
14 Superconductivity and BCS theory

14.1 Introduction: early history

Superconductivity, the phenomenon whereby the resistance of a metal spontaneously drops
to zero upon cooling below its critical temperature, was discovered over a hundred years
ago by Heike Kamerlingh Onnes in 1911. However, it took another 46 years for the devel-
opment of the conceptual framework required to understand this collective phenomenon
as a condensation of electron pairs. During this time, many great physicists, including
Bohr, Einstein, Heisenberg, Bardeen, and Feynman, had tried to develop a microscopic
theory of the phenomenon. Today, superconductivity has been observed in a wide vari-
ety of materials (see Table 14.1), with transition temperatures reaching up as high as
high as 134 K.

The development of the theory of superconductivity leading to BCS theory really
had two parts – one phenomenological, the second microscopic. Let me mention some
highlights:

• The discovery of the Meissner effect in 1933 by Walther Meissner and Robert
Ochsenfeld [1]. When a metal is cooled in a small magnetic field, the flux is sponta-
neously excluded as the metal becomes superconducting (see Figure 14.1). The Meissner
effect demonstrates that a superconductor is, in essence, a perfect diamagnet.

• Rigidity of the wavefunction. In 1937 Fritz London, working at Oxford [2, 3], pro-
posed that a persistent supercurrent is a property of the ground state associated with its
rigidity against the application of a field. London’s idea applies to the full many-body
wavefunction, but he initially developed it using a phenomenological one-particle wave-
function ψ(x) that today we call the superconducting order parameter. He noted that the
quantum mechanical current contains a paramagnetic and a diamagnetic component,
writing

j = !e
2im

(ψ∗ "∇ψ − ψ "∇ψ∗) −
(

e2

m

)
ψ∗ψ "A. (14.1)

In the ground state in the absence of a field ("A = 0), the current vanishes, so the ground-
state wavefunction ψ0 must be uniform. Normally, the wavefunction is highly sensitive
to an external magnetic field, but London reasoned that, if the wavefunction is somehow
rigid and hence unchanged to linear order in the magnetic field, ψ(x) = ψ0(x) + O(B2),
where ψ0 is the ground-state wavefunction, then, to leading order in a field, the current
carried by the uniform quantum state is
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Table 14.1 Selected superfluids/superconductors.

Symmetry Superfluid/superconductor Tc Mechanism

s Hg 4.2 K Phonon-mediated
Pb 7.2 K
NbGe3 23 K
MgB2 39 K

p 3He 2.5 mK Magnetic interactions
UPt3 0.51 K
Sr2RuO4 0.93 K

d CeCu2Si2 0.65 K
PuCoGa7 18.5 K
HgBa2Ca2Cu3O8 134 K

s± Sr0.5Sm0.5FeAsF 56 K

(a) Metal, T > Tc (b) Super conductor, T < Tc

B ≠ 0 B = 0

(a) A magnet rests on top of a normal metal, with its field lines penetrating the metal. (b) Once cooled belowTc, the
superconductor spontaneously excludes magnetic fields, generating persistent supercurrents at its surface, causing
the magnet to levitate.

!Fig. 14.1

!j = −e2

m
|ψ0|2!A + · · · . (14.2)

In London’s equation we see a remarkable convergence of the classical and the quan-
tum: it is certainly a classical equation of motion in that it involves purely macroscopic
variables, yet on the other hand it contains a naked vector potential !A rather than the
magnetic field !B = ∇ × !A, a feature which reflects the broken gauge symmetry of the
quantum ground state.

London’s equation provides a natural explanation of the Meissner effect. To see this,
we use Ampère’s relation !j = µ−1

0 ∇ × !B to rewrite the current in London’s terms of the
magnetic field:

∇ × !B = − 1

λ2
L

!A
(

1

λ2
L

= µ0
e2

m
|ψ0|2

)

, (14.3)

where the quantity λL defined above is the London penetration depth. Taking the curl of
(14.3), we eliminate the vector potential to obtain
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−∇2 #B︷ ︸︸ ︷
∇ × ∇ × #B = − 1

λ2
L

#B︷ ︸︸ ︷
∇ × #A (14.4)

or

∇2B = 1

λ2
L

#B, (14.5)

where we have substituted ∇×(∇×#B) = #∇(∇ ·#B)−∇2 #B = −∇2#B, using the divergence-
free nature of the magnetic field. The solutions of this equation describe magnetic fields
B(x) ∼ B0e±x/λL which decay inside the superconductor over a London penetration
depth. This exclusion of magnetic fields inside superconductors is precisely the Meissner
effect.

• Ginzburg–Landau theory [4]. In 1950, Lev Landau and Vitaly Ginzburg in Moscow
reinterpreted London’s phenomenological wavefunction ψ(x) as a complex-order para-
meter. Using arguments of gauge invariance, they reasoned that the free energy must
contain a gradient term that instills the rigidity of the order parameter:

f =
∫

d3x
1

2m∗ |(−i! #∇ − e∗ #A)ψ |2. (14.6)

(At this stage, the identification of e∗ = 2e as the Cooper pair charge had not been made.)
The vitally important aspect of this gauge-invariant functional (see Section 11.5) is that,
once ψ '= 0, the electromagnetic field develops a mass, giving rise to a super-current

#j(x) = −δf /δ#A(x) = − (e∗)2

m∗ |ψ0|2#A(x) (14.7)

for a uniform ψ = ψ0.

Following the Second World War, physicists set to work to try to develop a microscopic
theory of superconductivity. The development of quantum field theory and new experi-
mental techniques, such as microwaves – a biproduct of radar – and the availability of
isotopes after the Manhattan Project, meant that a new intellectual offensive could begin.
The landmark events included:

• Theory of the electron–phonon interaction. In 1949–1950, Herbert Fröhlich at Purdue
and Liverpool universities [5] formulated the electron–phonon interaction as a direct
analogue of photon exchange in electromagnetism. He showed that it gives rise to a
low-energy attractive interaction,

Veff (k, k′) = −g2
k−k′

2ωk−k′

ω2
k−k′ − (εk − εk′ )2

, (14.8)

where εk and εk′ are the energies of incoming and outgoing electrons, while ωq is the
phonon frequency. Veff (k, k′) is attractive for low-energy transfer, |εk − εk′ | << ωk−k′ .

