

ERMION QPS

$$\begin{pmatrix} \Theta & if_{\vec{k}} \\ -if_{\vec{k}}^{*} & \Theta \end{pmatrix} \begin{pmatrix} 1 \\ \mp i e^{-i\Theta_{k}} \end{pmatrix} = \begin{pmatrix} 0 & |\delta| e^{i\Theta_{1}} \\ -i|\delta| e^{i\Theta_{1}} & 0 \end{pmatrix} \begin{pmatrix} 1 \\ \mp i e^{i\Theta_{1}} \end{pmatrix}$$
$$= \frac{1}{|\delta_{k}|} \begin{pmatrix} 1 \\ \mp i e^{-i\Theta_{1}} \end{pmatrix}$$

 $|\Psi_{\pm}\rangle = |i\rangle\langle i|\Psi\rangle \Rightarrow \alpha_{\pm}^{\dagger} = c_{i}^{\dagger}\langle i|\Psi_{\pm}\rangle$

$$a_{\pm}^{\dagger}(k) = \frac{1}{\sqrt{2}} \left(C_{1k}^{\dagger} \mp i e^{-i \Theta_{k}} C_{2k}^{\dagger} \right)$$

$$\hat{\mathcal{H}} = \frac{\kappa}{2} \sum_{k \in Q} \left[\alpha_{+}^{\dagger}(\vec{k}) \alpha_{+}(\vec{k}) - \alpha_{-}^{\dagger}(\vec{k}) \alpha_{-}(\vec{k}) \right] + i \hat{Q}_{\kappa}$$

$$f_{k} = f_{-k}^{*}$$
 $a_{-}^{\dagger}(-k) = f_{1-k}^{\dagger} + ie c_{2-k}^{\dagger}$

 $\Theta_k = -\Theta_{-k}$ $= a_{+}(k)$ $-\frac{1}{2}\left(a_{t}^{+}(k)a_{t}(k)-a_{t}(k)a_{t}^{+}(k)\right)=\left(a_{t}^{+}(k)a_{t}(k)-\frac{1}{2}\right)$

$$\mathcal{U} = \sum_{k \in B7} \left[\left\{ \begin{cases} \chi_k \\ \alpha_+ \\ k \end{cases} \right\} \left[\alpha_+ \\ \alpha_+$$

- Only positive energy excitations : MAJORANA's
- G.S.E $E_g = -\frac{1}{2} \sum_{k}^{\infty} |\delta_k|.$

Types of excitation · Fermions · Vortices. -1 • Edge excitations (broken T.R.)

SPECIFIC MEAT

Nasu, Udayana & Motome, PRB 91, 115122 (2015)

- Around a vortex $\overline{TP} u_{ij} = -1$
- Additional insight is gained from the extreme limit $J_x = J_y = 0$, which maps onto the "Toric code"

 $\mathcal{Y} \longrightarrow \mathcal{U}^{\dagger} \mathcal{Y} \mathcal{U}$

$$U = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$$

A's & B's all
 Commute + each other
 (SHARE ZERO OR TWO EDGES

$$\implies |\Psi \gamma = \sum_{\{s: W_{p}(s)=1 \forall p\}} C_{s} |s \gamma$$

$$|\Psi_{p_1p_2}^{M}\rangle = W_{e^*}|\Psi_{o}\rangle \quad \Delta E = 2J_{m}$$

In the Honeycomb model, these excitations are degenerate because $J_n = J_e = \frac{k_x^2 k_y^2}{16 K_e^3}$.

ABELIAN ANYONS : BRAIDING, SUPERSELECTION & FUSION.

