
9 Fluctuation–dissipation theorem and linear
response theory

9.1 Introduction

In this chapter we will discuss the deep link between fluctuations about equilibrium and the
response of a system to external forces. If the susceptibility of a system to external change
is large, then the fluctuations about equilibrium are expected to be large. The mathematical
relationship that quantifies this connection is called the fluctuation–dissipation theorem
[1–3]. We shall discuss and derive this relationship in this chapter. It turns out that the link
between fluctuations and dissipation also extends to imaginary time, enabling us to relate
equilibrium correlation functions and response functions to the imaginary-time Green’s
function of the corresponding variables.

To describe the fluctuations and response at a finite temperature, we will introduce
related types of Green’s function: the correlation function S(t) [4],

S(t − t′) = 〈A(t) A(t′)〉 =
∫ ∞

−∞

dω

2π
e−iω(t−t′)S(ω); (9.1)

the dynamical susceptibility χ (t),

χ (t − t′) = i〈[A(t), A(t′)]〉θ (t − t′), (9.2)

which determines the retarded response

〈A(t)〉 =
∫ ∞

−∞
dt′χ (t − t′)f (t′), 〈A(ω)〉 = χ (ω)f (ω), (9.3)

to a force term f (t) coupled to A inside the Hamiltonian HI = −f (t)A(t); and, lastly, the
imaginary-time response function χ (τ ),

χ (τ − τ ′) = 〈TA(τ )A(τ ′)〉. (9.4)

The fluctuation–dissipation theorem [1–3] relates the Fourier transforms of these
quantities, according to

S(ω)︸︷︷︸
fluctuations

= 2![

quantum︷︸︸︷
1 +

thermal︷ ︸︸ ︷
nB(ω)] χ ′′(ω)︸ ︷︷ ︸

dissipation

, (9.5)
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where χ ′′(ω) = Im χ (ω) describes the dissipative part of the response function. In the
limit ω << kBT , when n(ω) ∼ kBT/!ω, this result reverts to the classical fluctuation–
dissipation theorem,

S(ω) = 2kBT
ω

χ ′′(ω). (9.6)

Thus, in principle, if we know the correlation functions in thermal equilibrium, we can
compute the response function of the system.

The dissipative response of the system also enters into the Kramers–Kronig expansion
of the response function,

χ (z) =
∫

dω

π

1
ω − z

χ ′′(ω). (9.7)

This allows us to interpret

− 1
π

χ ′′(ω)dω = residue of poles between ω and ω + dω, (9.8)

so that χ ′′(ω) is a kind of spectral density for excitations, weighted by the matrix element
of the corresponding operator. Using this expression, the dynamical susceptibility can be
analytically extended into the complex plane. We will see that above the real axis χ (z)
describes causal, retarded responses to an applied force, where as below the real axis, it
describes a time-reversed “advanced” response to changes in the future.

In practice, the theorist takes advantage of a completely parallel fluctuation–dissipation
theorem which exists in imaginary time. The imaginary-time correlation function χ (τ ) is
periodic in time χ (τ+β) = χ (τ ), and has a discrete Matsubara Fourier expansion, given by

χ (τ ) = 〈TA(τ )A(0)〉 = 1
β

∑

n

e−iνnτ χM(iνn). (9.9)

The key relation between this function and the physical response function is that

χM(iνn) = χ (z)|z=iνn . (9.10)

This relation permits us to compute the physical response function by analytically con-
tinuing the Fourier components of the imaginary-time correlation functions onto the real
axis.

To understand these relations, we first need to understand the nature of the quantum
mechanical response functions. We shall then carry out a spectral decomposition of each
of the above functions, deriving the fluctuation–dissipation theorem by showing that the
same underlying matrix elements enter into each expression. A heuristic understanding of
the relationship between fluctuations and dissipation is obtained by examining a classical
example. The main difference between the classical and quantum fluctuation–dissipation
theorems is that in classical mechanics we are obliged to explicitly include the external
sources of noise, whereas in the quantum case the noise is intrinsic and we can analyze the
fluctuations without any specific reference to external sources of noise. Nevertheless, the
classical case is highly pedagogical, and it is this limit that we shall consider first.
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dω

2π

χ (ω)
ω

f luctuations

x(t)x(0) = 2kBT

t

x(t)

e−iωt

dissipation!Fig. 9.1 Fluctuations in a classical harmonic oscillator are directly related to the dissipative response function via the
fluctuation–dissipation theorem.

9.2 Fluctuation–dissipation theorem for a classical
harmonic oscillator

In a classical system, to examine correlation functions we need to include an explicit
source of external noise. To illustrate the procedure, consider a harmonic oscillator in ther-
mal equilibrium inside a viscous medium. Suppose that thermal fluctuations give rise to a
random force, acting on the oscillator according to the equation of motion

m(ẍ + ω2
0x) + ηẋ = f (t). (9.11)

If we Fourier transform this relationship, we obtain

x(ω) = χ (ω) f (ω)

χ (ω) = [m(ω2
0 − ω2) − iωη]−1. (9.12)

Here χ (ω) is the response function or susceptibility to the external force. The imaginary
part of the susceptibility governs the dissipation and is given by