• Discovery of the isotope effect. In 1950, Emanuel Maxwell at the National Bureau of
Standards [7] and the group of Bernard Serin at Rutgers University [8] observed a reduc-
tion in the superconducting transition temperature with the isotopic mass in mercury.

I
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Superconducting transition temperature as a function of isotopic mass for mercury, showing the− 1
2 exponent,

implying phonon-driven superconductivity. Reprinted with permission from B. Serin, et al., Phys. Rev., vol. 80, p. 761,
1950. Copyright 1950 by the American Physical Society.

!Fig. 14.2

It now became clear that the electron–phonon interaction provided the key to supercon-
ductivity. Indeed, in any theory in which the transition temperature is proportional to the
Debye temperature, the expected dependence on isotopic mass M is given by [9]

Tc ∝ ωD ∼ 1√
M

⇒ d ln Tc

d ln M
= −1

2
. (14.9)

Careful analysis showed agreement with the − 1
2 exponent [6] (see Figure 14.2), but what

was the mechanism?
• Discovery of the coherence length. In 1953 Brian Pippard at the Cavendish Laboratory

in Cambridge [10, 11] proposed, based on his thesis work on the anomalous skin depth in
dirty superconductors, that the character of superconductivity changes at short distances,
below a scale he named the coherence length ξ . Pippard showed that, at these short
distances, the local London relation between current and vector potential is replaced
by a non-local relationship. Pippard’s result means that Ginzburg–Landau theory is
inadequate at distances shorter than the coherence length ξ , demanding a microscopic
theory.

• Gap hypothesis. In 1955 John Bardeen, who had recently resigned from Bell Labora-
tories to pursue his research into the theory of superconductivity at the University of
Illinois Urbana-Champaign, proposed that if a gap # developed in the electron spec-
trum this would account for the wavefunction rigidity proposed by London and would
also give rise to Pippard’s coherence length ξ ∼ vF/#, where vF is the Fermi velocity
[12]. What was now needed was a model and mechanism to create the gap.

• Bardeen–Pines Hamiltonian. In 1955 John Bardeen and David Pines at the University of
Illinois Urbana-Champaign [13] rederived the Fröhlich interaction as a second-quantized

Microscopic

Or
Macroscopic

2 G

S ve a



490 Superconductivity and BCS theory

=
x,x´

(x – x´)ψ (x´)(x)ψ
↑
† ↑†φΛ†

x´

x!Fig. 14.3 Illustration of a Cooper pair. (Note: the location of the electrons relative to the pair wavefunction involves artistic
license since the wavefunction describes the relative position of the two electrons.)

model, incorporating the effects of the Coulomb interaction in a “Jellium model” in
which the ions form a smeared positive background (see Section 7.7.3). The Bardeen–
Pines effective interaction takes the form

VBP(q, ν) = e2

ε0(q2 + κ2)

[

1 +
ω2

q

ν2 − ω2
q

]

, (14.10)

where κ−1 is the Thomas–Fermi screening length and the phonon frequency ωq is
related to the plasma frequency of the ions %2

p = (Ze)2nion/(ε0M) via the relation
ωq = (q/[q2 + κ2]1/2)%p. The Bardeen–Pines interaction is seen to contain two terms:
a frequency-independent Coulomb interaction, and a strongly frequency-dependent
electron–phonon interaction. In the time domain, the former corresponds to an instan-
taneous Coulomb repulsion, while the latter is a highly retarded attractive interaction.
This interaction became the basis for BCS theory.

The stage was set for Bardeen–Cooper–Schrieffer (BCS) theory.

14.2 The Cooper instability

In the fall of 1956, Bardeen’s postdoc Leon Cooper, at the University of Illinois Urbana-
Champaign, solved one of the most famous “warm-up” problems of all time. Considering
two electrons moving above the Fermi surface of a metal, Cooper found that an arbitrarily
weak electron–electron attraction induces a two-particle bound state that will destabilize
the Fermi surface [14].

Cooper imagined adding a pair of electrons above the Fermi surface in a state with no
net momentum, described by the wavefunction

|&〉 = '†|FS〉, (14.11)
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where

!† =
∫

d3xd3x′φ(x − x′)ψ†
↓(x)ψ†

↑(x′) (14.12)

creates a pair of electrons, while |FS〉 = ∏
k<kF

c†
k↑c†

−k↓|0〉 defines the filled sea. If we

Fourier transform the fields, writing ψ†
σ (x) = 1√

V

∑
k c†

kσ e−ik·x, then the pair creation
operator can be recast as a sum over pairs in momentum space:

!† =
∑

k

φkc†
k↓c†

−k↑, (14.13)

Cooper pair creation operator

where

φk =
∫

d3xe−ik·xφ(x) (14.14)

is the Fourier transform of the spatial pair wavefunction. This result tells us that a real-
space pair of fermions can be decomposed into a sum of momentum-space pairs, weighted
by the amplitude φk. The properties of the pair (and the superconductor it will give
rise to) are encoded in the pair wavefunction φk. In the phonon-mediated superconduc-
tors considered by BCS, φk ∼ f (k) is an isotropic s-wave function, but in a rapidly
growing class of anisotropically paired superfluids of great current interest, including
superfluid 3He, heavy-fermion, and iron- and copper-based high-temperature superconduc-
tors φk is anisotropic changing sign somewhere in momentum space to lower the repulsive
interaction energy, giving rise to a nodal pair wavefunction.

When an electron pair is created, electrons can only be added above the Fermi surface,
so that

|%〉 = !†|FS〉 =
∑

|k|>kF

φk|kP〉, (14.15)

where |kP〉 ≡ |k ↑, −k ↓〉 = c†
k↑c†

−k↓|FS〉. Now suppose that the Hamiltonian has the
form

H =
∑

k

εkc†
kσ ckσ + V̂ , (14.16)

where V̂ contains the details of the electron–electron interaction; if |%〉 is an eigenstate
with energy E, then

H|%〉 =
∑

|k|>kF

2εkφk|kP〉 +
∑

|k|, |k′|>kF

|kP〉〈kP|V̂|k′
P〉φk′ . (14.17)

Identifying this with E|%〉 = E
∑

k φk|kP〉, so comparing the amplitudes to be in the
state |kP〉,

Eφk = 2εkφk +
∑

|k′|>kF

〈kP|V̂|k′
P〉φk′ . (14.18)
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–k↓

k′↑

–k′↓

k↑ k–
k′

!Fig. 14.4 Virtual phonon exchange process responsible for the BCS interaction. The process |k ↑,−k ↓〉 → |k′ ↑,−k′ ↓〉
can be thought of as the consequence of Bragg diffraction of a virtual standing wave: one electron in the pair
|k ↑,−k ↓〉 diffracts from k → k′, creating a virtual standing wave (phonon) of momentum k − k′. Later, the
second diffracts from−k → −k′, reabsorbing the virtual phonon.

