The spin liquid concept is intimotely connected with the
idea of "fractionalization". The Hilbert opace of a single spin
is samply
$$\{7, J\}$$
; it is two dimensional. Andorran enviroged
that a opin liquid could be thought of as an incompressible
fluid of S=1/2 fermions, described by a Gatzeudler wovefunction
e.g. we could consider
 $|Y_{RUB}\gamma = P_G T_I fiko |P\rangle$

Where $P_G = \prod_{j} (n_{jr} - n_{jl})^2$ projects out the states where $n_j = 1$,

and the Fermi ordence is half filled. We see has the Kilbert
space of the excitations is "bogger" than the Kilbert space of
spins, but had the projector projects out doubly occupied or
empty sites, seturing us to the "physical" Kilbert space.
In this description, the opin operator acting on [Yevis? has
"fractionalized" into fermionic opinions
$$\vec{S} = \int_{\alpha}^{+} \vec{\sigma}_{\alpha} S f_{\beta}$$
.
A opin flip creates a public hole pair. Now to avoid the
implaytical doubly occupied of earty shows, he must impose

the constraint

$$N_{3}(j) = 1$$

at each rate. Indeed we use her $[\vec{S}_{j}, n_{1}(j)] = 0$, so that
it we write a Neisenborg model for an antiferromagnet
 $\mathcal{H} = J \lesssim \vec{S}_{1}, \vec{S}_{2} = J \lesssim (f_{ju}^{\dagger} \vec{\sigma}_{01} f_{01}) \cdot (f_{18}^{\dagger} \vec{\sigma}_{25} f_{15})$
Here we arrive at a Namiltonian that has a conserved quantity

So we can revote the Messenberg Manullancia in to form

$$\mathcal{U} = - \underbrace{\Im}_{2} \underbrace{\sum}_{\langle i,j \rangle} \cdot (\underbrace{f_{i\alpha}^{+} f_{j\alpha}}_{j\alpha}) (\underbrace{f_{\delta \mathcal{B}}^{+} f_{i\beta}}_{j\alpha})^{:} + \underbrace{\sum}_{j} \widehat{\lambda}_{j} (n_{4j} - 1)^{:}$$
The last term is a constraint - $\widehat{\lambda}_{j}^{:}$ is to be integrated believe

The last term is a constraint -
$$\lambda_j$$
 is to be integrised of $\lambda_j = 0$ 8 $\lambda_j = 2\pi i \log 7_j$ to impose to constraint
 $2\pi i \log 7$
 $P_G = \pi \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} -\beta \lambda_j (\hat{n}_{j,j} - 1) \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} \beta \lambda_j (\hat{n}_{j,j} - 1) \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} \beta \lambda_j (\hat{n}_{j,j} - 1) \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} \beta \lambda_j (\hat{n}_{j,j} - 1) \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} \beta \lambda_j (\hat{n}_{j,j} - 1) \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} \beta \lambda_j (\hat{n}_{j,j} - 1) \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} \beta \lambda_j (\hat{n}_{j,j} - 1) \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} \beta \lambda_j (\hat{n}_{j,j} - 1) \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} \beta \lambda_j (\hat{n}_{j,j} - 1) \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} \beta \lambda_j (\hat{n}_{j,j} - 1) \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} \beta \lambda_j (\hat{n}_{j,j} - 1) \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} \beta \lambda_j (\hat{n}_{j,j} - 1) \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} \beta \lambda_j (\hat{n}_{j,j} - 1) \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} \beta \lambda_j (\hat{n}_{j,j} - 1) \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} \beta \lambda_j (\hat{n}_{j,j} - 1) \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} \beta \lambda_j (\hat{n}_{j,j} - 1) \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} \beta \lambda_j (\hat{n}_{j,j} - 1) \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} \beta \lambda_j (\hat{n}_{j,j} - 1) \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} \beta \lambda_j (\hat{n}_{j,j} - 1) \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} \beta \lambda_j (\hat{n}_{j,j} - 1) \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp \int_{j} \frac{d\lambda_j}{2\pi i \log 7} \exp$

So Le ca vite the heisenberg model os

$$Z = 7, f_c e^{-\beta n} = \int g[f, f, f] e^{-\delta n}$$

Mere

Indeed, if we write $\Delta_{ij} = |\Delta_{ij}| e^{-iA_{ij}}$, we see to $A_{ij} \sim \int_{i}^{i} A_{ij} dr$ is a kind of Peierle onbohinting, in which

We are a rear-field description of and a deconfined
phase by looking for oraddle part descriptions of the
ground atts. Suppose we make to Ansatz

$$\Delta_{ij} = \operatorname{construt} = -\Delta \quad \lambda_j = \lambda$$
Then or mean field trap is

$$\mathcal{M}_{ner} := -\sum_{cip} \Delta \left(f_{ix}^{+} f_{px} + h.c \right) + \lambda \sum_{cip} (n_{ij} f_{ij}) - a \right)$$

$$+ N [\Delta]^{n}$$
(0:1)

1.e in momentur opere fix = fix = fix e ik.ē,
1.7 - 127(klj)
Marci =
$$\sum_{n=1}^{N} f_{n} f_{n} f_{n} f_{n} + N \sum \frac{10}{3} - 2 \sum \alpha$$
.
 $f_{k} = -2\Delta (cosk_{x} + cosk_{y}) + \lambda$
Takad half filling, Q=1, is obtained it $\langle A_{y} \rangle = 1$ if $\lambda = 0$
& in Law a grand atto that is a filled fermi oran
 $|V_{y}\rangle = P_{c} \prod_{k < k_{x}} C_{kx}^{+} C_{kx}^{+} lp \rangle$
Ue can ty t extinct t good sto energy in t neu-field
theory as follows