χ ′′(ω) = ωη

m(ω2
0 − ω2) + ω2η2

= |χ (ω)|2ωη. (9.13)

Now let us consider the fluctuations in thermal equilibrium. Over long time periods, we
expect the two-point correlation function to be purely a function of the time difference:

〈x(t)x(t′)〉 = 〈x(t − t′)x(0)〉. (9.14)
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The power spectrum of fluctuations is defined as

〈|x(ω)|2〉 =
∫

dt〈x(t)x(0)〉eiωt (9.15)

and the inverse relation gives

〈x(t)x(t′)〉 =
∫

dω

2π
e−iω(t−t′)〈|x(ω)|2〉. (9.16)

Now in thermal equilibrium the equipartition theorem tells us that

mω2
0

2
〈x2〉 = kBT

2
(9.17)

or

〈x2〉 =
∫

dω

2π
〈|x(ω)|2〉 =

∫
dω

2π
|χ (ω)|2〈|f (ω)|2〉 = kBT

mω2
0

. (9.18)

Since the integrand is very sharply peaked around |ω| = ω0, we replace 〈|f (ω)|2〉 →
〈|f (ω0)|2〉 in the above expression. Replacing |χ (ω)|2 → 1

ωηχ ′′(ω), we then obtain

kBT

mω2
0

= 〈|f (ω0)|2〉
2η

∫
dω

π

χ ′′(ω)
ω

= |f (ω0)|2
2ηmω2

0

, (9.19)

so that the spectrum of force fluctuations is determined by the viscosity η:

〈|f (ω0)|2〉 = 2ηkBT . (9.20)

Now if we assume that the noise spectrum depends only on the properties of the viscous
medium in which the oscillator is embedded, and not on the properties of the oscillator,
then we expect this expression to hold for any frequency ω0, and since it is independent
of the frequency, we conclude that the power spectrum of the force is a flat function of
frequency, enabling us to replace ω0 → ω in the above expression. This implies that, in
thermal equilibrium, the force coupling the system to the environment is a source of white
noise of an amplitude which depends on the viscosity of the medium:

〈f (t)f (t′)〉 =
∫

dω

2π
e−iω(t−t′)

2ηkBT︷ ︸︸ ︷
〈|f (ω)|2〉 = 2ηkBTδ(t − t′). (9.21)

We can now compute the noise spectrum of fluctuations, which is given by

S(ω) = 〈|x(ω)|2〉 = |χ (ω)|2〈|f (ω)|2〉 = 〈|f (ω)|2〉χ
′′(ω)
ωη

= 2kBT
ω

χ ′′(ω). (9.22)

This expression relates the thermal fluctuations of a classical system to the dissipation, as
described by the imaginary part of the response function, χ ′′(ω).
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9.3 Quantummechanical response functions

Suppose we couple a force f to variable A. For later generality, it suits our needs to consider
a force in both real and imaginary time, with Hamiltonian

H = H0 − f (t)A (9.23)

H = H0 − f (τ )A. (9.24)

We shall now show that the response to these forces is given by

〈A(t)〉 = 〈A〉 +
∫ ∞

−∞
χ (t − t′)f (t′)dt′

〈A(τ )〉 = 〈A〉 +
∫ β

0
χ̃ (τ − τ ′)f (τ ′)dτ ′

(9.25)

χ (t − t′) = i〈[A(t), A(t′)]〉θ (t − t′)

χ̃(τ − τ ′) = 〈TA(τ )A(τ ′)]〉 − 〈A〉2,
(9.26)

where 〈A〉 is the value of A in thermal equilibrium.
Let us begin in real time. Suppose we want to look at the future response to a force f (t)

applied in the past. Using the interaction representation, we know that

AH(t) = U†(t)AI(t) U(t), (9.27)

where

U(t) = T exp
[

i
∫ t

−∞
dt′AI(t′)f (t′)

]
. (9.28)

Remembering that the interaction representation corresponds to the Heisenberg repre-
sentation for H0, we can drop the subscript on AI(t) ≡ A(t), so that, to linear order
in f (t),

U(t) = 1 + i
∫ t

−∞
dt′A(t′)f (t′)

U†(t) = 1 − i
∫ t

−∞
dt′A(t′)f (t′),

(9.29)

so that

AH(t) = A(t) + i
∫ t

−∞
dt′[A(t), A(t′)] f (t′). (9.30)

In thermal equilibrium 〈A(t)〉 = 〈A〉, so the response to the applied force is given by

〈AH(t)〉 = 〈A〉 +
∫ +∞

−∞
dt′ χ (t − t′) f (t′), (9.31)
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where

χR(t − t′) = i〈[A(t), A(t′)] 〉θ (t − t′) (9.32)

retarded response function

is the retarded response function. The above equation is particularly interesting, for it
relates a response to a quantum mechanical correlation function. For completeness, we
note that the corresponding backwards-time quantity

χA(t − t′) = −i〈[A(t), A(t′)] 〉θ (t′ − t) (9.33)

advanced response function

is known as the advanced response function, corresponding to a fictional time-reversed
world in which we propagate the effects of a disturbance backwards in time!