The beauty of this equation is that the details of the electron interactions are entirely
contained in the pair scattering matrix element Vk,k′ = 〈kP|V̂|k′

P〉. Microscopically,
this scattering is produced by the exchange of virtual phonons (in conventional super-
conductors), and the scattering matrix element is determined by the electron–phonon
propagator

Vk,k′ = g2
k−k′D(k′ − k, εk − εk′ ), (14.19)

as illustrated in Figure 14.4. Cooper noted that this matrix element is not strongly
momentum-dependent, only becoming attractive within an energy ωD of the Fermi surface,
and this motivated a simplified model interaction in which

Vk,k′ =
{ −g0/V (|εk|, |εk′ | < ωD)

0 (otherwise).
(14.20)

This is a piece of pure physics haiku, a brilliant simplification that makes BCS the-
ory analytically tractable. Much more is to come, but for the moment it enables us to
simplify (14.18):

(E − 2εk)φk = −g0

V

∑

0<εk′<ωD

φk′ , (14.21)

so that by solving for φk,

φk = − g0/V
E − 2εk

∑

0<εk′<ωD

φk′ , (14.22)

then summing both sides over k and factoring out
∑

k φk, we obtain the self-consistent
equation

1 = − 1
V

∑

0<εk<ωD

g0

E − 2εk
. (14.23)
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Replacing the summation by an integral over energy, 1
V

∑
0<εk<ωD

→ N(0)
∫ ωD

0 , where
N(0) is the density of states per spin per unit volume at the Fermi energy, the resulting
equation gives

1 = g0N(0)
∫ ωD

0

dε

2ε − E
= −1

2
g0N(0) ln

[
2ωD − E

−E

]
≈ −1

2
g0N(0) ln

[
2ωD

−E

]
,

(14.24)

where, anticipating the smallness of |E| << ωD, we have approximated 2ωD − E ≈ 2ωD.
In other words, the energy of the Cooper pair is given by

E = −2ωDe− 2
g0N(0) . (14.25)

Remarks

• The Cooper pair is a bound state beneath the particle–hole continuum (see Figure 14.5).
• In his seminal paper, Cooper notes that the Cooper pair is a boson, an operator governed

by a bosonic (commutator) algebra. (We will see shortly that it can be regarded as the
transverse component of a very large isospin.) This changes everything, for, as pairs,
electrons can condense macroscopically.

• A generalization of the above calculation to finite momentum (see Example 14.1) shows
that the Cooper pair has a linear dispersion Ep −E = vFp (see Figure 14.5), reminiscent
of a collective mode.
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Formation of a Cooper pair beneath the two-particle continuum. This density plot shows the density of states of pair
excitations obtained from the imaginary part of the pair susceptibilityχ ′′(E, p) (see Example 14.1). At a finite
momentum, the Cooper pair energy defines a collective bosonic mode beneath the quasiparticle continuumwith
dispersionEp ≈ E(0) + vF|p|.

!Fig. 14.5
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Example 14.1 Generalize Cooper’s calculation to a pair with finite momentum. In
particular:

(a) Show that the operator that creates a Cooper pair at a finite momentum p,

!†(p) =
∫

d3xd3x′φ(x − x′)ψ†
↑(x)ψ†

↓(x′)eip·(x+x′)/2, (14.26)

can be rewritten in the form

!†(p) =
∑

k

φ(k)c†
k+p/2↑c†

−k+p/2↓. (14.27)

(b) Show that the energy Ep of the pair state !†(p)|FS〉 is given by the roots z = Ep of the
equation

1 + g0

V

∑

0<εk±p/2<ωD

1
z − (εk+p/2 + εk−p/2)

= 0. (14.28)

Demonstrate that this equation predicts a linear dispersion given by

Ep = −2ωDe− 2
g0N(0) + vF|p|. (14.29)

Solution

(a) Introducing center-of-mass variables X = (x + x′)/2 and r = x − x′, using d3xd3x′ =
d3Xd3r, we rewrite the Cooper pair creation operator in the form

!†(p) =
∫

d3rd3X eip·Xφ(r) ψ†
↑(X + r/2)ψ†

↓(X − r/2). (14.30)

If we substitute ψ†
σ (x) = 1√

V

∑
k c†

kσ e−ik·x, we then obtain

!†(p) = 1
V

∫
d3rd3Xeip·Xφ(r)

∑

k1,k2

c†
k1↑c†

k2↓e−ik1·(X+r/2)eik2·(X−r/2)

=
∑

k1,k2

c†
k1↑c†

−k2↓

φ((k1+k2)/2)︷ ︸︸ ︷∫
d3r φ(r)eir·(k1+k2)/2

δp−(k1−k2)︷ ︸︸ ︷
1
V

∫
d3R ei[p−(k1−k2)]·X

=
∑

k

φ(k) c†
k+p/2↑c†

−k+p/2↓, (14.31)

where we have replaced (k1 + k2)/2 → k in the last step.
(b) Denote a Cooper pair with momentum p by

!†(p)|FS〉 ≡ |ψ(p)〉 =
∑

k

φk|k, p〉, (14.32)

where |k, p〉 = c†
k+p/2↑c†

−k+p/2↓|FS〉. Applying H|((p)〉 = Ep|((p)〉, using (14.16),

Ep
∑

k

φk|k, p〉=
∑

|k± p
2 |>kF

(εk+p/2 +εk−p/2) φk|k, p〉+
∑

|k|, |k′|>kF

|k, p〉〈k, p|V̂|k′, p〉φk′ .
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Assume that 〈k, p|V̂|k′, p〉φk′ = −g0/V is independent of p. Comparing coefficients
of |k, p〉,

Epφk = (εk+p/2 − εk−p/2) φk − g0

V

∑

0<εk′±p/2<ωD

φk′ . (14.33)

Solving for φk,

φk = g0/V
εk+p/2 + εk−p/2 − Ep

∑

0<εk′±p/2<ωD

φk′ . (14.34)