Creation =

annihilation =

E = Fermion

SUPER-SELECTION

Class of states that can be transformed into one-another by local operators. e.g. the current operator can fuse a positron + electron into a photon. $e^+ \times e^- = \chi$ Take case: 1 (vacuum) e.m. E $\left[0 \times \left(L \right) \right] = \left[L \right] \left[\left(L \right) \right] = \left[L \right] \left[\left(L \right) \right] \left[\left(L \right) \right] \right] = \left[\left(L \right) \right] \left[\left(L \right) \left[\left(L \right) \right] \left[\left(L \right) \right] \left[\left(L \right) \left[\left(L \right) \right] \left[\left(L \right) \right] \left[\left(L \right) \left[\left(L \right) \right] \left[\left(L \right) \right] \left[\left(L \right) \left[\left(L \right) \right] \left[\left(L \right) \left[\left(L \right) \right] \left[\left(L \right) \left[\left(L \right) \right] \left[\left(L \right) \left[\left(L \right) \right] \left[\left(L \right) \left[\left(L \right) \right] \left[\left(L \right) \left[\left(L \right) \right] \left[\left(L \right) \left[\left(L \right) \left[\left(L \right) \right] \left[\left(L \right) \left[\left(L \right)$

 $e \times e = m \times m = E \times E = 1$. $e \times m = E, e \times E = m, m \times E = e.$

IDENTIFICATION OF PARTICLES IN THE HONEYCOMB LATTICE.

In phase B, the gapless fermions prevent the

Vortices from being moved adiabatically, so may no longer have well defined statistics. |Q-Q*|~ L-1 ā Do ā* Leads to a kind of RKKY interaction between vorlices that is of order $E(q \sim L^{-1}) \sim L^{-1}$ that oscillates at vovevector Q-Q = 2Q*. This produces a non universal phase As v -> 0, 000 -> very large ... no well defined statistics $\Delta \phi \sim L^{-1} t \sim \frac{1}{\text{velocity}}$ But! Broken hime reversal symmetry can induce a gap in the Fermion opechim! $\left(\frac{1}{\varepsilon_{o}-\mathcal{H}}\right)^{1}=\left(1-\mathcal{P}\right)\frac{1}{\varepsilon_{o}-\mathcal{H}}\left(1-\mathcal{P}\right)$ $V = -\sum_{j} \vec{h} \cdot \vec{\sigma}_{j}$

 $H_{eff} = P \left[V + V \left(\frac{1}{E_{o} - H} \right)' + V \left(\frac{1}{E_{o} - H} \right)' \left(\frac{1}{E_{o} - H} \right)' \left(\frac{1}{E_{o} - H} \right)' \right] P$

~
$$-i\$b_j^x c_j b_e^z c_e b_k^y c_k$$

~ $+i\$c_j b_j^x b_e^x (b_e^x b_e^z b_e^y c_e) b_e^y b_k^y c_k$
 $u_je^y b_e^y (b_e^x b_e^z b_e^y c_e) b_e^y b_k^y c_k$

= $i(D_e \hat{u}_{ek}) c_j c_k \sim -i c_j c_k$.

NEXT NEAREST NEIGHBOR Hopping!

Heft:
$$i \leq A_{jk} c_{j} c_{k}$$

 $A = 2K(-) + 2K'(-)$
 $K \sim h_{x}hy h_{z}$
 J^{2}

$$\begin{split} \Delta = \Delta_{1}(\alpha) + \alpha & = \frac{1}{4k} & = \frac{1}{4$$

O

Now under rather general conditions

$$\frac{1}{T} K_{ab} = L \sigma_{ab}, \qquad L = \frac{\pi r^2 k_e^2}{3 e^2},$$
where K is the theomal conductivity knoor. So for the
IQHE, we expect

$$\frac{K_{xy}}{T} = \frac{\pi^2 k_e^2}{3 e^2} \times \frac{e^2}{h} = \left(\frac{\pi k_e^2}{6 t}\right) D$$
A Majorana edge state carries $\frac{1}{2}$ the heat current
of an electron edge state

A Pure Thermal Hall Effect.