Let us now switch to consider imaginary time. In this case, the partition function in the
presence of a perturbation is

Z = Z0〈T exp
∫ β

0
dτ f (τ )AI(τ )〉0. (9.34)

The expectation value of A(τ ) is then given by

〈A(τ )〉 = δ ln Z
δf (τ )

= 〈TA(τ ) exp
∫ β

0 dτ ′f (τ ′)AI(τ ′)〉
〈T exp

∫ β
0 dτ ′f (τ ′)AI(τ ′)〉

= 〈A〉 +
∫ β

0
dτ ′

χ̃ (τ−τ ′)︷ ︸︸ ︷[
〈TA(τ )A(τ ′)〉 − 〈A〉2

]
f (τ ′) + O(f 2), (9.35)

so that the thermal response to the applied force is given by a Green’s function that is
time-ordered in imaginary time:

χ̃(τ − τ ′) = 〈TA(τ )A(τ ′)〉 − 〈A〉2

= 〈T(A(τ ) − 〈A〉)(A(τ ′) − 〈A〉)〉, (9.36)

where expectation values are to be taken at thermal equilibrium for H0. χ (τ −τ ′) describes
the thermal and quantum fluctuations of the quantity Â in imaginary time.

9.4 Fluctuations and dissipation in a quantumworld

The quantum Boltzmann formulation of many-body physics is naturally tailored to a dis-
cussion of the statistics of fluctuations and dissipation. Quantum systems are naturally
noisy, and there is no need for us to add any additional noise source to examine the
deep link between fluctuations and dissipation in a quantum many-body system. Indeed,
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the quantum fluctuation–dissipation theorem can be derived in rather mechanistic fashion
by carrying out a spectral decomposition of the various response and correlation func-
tions. The procedure is formally more direct than its classical analogue, but the algebra
tends to hide the fact that the underlying physics holds precisely the same link between
fluctuations – now both thermal and quantum in character – and dissipation.

To derive the quantum fluctuation–dissipation theorem, we must first spectrally decom-
pose the correlation function S(t − t′) and the retarded response function χR(t − t′).

9.4.1 Spectral decomposition I: the correlation function S(t − t′)

This is the easiest decomposition of the three to carry out. We begin by expanding the
response function in terms of a complete set of energy eigenstates which satisfy

H |λ〉 = Eλ |λ〉
∑

λ

|λ〉 〈λ| = 1 (9.37)

〈λ |A(t)| ζ 〉 =
〈
λ

∣∣eiHtA e−iHt∣∣ ζ
〉
= e−i(Eζ −Eλ)(t−t′) 〈λ |A| ζ 〉 .

Using these key results, we make the expansion as follows:

S(t − t′) = 〈A(t)A(t′)〉
=

∑

λ,ζ

e−β(Eλ−F) 〈λ |A(t)| ζ 〉 〈
ζ

∣∣A(t′)
∣∣ λ

〉
(9.38)

=
∑

λ,ζ

e−β(Eλ−F) |〈ζ |A| λ〉|2 e−i(Eζ −Eλ)(t−t′).

If we now Fourier transform this expression, the frequency-dependent correlation function
can be written

S(ω) =
∫ ∞

−∞
dteiωtS(t)

=
∑

λ,ζ

e−β(Eλ−F) |〈ζ |A| λ〉|2 2πδ(Eζ − Eλ − ω).
(9.39)

This is the frequency spectrum of the correlations.

9.4.2 Spectral decomposition II: the retarded response functionχR(t − t′)

We now use the same spectral decomposition approach for the retarded response function.
In this case, we need to take care of two operator orderings inside the commutator, which
yield

χR(t − t′) = i〈[A(t), A(t′)] 〉θ (t − t′)

= i
∑

λ,ζ

e−β(Eλ−F) {〈λ |A(t)| ζ 〉 〈
ζ

∣∣A(t′)
∣∣ λ

〉
−

〈
λ

∣∣A(t′)
∣∣ ζ

〉 〈ζ |A(t)| λ〉} θ (t − t′)

= i
∑

λ,ζ

eβF(e−βEλ − e−βEζ ) |〈ζ |A| λ〉|2 e−i(Eζ −Eλ)(t−t′)θ (t − t′). (9.40)
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By introducing the spectral function

χ ′′(ω) = π (1 − e−βω)
∑

λ,ζ

pλ |〈ζ |A| λ〉|2 δ[ω − (Eζ − Eλ)], (9.41)

where pλ = e−β(Eλ−F) is the probability of being in the initial state |λ〉, we see that the
retarded response function can be written

χR(t) = i
∫

dω

π
e−iωtθ (t) χ ′′(ω). (9.42)

Fourier transforming this result, using

i
∫ ∞

0
dt ei(ω−ω′+iδ) t = 1

ω′ − ω − iδ
, (9.43)

we can read off the Fourier transform of the retarded response function as

χR(ω) =
∫

dω′

π

1
ω′ − ω − iδ

χ ′′(ω′). (9.44)

This is known as a Kramers–Kronig relation. The Kramers–Kronig relation can be used to
extend the response function into the complex plane by writing

χ (z) =
∫

dω′

π

1
ω′ − z

χ ′′(ω′). (9.45)

dynamical susceptibility

This is the dynamical susceptibility. When we evaluate χ (z) just above the real axis, we
get the retarded response function χR(ω) = χ (ω + iδ). The upper half-plane is thus the
analytic extension of χR(ω). But what about the lower half-plane? Remarkably, this gives
the advanced response function, such that χA(ω) = χ (ω − iδ). From the definition of χ (z),
we see that its poles are located exclusively along the real axis at z = ω′, so that χ (z) is
analytic everywhere except the real axis. Substituting the Cauchy–Dirac relation