Summing both sides over momentum k and removing the common factor
∑

k φk, we
then obtain

1 − g0

V

∑

0<εk±p/2<ωD

1
εk+p/2 + εk−p/2 − Ep

= 0. (14.35)

It is convenient to cast this as the zero of the function G−1[Ep, p] = 0, where

G−1[z, p] = 1 − g0χ0(z, p), (14.36)

and

χ0(z, p) = 1
V

∑

0<εk±p/2<ωD

1
εk+p/2 + εk−p/2 − z

(14.37)

can be interpreted as the bare pair susceptibility of the conduction sea. Now, taking
εk = k2/2m − µ in the momentum summation, we must impose the condition

εk±p/2 = εk ± p · vF

2
+ p2

8m
> 0, (14.38)

or εk > pvF
2 | cos θ | − p2

8m . Replacing the momentum summation by an integral over
energy and angles,

χ0[z, p] = N(0)
2

∫ 1

−1

d cos θ

2

∫ ωD

pvF
2 | cos θ |−p2/8m

dε

2ε + p2/4m − z

= N(0)
2

∫ 1

0
d cos θ ln

[
2ωD

pvF cos θ − z

]
. (14.39)

Finally, carrying out the integral over θ , one obtains

χ0(z, p) = N(0)
2

χ̃0

[
z

2ωD
,

pvF

2ωD

]
, (14.40)

where

χ̃0[z̃, p̃] = ln
(

1
p̃ − z̃

)
+

[
1 + z̃

p̃
ln

(
1 − p̃

z̃

)]
. (14.41)

Thus for small vFp << |E|, using (14.36),

G−1[E, p] = 1 − g0N(0)
2

ln
[

2ωD

vFp − E

]
, (14.42)
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so the bound-state pole occurs at G−1(Ep, p) = 0 or

Ep = −2ωD exp
[
− 2

g0N(0)

]
+ vFp. (14.43)

The linear spectrum is a signature of a collective bosonic mode. Incidentally, the
quantity

χ ′′(E, p) = Im[χ0(z, p)/(1 − g0χ0(z, p))]|z=E−iδ (14.44)

can be interpreted as a spectral function giving the density of Cooper pairs above and
below the particle–particle continuum. It is this quantity that is plotted in Figure 14.5.

14.3 The BCS Hamiltonian

After Cooper’s discovery, it took a further six months of intense exploration of candidate
wavefunctions before Bardeen, Cooper and Schrieffer succeeded in formulating the theory
of superconductivity in terms of a pair condensate [15]. It was the graduate student in the
team, J. Robert Schrieffer, who took the next leap.1 Schrieffer’s insight was to identify the
superconducting ground state as a coherent state of the Cooper pair operator:

|ψBCS〉 = exp[%†]|0〉, (14.45)

where |0〉 is the electron vacuum and %† = ∑
k φkc†

k↑c†
−k↓ is the Cooper pair creation

operator (14.13). If we expand the exponential as a product in momentum space,

|ψBCS〉 =
∏

k

exp[φkc†
k↑c†

−k↓]|0〉 =
∏

k

(1 + φkc†
k↑c†

−k↓)|0〉. (14.46)

BCS wavefunction

In the second step, we have truncated the exponential to linear order because all higher
powers of the pair operator vanish: (c†

k↑c†
−k↓)n = 0 (n > 1). This remarkable coherent state

mixes states of different particle number, giving rise to a state of off-diagonal long-range
order in which

〈ψBCS|c−k↓ck↑|ψBCS〉 ∝ φk. (14.47)

1 Following a conference at the Stevens Institute of Technology on the many–body problem, inspired by a wave-
function that Tomonaga had derived, Schrieffer wrote down a candidate wavefunction for the ground-state
superconductivity. He recalls the event in his own words [16]:

So I guess it was on the subway, I scribbled down the wave function and I calculated the beginning of that
expectation value and I realized that the algebra was very simple. I think it was somehow in the afternoon
and that night at this friend’s house I worked on it. And the next morning, as I recall, I did the variational
calculation to get the gap equation and I solved the gap equation for the cutoff potential.
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Vk,k′

Vk,k′

k′↑

k↑

εF

2ωD

–k↓

–k′↓
–g0/V, < ωD

0, otherwise
| |= k

In the BCS Hamiltonian, the matrixVk,k′ acts attractively on pairs of electrons withinωD of the Fermi surface.
Provided the repulsive interaction at higher energies is not too large, a superconducting instability results.

!Fig. 14.6

But what Hamiltonian explicitly gives rise to pairing? A clue came from the Cooper
instability, which depends on the scattering amplitude Vk,k′ = 〈kP|V̂|k′

P〉 between
zero-momentum pairs. BCS [15] incorporated this feature into a model Hamiltonian:

H =
∑

kσ

εkσ c†
kσ ckσ +

∑

k,k′
Vk,k′c†

k↑c†
−k↓c−k′↓ck′↑. (14.48)

BCS Hamiltonian

In the universe of possible superconductors and superfluids, the interaction Vk,k′ can take
a wide variety of symmetries, but in its s-wave manifestation it is simply an isotropic
attraction that develops within a narrow energy shell of electrons within a Debye energy of
the Fermi surface, ωD (Figure 14.6):

Vk,k′ =
{ −g0/V (|εk| < ωD)

0 (otherwise).
(14.49)

The s-wave BCS Hamiltonian then takes the form

H =
∑

|εk|<ωD, σ

εkc†
kσ ckσ − g0

V
A†A.

A† =
∑

|εk|<ωD

c†
k↑c†

−k↓, A =
∑

|εk′ |<ωD

c−k′↓ck′↑. (14.50)

s-wave BCS Hamiltonian

Remarks

• The BCS Hamiltonian is a model Hamiltonian capturing the low-energy pairing
physics.
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• The normalizing factor 1/V is required in the interaction so that the interaction energy
is extensive, growing linearly rather than quadratically with volume V .

• The BCS interaction takes place exclusively at zero momentum, and as such involves an
infinite-range interaction between pairs. This long-range aspect of the model permits the
exact solution of the BCS Hamiltonian using mean-field theory. In the more microscopic
Fröhlich model the effective interaction (Figure (14.6)) is attractive within a narrow
momentum shell |!p| ∼ ωD/vF , corresponding to a spatial interaction range of order
1/|!p| ∼ vF/ωD ∼ O(εF/ωD) × a, where a is the lattice spacing. This length scale
is typically hundreds of lattice spacings, so the infinite-range mean-field theory is a
reasonable rendition of the underlying physics.