The ground - state energy is then (for
$$Su(N)$$
)
 $\langle \hat{H} \rangle = N \int \frac{d^{2}k}{(2\pi)^{2}} \left(-2\Delta (c_{x}+c_{y}) \right)^{f(k_{x})} + Z\Delta^{2}N \qquad z_{2}z_{z}=\# \text{ of bonds}$
where we've ort $Q/N = \frac{1}{2}Q \qquad \lambda = 0$ (half filling).
Station norty w.r.t. variations in Δg_{i} gives
 $\delta \langle h_{i} \rangle = 4N \qquad \int \frac{d^{2}k}{2} - \int \frac{d^{2}k}{(2\pi)^{2}} (c_{x}+c_{y}) f_{k}$
 $\Rightarrow 2\Delta = \int \frac{d^{2}k}{2\pi} (c_{x}+c_{y}) f_{k} \qquad \int \frac{d^{2}k}{(2\pi)^{2}} (c_{x}+c_{y}) f_{k}$
Changing variables to $k_{x} = u - v \qquad k_{y} = u + v$

$$C_{x} + C_{y} = 2\cos u \cos v$$

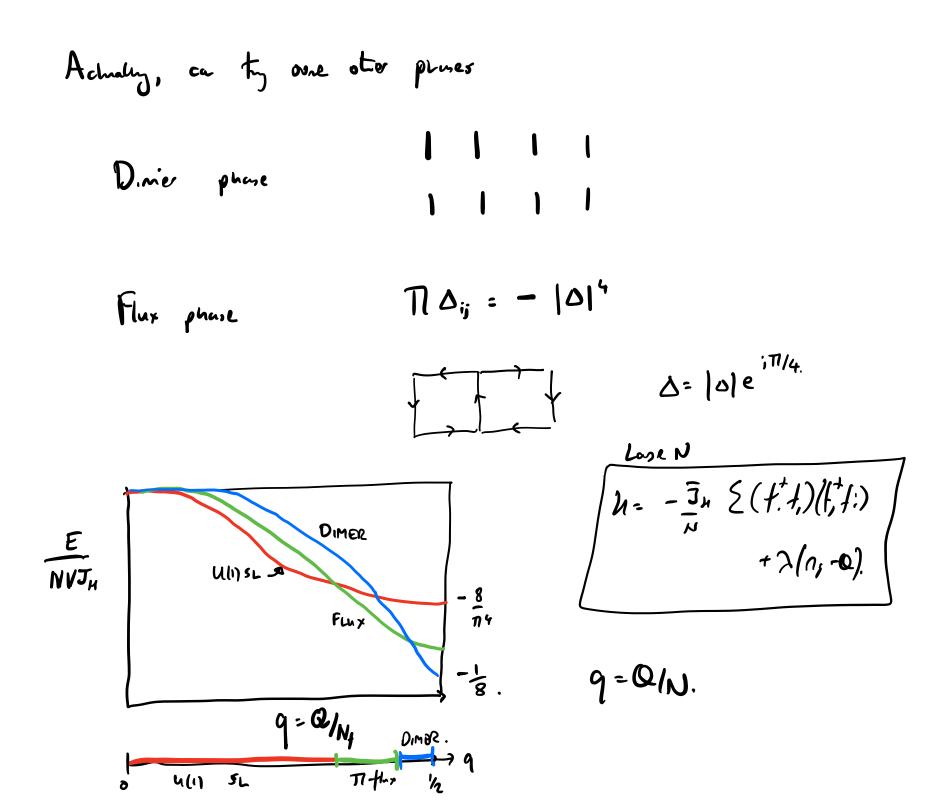
$$dk_{x}dk_{y} = du du \left\| \frac{\delta \left[k_{x}, k_{y} \right]}{\delta \left[u, u \right]} = du dv \left\| \frac{1 - 1}{1 + 1} \right\| = 2du dv$$

$$\frac{\delta \left[k_{x}, k_{y} \right]}{\delta \left[u, u \right]} = \frac{\delta u dv}{1 + 1} \left\| \frac{1 - 1}{1 + 1} \right\| = 2du dv$$

$$\frac{2}{3} = \int \frac{d^{3}k}{(2\pi)^{3}} \left(\frac{C_{x} + C_{y}}{T} \right) \frac{1}{T^{2}} = \frac{1}{T^{2}} \int_{-\pi/L}^{\pi/L} du dv \operatorname{Cost} u \operatorname{Cost} v = \frac{4}{T^{2}} = \frac{\Delta}{T^{2}} = \frac{1}{T^{2}}$$

$$\langle H \rangle = E_g = -2\Delta \int \int \int (c_x + c_y) f_k + \frac{2\Delta}{J} \int \int (m)^2 (c_x + c_y) f_k + \frac{2\Delta}{J}$$

$$= -\frac{8}{m} \Delta + \frac{2\Delta^2}{J}$$



In fact none of these mean field phase is releval to to
20 Neverbers model, which magnetically orders. However, it is looke
at the laye N model, described by
Lose N-Su(N) Neverber will

$$M = -\frac{3}{N} \sum (f', f_i)(f', f_i)$$

 $N = -\frac{3}{N} \sum (f', f_i)(f', f_i)$
 $N = -$

Spin liquids chiel le uil nou examine.