KITAEV SPIN LIQUIDS

In 2009, George Jackeli & Giniyar Khaliulin proposed that Iridium atoms inside Octohedra would develop kitaev-like Ising interactions with their neighbors. Suddenly, the kitaev honeyuono model was no longer a "toy": it might be realized in solid state quantum materials. Proposed oystems : spin orbit coupled transchon metals (e.g. Ru, Ir) in an Octohedral environment

$$Je\# = ^{3}h$$

$$Te\# = ^{3}h$$

Octahedra con be laid down in a plane to form a honeycomb structure

a

а

The three noighboring edge-shoring octubeda define three orthogonal planes, giving rise to the three directions for the Ising interactions. Interlayer couplings one weak, but there are additional Heisenberg & tensor interactions.

$$H = \sum \left\{ -kS_i^r S_j^r + \Gamma\left(S_i^{d} S_j^{\beta} + S_i^{\beta} S_j^{d}\right) + \overline{JS_i} S_j^r \right\}$$

$$\begin{cases} (i,j)_r \\ Hunds \\ electron \\ transfer \\ (k > T >> \overline{J}). \end{cases}$$

Materials	Crystal structure (Space group)	T _{mag}	anisotro py	ρ _{eff} (μ _Β)	<i>Ө</i> сw (К)	Magnetic ground state	Ref.
Na ₂ IrO ₃	2D (C2/m)	15 K	χ _c > χ _{ab}	1.81 (<i>ab</i>) 1.94 (<i>c</i>)	-176 (<i>θ</i> _{ab}) -40 (<i>θ</i> _c)	zigzag	40,57,66, 67
α-Li₂lrO₃	2D (C2/m)	15 K	χ _{ab} > χ _c	1.50 (<i>ab</i>) 1.58 (<i>c</i>)	+5 (θ_{ab}), -250 (θ_c)	Spiral	44,65,70
H ₃ Lilr ₂ O ₆	2D (<i>C</i> 2/ <i>m</i>)	-	_{χab} > χ _c	1.60	-105	Spin-liquid	46
Cu ₂ IrO ₃	2D (C2/c)	2.7 K	Not known	1.93(1)	-110	AF order or Spin-glass	42
Cu ₃ Lilr ₂ O ₆	2D (C2/c)	15 K	Not known	2.1(1)	-145	AF order	49
Ag ₃ Lilr ₂ O ₆	2D (<i>R-</i> 3 <i>m</i> *)	~12 K	Not known	1.77		AF order	48
α-RuCl₃	2D (<i>C</i> 2/ <i>m</i> or <i>P</i> 3₁12,or <i>R</i> -3) ; <i>T</i> and sample dependent	7 K and/or, 14 K See text	_{Xab} > χ _c	2.33 (<i>ab</i>), 2.71 (<i>c</i>)	+39.6(θ_{ab}), -216.4 (θ_c)	zigzag	51,64,68, 69, 131
β-Li ₂ IrO ₃	3D (Fddd)	38 K	$\chi_b > \chi_c > \chi_a$	1.87 (a) 1.80 (b) 1.97 (c)	$\begin{array}{c} -90.2 \ (\theta_{a}) \\ +12.9 \ (\theta_{b}) \\ +21.6 \ (\theta_{c}) \end{array}$	Spiral	52,71,92
γ-Li ₂ lrO ₃	3D (<i>Cccm</i>)	39.5 K	$\chi_b > \chi_c > \chi_a$	~1.6	+40	Spiral	53,72

Figure 7. **Signature of fractional excitations in** α **-RuCl₃. a,** Inelastic neutron scattering in single-crystal α -RuCl₃ measured at temperatures of T = 5 K (top) and 10 K (bottom)⁷⁵. The data is integrated over a small reciprocal space volume centered at the Γ point of the twodimensional lattice. The letters designate the contributions from the elastic line "E", spin-waves "S", and continuum scattering "C". b, Inelastic neutron scattering is measured at T = 2 K (top) in zero external magnetic field and (bottom) in a field of 8 T in the honeycomb plane, large enough to suppress the magnetic order⁹⁰. The color bar denotes the relative intensity. **c,** THz spectroscopy measurements in α -RuCl₃¹¹³ in the presence of a magnetic field applied in the honeycomb plane, with the THz field parallel to the applied field direction. All measurements were carried out at T = 2.4 K. The arrows indicate locations of excitations inferred from the data. **d,** Detail of Raman measurements in α -RuCl₃ at T = 5 K¹⁰⁷. The blue shaded area represents the magnetic continuum scattering. (Panel **a** reproduced with permission from Ref. 75, panel **b** reproduced with permission from Ref. 90, panel **c** reproduced with mission from Ref. 113, and panel **d** reproduced with permission from Ref. 107).