14.3.1 Mean-field description of the condensate

The key consequence of the BCS model is the development of a state with off-diagonal
long-range order (see Section 11.4.2). The pair operator Â is extensive, and in a supercon-
ducting state its expectation value is proportional to the volume of the system 〈Â〉 ∝ V .
The pair density

! = |!|eiφ = −g0

V
〈Â〉 = −g0

∫

|εk|<ωD

d3k
(2π )3 〈c−k↓ck↑〉 (14.51)

is an intensive, macroscopic property of superconductors that has both an amplitude
|!| and a phase φ. This is the order parameter. It sets the size of the gap in the exci-
tation spectrum and gives rise to the emergent phase variable whose rigidity supports
superconductivity.

Like the pressure in a gas, the order parameter ! is an emergent many-body property.
Just as fluctuations in pressure 〈δP2〉 ∼ O(1/V) become negligible in the thermodynamic
limit, fluctuations in ! can be similarly ignored. Of course, the reasoning needs to be
refined to encompass a quantum variable, formally requiring a path-integral approach.
The important point is that the change in action δS[δ!] = S[! + δ!0] − S[!] associ-
ated with a small variation in ! about a stationary point scales extensively in volume:
δS[δ!] ∼ V × δ!2, so that the corresponding distribution function can be expanded as a
Gaussian,

P[!] ∝ e−S[δ!] ∼ exp
[
− δ!2

O(1/V)

]
, (14.52)

which is exquisitely peaked about ! = !0, with variance 〈δ!2〉 ∝ 1/V , justifying a
mean-field treatment.

Let us now expand the BCS interaction in powers of the fluctuation operator
δÂ = Â − 〈Â〉:

− g0

V
A†A =

O(V)︷ ︸︸ ︷

!̄A + A†! + V
!̄!

g0
−

O(1)︷ ︸︸ ︷
g0

V
δA†δA . (14.53)
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Now the first three terms are extensive in volume, but since 〈δA†δA〉 ∼ O(V) the last term
is intensive O(1), and can be neglected in the thermodynamic limit. We shall shortly see
how this same decoupling is accomplished in a path integral using a Hubbard–Stratonovich
transformation. The resulting mean-field Hamiltonian for BCS theory is then

HMFT =
∑

kσ

εkc†
kσ ckσ +

∑

k

[
$̄c−k↓ck↑ + c†

k↑c†
−k↓$

]
+ V

g0
$̄$, (14.54)

BCS theory: mean-field Hamiltonian

in which $ needs to be determined self-consistently by minimizing the free energy.

14.4 Physical picture of BCS theory: pairs as spins

Let us discuss the physical meaning of the pairing terms in the BCS mean-field Hamilto-
nian (14.54)

HP(k) =
(
$̄c−k↓ck↑ + c†

k↑c†
−k↓$

)
. (14.55)

On the one hand, the term $̄c−k↓ck↑ converts two particles into the condensate:

Pair creation : e− + e− ! pair2−. (14.56)

Alternatively, by writing c−k↓ = h†
k↓ as a hole creation operator, we see that HP(k) ≡

(h†
k↑$̄)ck↑ + H.c. describes the scattering of a single electron into a condensed pair (rep-

resented by $̄) and a hole, a process called Andreev reflection, named after its discoverer,
Alexander Andreev:

Andreev reflection : e− ! pair2− + h+. (14.57)

While the first process builds the condensate, the second coherently mixes particle and
holes. We will denote the Andreev scattering process by a Feynman diagram:

electron

k, ω −k, −ω

hole
X
∆

Andreev reflection differs from conventional reflection in that

• it elastically scatters electrons into holes, reversing all components of the velocity2

2 Andreev noticed that, although the momentum of the hole is the same as the incoming electron, its group
velocity ∇k(−ε−k) = ∇k(−εk) = −∇kεk is reversed. This led him to predict that such scattering at the
interface of a superconductor leads to non-specular reflection of electrons, which scatter back as holes moving
in the opposite direction to the incoming electrons.
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E

electron

∆∆
hole
–

Ek = √  k2 + ∆2

k

k

k

kF!Fig. 14.7 Illustrating the excitation spectrum of a superconductor. Andreev scattering mixes the electron excitation spectrum
(blue) with the hole excitation spectrum (red), producing the gap! in the quasiparticle excitation spectrum. The
quasiparticles at the Fermi momentum are linear combinations of electrons and holes, with an indefinite charge.

• it conserves spin, momentum, and current, for a hole in the state (−k, ↓) has spin up,
momentum +k, and carries a current I = (−e) × (−∇εk) = e∇kεk.

Now the particle and hole dispersions are given by

particle: εk
hole: − ε−k,

(14.58)

as denoted by the blue and red lines, respectively, in Figure 14.7. These lines intersect at the
Fermi surface, so that the Andreev mixing between electrons and holes in a superconductor
opens up a gap that eliminates the Fermi surface, giving rise to a dispersion which, we will
shortly show, takes the form

Ek =
√

ε2
k + |!|2, (14.59)

as illustrated in Figure 14.7. The quasiparticle operators now become linear combinations
of electron and hole states with corresponding quasiparticle operators

a†
kσ = ukc†

kσ + sgn(σ )vkc−k−σ . (14.60)

14.4.1 Nambu spinors

We now introduce Nambu’s spinor formulation of BCS theory, which we’ll employ to
expose the beautiful magnetic analogy between pairs and spins, discovered by Yoichiro
Nambu [17] working at the University of Chicago and Philip W. Anderson [18] at AT&T
Bell Laboratories. The analogue of a superconductor is an antiferromagnet, for both
superconductivity and antiferromagnetism involve an order parameter which (unlike fer-
romagnetism), does not commute with the Hamiltonian. Superconductivity involves an
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analogous quantity to spin, which we will call isospin, which describes orientations in
charge space. The pairing field ! can be regarded as a transverse field in isospin space.

To bring out this physics, it is convenient to introduce the charge analogue of the electron
spinor, the Nambu spinor, defined as

ψk =
(

ck↑
c†
−k.↓

)
electron
hole

(14.61)

with the corresponding Hermitian conjugate

ψ†
k =

(
c†

k↑, c−k↓
)

. (14.62)

Nambu spinors behave like conventional electron fields, with an algebra

{ψkα , ψ†
k′β} = δαβδk,k′ , (14.63)

but instead of up and down electrons, they describe electrons and holes. These spinors
enable us to unify the kinetic and pairing energy terms into a single vector field, analogous
to a magnetic field, that acts in isospin space.