1
ω′ − ω ∓ iδ

= P
1

ω′ − ω
± iπδ(ω′ − ω), (9.46)

where P denotes the principal part, into (9.45), we see that above and below the real axis
at z = ω ± iδ the dynamical susceptibility is given by

χ (ω ± iδ) =
∫

dω′

π
P

(
1

ω′ − ω

)
χ ′′(ω′) ± iχ ′′(ω) = χ ′(ω) ± iχ ′′(ω), (9.47)

so that the real part of χ (z) is continuous across the real axis, but the dissipative imaginary
part has a discontinuity given by

χ ′′(ω) = Im χ (ω + iδ) = χ (ω + iδ) − χ (ω − iδ)
2i

. (9.48)

This branch cut along the imaginary axis is a universal property of the dynamical response
function.
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Example 9.1 (a) By carrying out a spectral decomposition of the advanced response func-
tion χR(t− t′) = −i〈[A(t), A(t′)]〉θ (t′ − t), show that its Fourier transform is determined
by the same spectral function as the retarded reponse, namely

χA(t) = −iθ (t)
∫

dω

π
e−iωtχ ′′(ω). (9.49)

(b) By Fourier transforming this expression, show that

χA(ω) =
∫

dω′

π

1
ω′ − ω + iδ

χ ′′(ω′) = χ (ω − iδ) = [χR(ω)]∗. (9.50)

Solution

(a) To prove the first part, we carry out a spectral decomposition as follows:

χA(t − t′) = −i〈[A(t), A(t′)] 〉θ (t′ − t)

= −i
∑

λ,ζ

e−β(Eλ−F) {〈λ |A(t)| ζ 〉 〈
ζ

∣∣A(t′)
∣∣ λ

〉
−

〈
λ

∣∣A(t′)
∣∣ ζ

〉 〈ζ |A(t)| λ〉} θ (t′ − t)

= −i
∑

λ,ζ

eβF(e−βEλ − e−βEζ ) |〈ζ |A| λ〉|2 e−i(Eζ −Eλ)(t−t′)θ (t′ − t)

= −iθ (t′ − t)
∫

dω e−iω(t−t′)

χ ′′(ω)/π︷ ︸︸ ︷∑

λ,ζ

pλ(1 − e−βω) |〈ζ |A| λ〉|2 δ(ω − (Eζ − Eλ))

= −iθ (t′ − t)
∫

dω

π
e−iωtχ ′′(ω). (9.51)

(b) Next, we Fourier transform the result of the last part, to obtain

χA(ω) =
∫ 0

−∞
dt eiωt+δtχA(t)

= −i
∫ 0

−∞
dt eiωt+δt

∫ ∞

−∞

dω′

π
χ ′′(ω′)e−iω′t. (9.52)

Inverting the order of integration gives

χA(ω) =
∫ ∞

−∞

dω′

π
χ ′′(ω′)

(

−i
∫ 0

−∞
dtei(ω−ω′−iδ)t

)

=
∫ ∞

−∞

dω′

π
χ ′′(ω′)

(
1

ω′ − ω + iδ

)
. (9.53)

9.4.3 Quantum fluctuation–dissipation theorem

If we compare the relations (9.41 ) and (9.39), we see that

S(ω) = 2
1 − e−βω

χ ′′(ω). (9.54)
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If we restore !, this becomes

S(ω) = 2!
1 − e−β!ω

χ ′′(ω) = 2! [1 + nB(!ω)] χ ′′(ω). (9.55)

quantum fluctuation–dissipation theorem

Thus, by carrying out a spectral analysis we have been able to directly link the correlation
function S(ω) with the dissipative part of the retarded response function χ (ω).

9.4.4 Spectral decomposition III: fluctuations in imaginary time

For the final of our three decompositions, we move to imaginary time and write, for
τ − τ ′ > 0,

χ (τ − τ ′) =
∑

λ,ζ

e−β(Eλ−F) {〈
λ

∣∣A(τ)
∣∣ ζ

〉 〈
ζ

∣∣A(τ ′)
∣∣ λ

〉}

=
∑

λ,ζ

pλe−(Eλ−Eζ )(τ−τ ′) |〈ζ |A| λ〉|2 , (9.56)

where, as before, pλ = e−β(Eλ−F) is the Boltzmann probability of being in state |λ〉. Now
∫ β

0
dτ eiνnτ e−(Eλ−Eζ )τ = 1

(Eζ − Eλ − iνn)
(1 − e−(Eλ−Eζ )β ), (9.57)

so

χ (iνn) =
∫ β

0
dτ eiνnτ χ (τ )

=
∑

λ,ζ

pλ(1 − e−β(Eζ −Eλ)) |〈ζ |A| λ〉|2 1
(Eζ − Eλ − iνn)

. (9.58)

Using (9.41 ), we can write this as

χ (iνn) =
∫

dω

π

1
ω − iνn

χ ′′(ω). (9.59)

But this is nothing more than the dynamical susceptibility χ (z), evaluated at z = iνn. In
other words, χ (iνn) is the unique analytic extension of the dynamical susceptibility χ (ω)
into the complex plane. Our procedure to calculate response functions will be to write
χ (iνn) in the form (9.29), and to use this to then read off the spectral function χ ′′(ω),
which in turn determines the dynamical response function.

