0)β . (16.120)

When a Fermi liquid develops, it is this object that behaves like a resonant bound-state
fermion.

Solution

(a) In the Anderson model, we can absorb the source term into the hybridization, writing
it in the form

V =
∑

(Vψ†
σ (0) + η̄σ )fσ + H.c., (16.121)

so that in the hybridization we have replaced ψσ (0) → ψσ (0)+ 1
V ησ . If we now repeat

the Schrieffer–Wolff transformation, the spin exchange term in the Kondo model takes
the form

HK[η̄, η] =
∑

kσ

ϵkc†
kσ cσ + J

(
ψ†(0) + V−1η̄

)
σ⃗

(
ψ(0) + V−1η

)
· S. (16.122)

(b) If we now differentiate HK with respect to η̄, we obtain

fσ ≡ δHK[η̄, η]
δησ

∣∣∣∣
η,η̄=0

= J
V

[
(σ⃗ · S⃗)ψ(0)

]

σ
. (16.123)

16.9 “Poor man’s” scaling

We now apply the scaling concept to the Kondo model. This was originally carried out by
Anderson and Yuval [12–14] using a method formulated in the time rather than the energy
domain. The method presented here follows Anderson’s “poor man’s” scaling approach
[31, 32], in which the evolution of the coupling constant is followed as the bandwidth of
the conduction sea is reduced. The Kondo model is written

H =
∑

|ϵk|<D

ϵkc†
kσ ckσ + H(I)