The kinetic energy can be written as

∑

k

εk(c†
k↑ck↑ − c−k↓c†

−k↓ + 1) =
(

c†
k↑, c−k↓

) [
εk 0
0 −εk

] (
ck↑

c̄†
−k↓

)

+
∑

k

εk, (14.64)

where the sign reversal in the lower component derives from anticommuting the down-
spin electron operators. The energy −εk is the energy to create a hole. We will drop the
constant remainder term

∑
k εk. We can now combine the kinetic and pairing terms into a

single matrix:

εk
∑

σ

c†
kσ ckσ +

[
!̄c−k↓ck↑ + c†

k↑c†
−k↓!

]
=

(
c†

k↑, c−k↓
) [

εk !

!̄ −εk

] (
ck↑

c†
−k↓

)

= ψ†
k

[
εk !1 − i!2

!1 + i!2 −εk

]
ψk

= ψ†
k[εkτ3 + !1τ1 + !2τ2]ψk, (14.65)

where we denote ! = !1 − i!2, !̄ = !1 + i!2 and we have introduced the isospin
matrices

%τ = (τ1, τ2, τ3) =
( [

0 1
1 0

]
,
[

0 −i
i 0

]
,
[

1 0
0 −1

] )
. (14.66)

By convention the symbol %τ is used to distinguish a Pauli matrix in charge space from a
spin σ acting in spin space. Putting this all together, the mean-field Hamiltonian can now
be rewritten

H =
∑

k

ψ†
k (%hk · %τ )ψk + V

!̄!

g0
, (14.67)

where
%hk = (!1, !2, εk) (14.68)

plays the role of a Zeeman field acting in isospin space.
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14.4.2 Anderson’s domain-wall interpretation of BCS theory

Anderson noted that the isospin operators ψ†
k !τψk have the properties of spin- 1

2 operators
acting in charge space. The z component of the isospin is

τ3k = ψ†
kτ3ψk = (c†

k↑ck↑ − c−k↓c†
−k↓) = (nk↑ + n−k↓ − 1), (14.69)

so the up and down states correspond to the doubly occupied and empty pair state,
respectively:

τ3k = +1 : | ⇑k〉 ≡ |2〉 = c†
k↑c†

−k↓|0〉
τ3k = −1 : | ⇓k〉 ≡ |0〉. (14.70)

By contrast, the transverse components of the isospin describe pair creation and
annihilation:

τ̂1k = ψ†
kτ1ψk = c†

k↑c†
−k↓ + c−k↓ck↑

τ̂2k = ψ†
kτ2ψk = −i(c†

k↑c†
−k↓ − c−k↓ck↑). (14.71)

In a normal metal, the isospin points “up” in the occupied states below the Fermi surface,
and “down” in the empty states above the Fermi surface (Figure 14.8(a)). Now since the
Hamiltonian is H = ∑

k ψ
†
k(!hk · !τ )ψk, the quantity

!Bk = −!hk = −(#1, #2, εk) (14.72)

is thus a momentum-dependent Weiss field, setting a natural quantization axis for the elec-
trons at momentum k: in the ground state, the fermion isospins line up with this field. In
the normal state, the natural isospin quantization axis is the charge or “z-axis,” but in the

(a)
Bk

τk k

k

k

k

kF

D

kF

kF

→

→

Bk
→

Bk
→

Bk

k
→

Bk
→

τk
→

τk
→

(b)

nk
^

nk
^θ

Bk

Bk

!Fig. 14.8 Showing the domain-wall configuration of the isospin !τk and direction of pairing field n̂k near the Fermi momentum:
(a) a normal metal, in which the Weiss field Bk vanishes linearly at the Fermi energy, and (b) a superconductor in
which the Weiss field remains finite at the Fermi energy, giving rise to a gap in the excitation spectrum.
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(a)

k

k

kF

kF

kF

k

k

(b)

Bk

Bk

normal quasiparticle

Bogoliubov quasiparticle

Illustrating how the excitation of quasiparticle pairs corresponds to an “isospin flip,” which forms a pair of up and
down quasiparticles with energy 2|Bk|: (a) quasiparticle pair formation in the normal state where the quasiparticle
spectrum is gapless; (b) formation of a Bogoliubov quasiparticle pair in the superconducting state where the
excitation spectrum is gapped.

!Fig. 14.9

superconductor, the presence of a pairing condensate tips the quantization axis, mixing
particle and hole states (Figure 14.8(b)).

With this analogy one can identify the reversal of an isospin out of its ground-state
configuration as the creation of a pair of quasiparticles “above” the condensate. Since this
costs an energy 2|!Bk|, the magnitude of the Weiss field

Ek ≡ |!Bk| =
√

ε2
k + |"|2 = quasiparticle energy (14.73)

must correspond to the energy of a single quasiparticle. In a metal (" = 0), the Weiss field
vanishes at the Fermi surface so it costs no energy to create a quasiparticle there (Figure
14.9(a)), but in a superconductor the Weiss field has magnitude |"| so the quasiparticle
spectrum is now gapped (Figure 14.9(b)).

Let us write !Bk = −Ekn̂k, where the unit vector

n̂k =
(

"1

Ek
,
"2

Ek
,
εk

Ek

)
(14.74)

points upwards far above the Fermi surface, and downwards far beneath it. In a normal
metal, n̂k (see Figure 14.8) reverses at the Fermi surface forming a sharp “Ising-like”
domain wall, but in a superconductor the n̂ vector is aligned at an angle θ to the ẑ axis,
where

cos θk = εk

Ek
. (14.75)

This angle rotates continuously as one passes through the Fermi energy, so the domain wall
is now spread out over an energy range of order ", forming a kind of Bloch domain wall
in isospin space, as shown in Figure 14.8.
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In the ground state each isospin will align parallel to the field !Bk = −Ekn̂k, i.e.