9.5 Calculation of response functions

Having made the link between the imaginary-time and real-time response functions, we
are ready to discuss how we can calculate response functions from Feynman diagrams.
Our procedure is to compute the imaginary-time response function and then analytically
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Table 9.1 Selected operators and corresponding response functions.

Quantity Operator Âa A(k) Response function

Density ρ̂(x) = ψ†(x)ψ(x) ραβ = δαβ Charge susceptibility

Spin density !S(x) = ψ
†
α(x)

(
!σ
2

)

αβ
ψβ (x) !Mαβ = µB !σαβ Spin susceptibility

Current densitya e
mψ†(x)

(
−i!

↔
∇ −e!A

)
ψ(x) !j = e!vk = e !∇εk Conductivity

Thermal currenta !2

2mψ†(x)
↔
∇

↔
∂ t ψ(x) !jT = iωn!vk = iωn !∇εk Thermal conductivity

a ↔
∇≡ 1

2

(→
∇ − ←

∇
)

,
↔
∂ t≡ 1

2

(→
∂ t −

←
∂ t

)
.

continue to real frequencies. Suppose we are interested in the response function for Â,
where

Â(x) = ψ†
α(x)Aαβψβ (x) (9.60)

(see table 9.1). The corresponding operator generates the vertex

β

α

x = A .αβ

(9.61)

where the spin variables αβ are to be contracted with the internal spin variables of the Feyn-
man diagram. This inevitably means that the variable Aαβ becomes part of an internal trace
over spin variables. If we expand the corresponding response function χ (x) = 〈Â(x)Â(0)〉
using Feynman diagrams, we obtain

χ (τ ) = 〈Â(x)Â(0)〉 =
∑

{closed linked two-vertex diagrams} (9.62)

= x 0.

(9.63)

For example, in a non-interacting electron system, the imaginary-time spin response
function involves A(x) = µBψ†

α(x)σαβψβ (x), so the corresponding response function is

χab(x

Trace over
spin variables

− x ) = µ2
B × αβ

aσ βα
bσ

β

α

x x’

Trace over
spin variables
︷ ︸︸ ︷
= −Tr

[
σ aG(x − x′)σ bG(x′ − x)

]

= −δab2µ2
BG(x − x′)G(x′ − x). (9.64)
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Now to analytically continue to real frequencies, we need to transform to Fourier space,
writing

χ (q) =
∫

d4x e−iqxχ (x), (9.65)

where the integral over time τ runs from 0 to β. This procedure converts the Feynman
diagram from a real-space to a momentum-space Feynman diagram. At the measurement
vertex at position x, the incoming and outgoing momenta of the fermion line give the
following integral:

∫
d4x e−iqxei(kin−kout)x = βVδ4(kout − kin + q). (9.66)

As in the case of the free energy, the βV term cancels with the 1/(βV)
∑

k terms asso-
ciated with each propagator, leaving behind one factor of 1/(βV) = T/V per internal
momentum loop. Schematically, the effect of the Fourier transform on the measurement
vertex at position x is then

d4x e−iqx


x


 = .

q

k+q

k

(9.67)

For example, the momentum-dependent spin response function of the free electron gas
is given by

χab(q) = µ2
B × aσ bσ

k

k+q

= − 1
βV

∑

k

Tr
[
σ aG(k + q)σ bG(k)

]
= δabχ (q) (9.68)

where

χ (q, iνr) = −2µ2
B

∫

k
T

∑

iωn

G(k + q, iωn + iνr)G(k, iωn). (9.69)

When we carry out the Matsubara summation in the above expression by a contour integral
(see Chapter 8), we obtain

−T
∑

iωn

G(k + q, iωn + iνr)G(k, iωn) = −
∫

C′

dz
2π i

f (z)G(k + q, z + iνr)G(k, z)

=
(

fk − fk+q

(εk+q − εk) − iνr

)
, (9.70)

where C′ encloses the poles of the Green’s functions. Inserting this into (9.69), we obtain
χ (q, iνr) = χ (q, z)|z=iνr , where

χ (q, z) = 2µ2
B

∫

k

(
fk − fk+q

(εk+q − εk) − iνr

)
. (9.71)
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From this we can also read off the power spectrum of spin fluctuations:

χ ′′(q, ω) = Im χ (q, ω + iδ) = 2µ2
B

∫

q
πδ(εq+k − εk − ω)

[
fk − fk+q

]
. (9.72)

When we come to consider conductivities, which involve the response function of current
operators, we need to know how to deal with an operator that involves spatial or temporal
derivatives. To do this, it is convenient to examine the Fourier transform of the operator
A(x): ∫

d4x e−iqxψ†(x)Aψ(x) =
∑

k

ψ†(k − q/2)Aψ(k + q/2). (9.73)