〈ψ†
k !τψk〉 = −n̂k = −(sin θk, 0, cos θk), (14.76)

where we have taken the liberty of choosing the phase of $ so that $2 = 0. In a normal
ground state ($ = 0) the isospin aligns along the z-axis, 〈τ3k〉 = 〈nk↑ + n−k↓ − 1〉 =
sgn(kF − k), but in a superconductor the isospin quantization axis is rotated through an
angle θk so that the z component of the isospin is

〈τ3k〉 = 〈nk↑ + n−k↓ − 1〉 = − cos θk = − εk√
ε2

k + $2
, (14.77)

which smears the occupancy around the Fermi surface, while the transverse isospin
component, representing the pairing, is now finite:

〈τ1k〉 = 〈(c†
k↑c†

−k↓ + c−k↓ck↑)〉 = − sin θk = − $
√

ε2
k + $2

. (14.78)

Now since we have chosen $2 = 0, 〈τ2k〉 = −i〈(c†
k↑c†

−k↓ − c−k↓ck↑)〉 = 0, it follows that

〈c−k↓ck↑〉 = − 1
2 sin θk. Imposing the self-consistency condition $ = − g0

V

∑
k〈c−k↓ck↑〉

(14.51), one then obtains the BCS gap equation:

$ = g0

V

∑

k

1
2

sin θk = g0

∫

|εk|<ωD

d3k
(2π )3

$

2
√

ε2
k + $2

. (14.79)

BCS gap equation (T = 0)

Since the momentum sum is restricted to a narrow region of the Fermi surface, one can
replace the momentum sum by an energy integral, to obtain

1 = g0N(0)
∫ ωD

−ωD

dε
1

2
√

ε2 + $2
= g0N(0) sinh−1

(ωD

$

)
≈ g0N(0) ln

[
2ωD

$

]
, (14.80)

so, in the superconducting ground state, the BCS gap is given by

$ = 2ωDe− 1
g0N(0) . (14.81)

Remarks

• Note the disappearance of the factor of 2 in the exponent that appeared in Cooper’s
original calculation (14.25).

• The magnetic analogy has many intriguing consequences. One can immediately see
that, like a magnet, there must be collective pair excitations, in which the isospins
fluctuate about their ground-state orientations. Like magnons, these excitations form
quantized collective modes. In a neutral superconductor, this leads to a gapless “sound”
(Bogoliubov or Goldstone) mode, but in a charged superconductor the condensate phase
mixes with the electromagnetic vector potential via the Anderson–Higgs mechanism
(see Section 11.6) to produce the massive photon responsible for the Meissner effect.
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14.4.3 The BCS ground state

In the vacuum |0〉, electron isospin operators all point “down,” τ3k = −1. To construct the
ground state in which the isospins are aligned with the Weiss field, we need to construct a
state in which each isospin is rotated relative to the vacuum. This is done by rotating the
isospin at each momentum k through an angle θk about the y-axis, as follows:

|θk〉 = exp
[
−i

θk

2
ψ†

kτyψk

]
| ⇓k〉 =

(
cos

θk

2
− i sin

θk

2
ψ†

kτyψk

)
| ⇓k〉

= cos
θk

2
| ⇓k〉 − sin

θk

2
| ⇑k〉. (14.82)

The ground state is a product of these isospin states:

|BCS〉 =
∏

k

|θk〉 =
∏

k

(
cos

θk

2
+ sin

θk

2
c†
−k↓c†

k↑

)
|0〉, (14.83)

where we have absorbed the minus sign by anticommuting the two electron operators. Fol-
lowing BCS, the coefficients cos

(
θk
2

)
and sin

(
θk
2

)
are labeled uk and vk, respectively,

writing

|BCS〉 =
∏

k

|θk〉 =
∏

k

(
uk + vkc†

−k↓c†
k↑

)
|0〉, (14.84)

where

uk ≡ cos
(

θk

2

)
=

√
1
2

[
1 + cos θk

]
=

√
1
2

[
1 + εk

Ek

]

︸ ︷︷ ︸
εk/Ek

vk ≡ sin
(

θk

2

)
=

√
1
2

[
1 − cos θk

]
=

√
1
2

[
1 − εk

Ek

]
. (14.85)

Remarks

• Dropping the normalization, the BCS wavefunction can be rewritten as a coherent state
(14.45),

|BCS〉 =
∏

k

(
1 + φkc†

k↑c†
−k↓

)
|0〉) = exp

[
∑

k

φkc†
k↑c†

−k↓

]

|0〉 = exp
[
&†

]
|0〉,

(14.86)
where φk = − vk

uk
determines the Cooper pair wavefunction.

• We can thus expand the exponential in (14.86) as a coherent sum of pair-states:

|BCS〉 =
∑

n

1
n!

(&†)n|0〉 =
∑

n

1√
n!

|n〉, (14.87)

where |n〉 = 1√
n!

(&†)n|0〉 is a state containing n pairs.
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The BCS wavefunction breaks gauge invariance, because it is not invariant under gauge
transformations c†

kσ → eiαc†
kσ of the electron operators:

|BCS〉 → |α〉 =
∏

k

(1 + e2iαφkc†
k↑c†

−k↓)|0〉 =
∑ ei2nα

√
n!

|n〉. (14.88)

Under this transformation, the order parameter $ = −g0/V
∑

k〈α|c−k↓ck↑|α〉 acquires a
phase $ → e2iα|$|. On the other hand, the energy of the BCS state is unchanged by a
gauge transformation, so the states |α〉 must form a family of degenerate broken-symmetry
states.

The action of the number operator N̂ on this state may be represented as a differential
with respect to phase:

N̂|α〉 =
∑ 1√

n!
2nei2nα|n〉 = −i

d
dα

|α〉, (14.89)

so that

N̂ ≡ −i
d

dα
. (14.90)

In this way, we see that the particle number is the generator of gauge transformations.
Moreover, the phase of the order parameter is conjugate to the number operator, [α, N] = i,
and like position and momentum, or energy and time, the two variables therefore obey an
uncertainty principle,

$α$N ! 1. (14.91)

Just as a macroscopic object with a precise position has an ill-defined momentum, a pair
condensate with a sharply defined phase (relative to other condensates) is a physical state
of matter – a macroscopic Schrödinger cat state – with an ill-defined particle number.

For the moment, we’re ignoring the charge of the electron, but once we restore it, we will
have to keep track of the vector potential, which also changes under gauge transformations.

14.5 Quasiparticle excitations in BCS theory

Let us now construct the quasiparticles of the BCS Hamiltonian. Recall that, for any one-
particle Hamiltonian H = ψ†

αhαβψβ , we can transform to an energy basis where the
operators a†

k = ψ†
β〈β|k〉 diagonalize H = ∑

k Eka†
kak. Now the 〈β|k〉 are the eigenvec-

tors of hαβ , since 〈α|Ĥ|k〉 = Ek〈α|k〉 = hαβ〈β|k〉, so to construct quasiparticle operators
we must project the particle operators onto the eigenvectors of hαβ , a†

k = ψ†
β〈β|k〉.

We now seek to diagonalize the BCS Hamiltonian, written in Nambu form:

H =
∑

k

ψ†
k ()hk · )τ )ψk + V

g0
$̄$.

The two-dimensional Nambu matrix

hk = εkτ3 + $1τ1 + $2τ2 ≡ Ekn̂k · )τ (14.92)
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has two eigenvectors with isospin quantized parallel and antiparallel to n̂k, 3

n̂k · !τ
(

uk
vk

)
= +

(
uk
vk

)
, n̂k · !τ

(−v∗
k

u∗
k

)
= −

(−v∗
k

u∗
k

)
, (14.93)

and corresponding energies ±Ek = ±
√

ε2
k + |#k|2. We can combine (14.93) into a single

equation,

(n̂k · !τ )Uk = Ukτ3, (14.94)

where

Uk =
(

uk −v∗
k

vk u∗
k

)
(14.95)

is the unitary matrix formed from the eigenvectors of hk. If we now project ψ
†
k onto the

eigenvectors of hk, we obtain the quasiparticle operators for the BCS Hamiltonian:

a†
k↑ = ψ†

k ·
(

uk
vk

)
= c†

k↑uk + c−k↓vk

a−k↓ = ψ†
k ·

(−v∗
k

u∗
k

)
= c−k↓u∗

k − c†
k↑v∗

k. (14.96)

Bogoliubov transformation

This transformation, mixing particles and holes, is named after its inventor, Nikolai Bogoli-
ubov. If one takes the complex conjugate of the quasihole operator and reverses the
momentum, one obtains a†

k↓ = c†
k↓uk−c−k↑vk, which defines the spin-down quasiparticle.

The general expression for the spin-up and spin-down quasiparticles can be written

a†
kσ = c†

kσ uk + sgn(σ )c−k−σ vk. (14.97)

Let us combine the two expressions (14.96) into a single Nambu spinor a†
k:

a†
k = (a†

k↑, a−k↓) = ψ†
k

Uk︷ ︸︸ ︷(
uk −v∗

k
vk u∗

k

)
= ψ†

kUk. (14.98)

Taking the Hermitian conjugate ak = U†
kψk, then ψk = Ukak, since UU† = 1. Using

(14.94),

ψ†
khkψk = a†

kU†
k

UkEkτ3︷ ︸︸ ︷
hkUk ak = a†

kEkτ3ak, (14.99)

so that, as expected,

H =
∑

k

a†
kEkτ3ak + V

#̄#

g0
(14.100)

3 Here complex conjugation is required to ensure that the complex eigenvectors are orthogonal when the gap is
complex.
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is diagonal in the quasiparticle basis. Written out explicitly,

H =
∑

k

Ek

(
a†

k↑ak↑ − a−k↓a†
−k↓

)
+ V

!̄!

g0
. (14.101)

If we rewrite the Hamiltonian in the form

H =
∑

kσ

Ek

(
a†

kσ akσ − 1
2

)
+ V

!̄!

g0
, (14.102)

we can interpret the excitation spectrum in terms of quasiparticles of energy

Ek =
√

ε2
k + |!|2 and a ground-state energy4

Eg = −
∑

k

Ek + V
!̄!

g0
. (14.104)

Now if the density of Bogoliubov quasiparticles per spin is Ns(E), then, since the number
of quasiparticle states is conserved, Ns(E)dE = Nn(0)d|ε| (where Nn(0) = 2N(0) is the
quasiparticle density of states in the normal state). It follows that

N∗
s (E) = Nn(0)

d|εk|
dEk

= Nn(0)

(
E

√
E2 − |!|2

)

θ (E − |!|), (14.105)

where we have written εk =
√

E2
k − |!|2 to obtain dεk/dEk = Ek/

√
E2

k − |!|2. The theta
function describes the absence of states in the gap (see Figure 14.10(a)). Notice how the
Andreev scattering causes states to pile up in a square-root singularity above the gap; this
feature is called a coherence peak.

One of the most direct vindications of BCS theory derives from tunneling measurements
of the excitation spectrum, in which the differential tunneling conductance is proportional
to the quasiparticle density of states:

dI
dV

∝ Ns(eV) = Nn(0)
eV√

eV2 − !2
θ (eV − |!|). (14.106)

The observation of such tunneling spectra in superconducting aluminum in 1960 by Ivar
Giaever [19] provided the first direct confirmation of the energy gap predicted by BCS
theory (see Figure 14.10(b)).

4 Note that, if we were to restore the constant term
∑

k εk dropped in (14.64), the ground-state energy becomes

Eg =
∑

k

(εk − Ek) + V
!̄!

g0
. (14.103)
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density of states. Reprinted with permission from I. Giaever, et al., Phys. Rev., vol. 126, p. 941, 1962. Copyright 1962 by
the American Physical Society.

!Fig. 14.10

Example 14.2 Show that the BCS ground state is the vacuum for the Bogoliubov
quasiparticles, i.e. that the destruction operators akσ annihilate the BCS ground state.

Solution

One way to confirm this is to directly construct the quasiparticle vacuum |ψ〉, by repeatedly
applying the pair destruction operators to the electron vacuum, so that

|ψ〉 =
∏

k

a−k↓ak↑|0〉

⇒ akσ |ψ〉 = 0 (14.107)

for all k, since the square of a destruction operator is zero, so |ψ〉 is the quasiparticle
vacuum. Using the form (14.97),

ak↑ = ukck↑ + vkc†
−k↓

a−k↓ = ukc−k↓ − vkc†
k↑, (14.108)

where for convenience we assume that uk and vk are real, we find

k
a−k↓ak↑ |0 =

k
(uk c−k↓ − vk c†k↑)(ukck↑ + vk c †−k↓)|0

=
k

(ukvkc−k↓c†−k↓ − (vk)2c†k↑c†−k↓)|0

=
k

vk ×
k

(uk + vkc†−k↓c†k↑)|0 BCS , (14.109)