In current operators, A is a function of gradient terms such as
↔
∇ and

↔
∂ t. In this case, the use

of the symmetrized gradient terms ensures that, when we Fourier transform, the derivative
terms are replaced by the midpoint momentum and frequency of the incoming or outgoing
electron:

∫
d4x e−iqxψ†(x)A[−i

↔
∇ , i

↔
∂ t]ψ(x) =

∑

k

ψ†(k − q/2)A(k, iωn)ψ(k + q/2). (9.74)

For example, the current operator %J(x) = e!
m

(
−i

↔
∇

)
becomes

J(q) =
∑

k

e%vkψ†(k − q/2)ψ(k + q/2), (9.75)

where %vk = !%k
m is the electron velocity. For the thermal current operator %Jt(%x) = !2

m

(↔
∇

↔
∂ t

)
,

%Jt(q) =
∑

k

iωn
!2%k
m

ψ†(k − q/2)ψ(k + q/2). (9.76)

Example 9.2 Calculate the imaginary part of the dynamical susceptibility for non-
interacting electrons and show that at low energies, ω << εF ,

χ ′′(q, ω)
ω

=
{

µ2
B

N(0)
vFq (q < 2kF)

0 (q > 2kF),
(9.77)

where vF = !kF/m is the Fermi velocity.

Solution

Starting with (9.72) in the low-energy limit, we can write

lim
ω→0

χ ′′(q, ω)
ω

= 2µ2
B

∫

q
δ(εq+k − εk)

fk+q − fk
εk − εk+q

= 2µ2
B

∫

q
δ(εq+k − εk)

(
− df

dεk

)
. (9.78)

Replacing
∫

q
→

∫
dεN(ε)

∫ 1

−1

d cos θ

2
, (9.79)
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we obtain

lim
ω→0

χ ′′(q, ω)
ω

= 2µ2
BN(0)

∫ 1

−1

d cos θ

2
δ

(
q2

2m
+ qkF

m
cos θ

)

= 2µ2
BN(0)

m
2qkF

= µ2
B

(
N(0)
vFq

)
(q < 2kF). (9.80)

9.6 Spectroscopy: linkingmeasurement and correlation

The spectroscopies of condensed matter (Table 9.2) provide an essential window on the
underlying excitation spectrum, the collective modes, and ultimately the ground-state cor-
relations of the medium. Research in condensed matter depends critically on the creative
new interpretations given to measurements. It is from these interpretations that new mod-
els can be built and new insights discovered, leading ultimately to quantitative theories of
matter.

Understanding the link between experiment and the microscopic world is essential for
theorist and experimentalist. At the start of a career, the student is often flung into a seminar
room, where it is difficult to absorb the content of the talk because the true meaning of the
spectroscopy or measurements is obscure to all but the expert, so it is important to get
a rough idea of how and what each measurement technique probes – to know some of
the pitfalls of interpretation – and to have an idea about how one begins to calculate the
corresponding quantities from simple theoretical models.

Fundamentally, each measurement is related to a given correlation function. This is seen
most explicity in scattering experiments. Here, one is sending in a beam of particles and
measuring the flux of outgoing particles at a given energy transfer E and momentum trans-
fer q. The ratio of outgoing to incoming particle flux determines the differential scattering
cross-section:

d2σ

d&dω
= outward particle flux

inward particle flux
. (9.81)

When the particles scatter, they couple to some microscopic variable A(x) within the matter,
such as the spin density in neutron scattering or the particle field ψ(x) itself in photoemis-
sion spectroscopy. The differential scattering cross-section this gives rise to is, in essence, a
measure of the autocorrelation function of A(x) at the wavevector q and frequency ω = E/!
inside the material:

d2σ

d&dω
∼

∫
d4x 〈A(x, t)A(0)〉e−i(q·x−ωt) = S(q, ω). (9.82)

Remarkably, scattering probes matter at two points in space! How can this be? To under-
stand this, recall that the differential scattering rate is actually an (imaginary) part of the
forward scattering amplitude of the incoming particle. The amplitude for the incoming
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Table 9.2 Selected spectroscopies.

Type Name Spectrum A Notes and common
measurement issues

STMa dI
dV

(x) ∝ A(x, ω)|ω=eV ψ(x) Surface probe.
T ∼ 0 measurement.
Does the surface
characterize the bulk?

ARPESb I(k, ω) ∝ f (−ω)A(k, −ω) ckσ (t) p⊥ unresolved.
Surface probe; no
magnetic field possible.

E
L

E
C

T
R

O
N

IPESc I(ω) ∝
∑

k

[1 − f (ω)]A(k, ω) c†
kσ (t) p unresolved.

Surface probe.

Magnetic susceptibility χDC =
∫

dω

πω
χ ′′(q = 0, ω) M χ ∼ 1

T+θ , Curielaw:
local moments.
χ ∼ constant
paramagnet.

Inelastic neutron scattering S(q, ω) = 1
1 − e−βω

χ ′′(q, ω) S(q, t) What is the
background?
Quality of crystal?

NMRd

Knight shift Kcontact ∝ χlocal S(x, t) How is the orbital part
subtracted?

SP
IN

Nuclear relaxation rate
1

T1
= T

∫

q
F(q)

χ ′′(q, ω)
ω

∣∣∣∣
ω=ωN

How does powdering
affect sample?

Resistivity ρ = 1
σ (0)

&j(ω = 0) How big is the
resistance ratio R(T =
300 K)/R(T = 0 K) of
the sample?

C
H

A
R

G
E

Optical conductivity σ (ω) = 1
−iω

[
〈 j(ω′)j(−ω′)〉

]ω
0

&j(ω) For optical reflectivity
measurements: how was
the Kramers–Kronig
analysis done? Spectral
weight transfer.

a Scanning tunneling spectroscopy.
b Angle resolved photoemission spectroscopy.
c Inverse photoemission spectroscopy.
d Nuclear magnetic resonance.

particle to scatter in a forward direction contains the Feynman process where it omits a
fluctuation of the quantity A at position x′, traveling for a brief period of time as a scattered
particle before reabsorbing the fluctuation at x. The amplitude for the intermediate process
is nothing more than



260 Finite-temperature many-body physics

electron potential that arise in a disordered medium behave like a highly retarded potential,
and the scattering created by these fluctuations is responsible for the Drude lifetime in a
disordered medium. As our third introductory example, we will examine an electron mov-
ing under the retarded interaction effects produced by the exchange of phonons, examining
for the first time how inelastic scattering generates an electron lifetime.

8.6.1 Hartree–Fock at a finite temperature

As a first example, consider the Hartree–Fock correction to the free energy,

∆F
V

HF .= −




+




(8.75)

These diagrams are precisely the same as those encountered in Chapter 7, but now to
evaluate them we implement the finite-temperature rules, which give

!FHF

V
= 1

2

∑

k

G(k)
∑

k′
G(k′)

{
[−(2S + 1)]2 V(k − k′) − (2S + 1)V(q = 0)

}
, (8.76)

where the prefactor is the p = 2 symmetry factor for these diagrams and

∑

k

G(k) ≡
∫

k
T

∑ 1
iωn − εk

eiωn0+
.

Using the contour integration method introduced in Section (8.3), following (8.47), we
have

T
∑ 1

iωn − εk
eiωn0+ =

∫

C

dz
2π i

1
z − εk

ez0+
f (z) = f (εk),

where the contour C runs counterclockwise around the pole at z = εk, so that the first-order
shift in the free energy is

!FHF = 1
2

∫

k,k′

[
(2S + 1)2(Vq=0) − (2S + 1)(Vk−k′ )

]
fkfk′ .

This is formally exactly the same as at zero temperature, except that now fk refers to the
finite-temperature Fermi–Dirac function. Notice that we could have applied exactly the
same method to bosons, the main result being a change in sign of the second Fock term.

8.6.2 Electron in a disordered potential

As a second example of the application of finite-temperature methods, we shall consider
the propagator for an electron in a disordered potential. This will introduce the concept of
an impurity average.
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Our interest in this problem is driven ultimately by a desire to understand the bulk prop-
erties of a disordered metal. The problem of electron transport is almost as old as our
knowledge of the electron itself. The term “electron” was coined to describe the funda-
mental unit of charge (already measured from electrolysis) by the Irish physicist George
Johnstone Stoney in 1891 [3]. Heinrich Lorentz derived his famous force law for charged
ions in 1895 [4], but did not use the term “electron” until 1899. In 1897 J. J. Thomson [5]
made the crucial discovery of the electron by correctly interpreting his measurement of the
m/e ratio for cathode rays in terms of a new state of particulate matter “from which all
chemical elements are built up.” Within three years of this discovery, Paul Drude [6] had
synthesized these ideas and had argued, based on the idea of a classical gas of charged elec-
trons, that electrons would exhibit a mean free path l = velectronτ , where τ is the scattering
rate and l the average distance between scattering events. In Drude’s theory, electrons were
envisioned as diffusing through the metal, and he was able to derive his famous formula
for the conductivity σ :

σ = ne2τ

m
.

Missing from Drude’s pioneering picture was any notion of the Fermi–Dirac statistics of
the electron fluid. He had, for example, no notion that the characteristic velocity of the
electrons was given by the Fermi velocity, velectron ∼ vF , a vastly greater velocity at low
temperatures than could ever be expected on the grounds of a Maxwell–Boltzmann fluid
of particles. This raises the question: how, in a fully quantum mechanical picture of the
electron fluid, can we rederive Drude’s basic model?

A real metal contains both disorder and electron–electron interactions; in this book we
shall only touch on the simpler problem of disorder in an otherwise free electron gas. We
shall actually return to this problem in earnest in the next chapter; our task here is to exam-
ine the electron propagator in a disordered medium of elastically scattering impurities. We
shall consider an electron in a disordered potential:

H =
∑

k

εkc†
kck + Vdisorder

Vdisorder =
∫

d3xU("x)ψ†(x)ψ†(x), (8.77)

where U(x) represents the scattering potential generated by a random array of Ni impurities
located at positions Rj, each with atomic potential U(x − Rj),

U(x) =
∑

j

U(x − Rj).

An important aspect of this Hamiltonian is that it contains no interactions between elec-
trons, and as such the energy of each individual electron is conserved: all interactions are
elastic.

We shall not be interested in calculating the value of a physical quantity for a specific
location of impurities, but rather the value of that quantity after we have averaged over the
locations of the impurities, i.e.
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〈A〉 =
∫ ∏

j

1
V

d3Rj〈Â[{Rj}]〉.

This is an elementary example of a quenched average, in which the impurity average takes
place after the thermodynamic average. Here we’ll calculate the impurity-averaged Green’s
function. To do this we need to know something about the fluctuations of the impurity
scattering potential about its average. It is these fluctuations that scatter the electrons.

Electrons will in general scatter off the fluctuations in the potential. The average impurity
potential U(x) plays the roll of a kind of shifted chemical potential. Indeed, if we shift the
chemical potential by an amount !µ, the scattering potential becomes Ũ(x) = U(x)−!µ,
and we can always choose !µ = U(x) so that Ũ(x) = 0. The residual potential describes
the fluctuations in the scattering potential: δU(x) = U(x) − U(x). We shall now drop the
tilde. The fluctuations in the impurity potential are spatially correlated, and we shall shortly
show that

δU(x)δU(x′) =
∫

q
eiq·(x−x′)ni |u(q)|2 , (8.78)

where u(q) =
∫

d3xU(x)e−iq·x is the Fourier transform of the scattering potential and ni =
Ni/V is the concentration of impurities. It is these fluctuations that scatter the electrons,
and when we come to consider the impurity-averaged Feynman diagrams, we’ll see that
the spatial correlations in the potential fluctuations induce a sort of attractive interaction,
denoted by the diagram

x x' ∫

q
ni|u(q)|2eiq·(x−x′) = −Veff (x − x′).

(8.79)

Although in principle we should keep all higher moments of the impurity scattering poten-
tial in practice the leading-order moments are enough to extract a lot of the basic physics in
weakly disordered metals. Notice that the fluctuations in the scattering potential are short-
range – they only extend over the range of the scattering potential. Indeed, if we neglect the
momentum dependence of u(q), assuming that the impurity scattering is dominated by low-
energy s-wave scattering, then we can write u(q) = u0. In this situation, the fluctuations in
the impurity scattering potential are entirely local:

δU(x)δU(x′) = niu2
0δ(x − x′). white-noise potential

In our discussion here, we will neglect the higher-order moments of the scattering potential,
effectively assuming that it is purely Gaussian.

To prove (8.78 ), we first Fourier transform the potential

U(q) =
∑

j

e−iq·Rj

∫
d3x U(x − Rj)e−iq·(x−Rj) = u(q)

∑

j

e−iq·Rj , (8.80)
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so that the locations of the impurities are encoded in the phase shifts which multiply u(q).
If we now carry out the average,

δU(x)δU(x′) =
∫

q,q′
ei(q·x−q·x′)

(
U(q)U(−q′) − U(q) U(−q′)

)

=
∫

q,q′
ei(q·x−q·x′)u(q)u(−q′)

∑

i,j

(
e−iq·Ri eiq′·Rj − e−iq·Ri eiq′·Rj

)
. (8.81)

Now since the phase terms are independent at different sites, the variance of the random
phase term in the above expression vanishes unless i = j, so

∑

i,j

(
e−iq·Ri eiq′·Rj − e−iq·Ri eiq′·Rj

)
= Ni

∫
1
V

d3Rje−i(q−q′)·Rj

= ni(2π )3δ(3)(q − q′), (8.82)

from which

U(q)U(−q′) − U(q) U(−q′) = ni|u(q)|2(2π )3δ(3)(q − q′),

and (8.78) follows.
Now let us examine how electrons scatter off these fluctuations. If we substitute ψ†(x) =∫

k c†
ke−ik·x into V̂disorder, we obtain

V̂ =
∫

k,k′
c†

kck′δU(k − k′).

We shall represent the scattering amplitude for scattering once by

jR

k k ¢

δU(k − k′) =
(

u(k − k′)
∑

j ei(k−k′)·Rj
)

− $µδk−k′ , (8.83)

where we have subtracted the scattering off the average potential. The potential transfers
momentum, but does not impart any energy to the electron, and for this reason frequency
is conserved along the electron propagator. Let us now write down in momentum space the
Green’s function of the electron:

G(k, k , iωn) = ++ + + . . . ,

= G0(k, iωn)δk,k′ + G0(k, iωn)δU(k − k′)G0(k′, iωn)

+
∫

k1

G0(k, iωn)δU(k − k1)G0(k1, iωn)δU(k1 − k′)G0(k′, iωn) + · · · ,

(8.84)
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V(  )x
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k’

k

k’

k

!Fig. 8.5 Double scattering event in the random impurity potential.

where the frequency iωn is constant along the electron line. Notice that G is actually a
function of each impurity position! Figure 8.5 illustrates one of the scattering events con-
tributing to the third diagram in this sum. We want to calculate the quenched average
G(k, k′, iωn), and to do this we need to average each Feynman diagram in the above series.

When we impurity-average the single scattering event, it vanishes:

G0(k, iωn)δU(k − k′)G0(k′, iωn) = G0(k, iωn)

=0︷ ︸︸ ︷
δU(k − k′) G0(k′, iωn),

but the average of a double scattering event is

∑

k1

G0(k, iωn)G0(k1, iωn)G0(k′, iωn) ×

ni|uk−k′ |2δk−k′
︷ ︸︸ ︷
δU(k − k1)δU(k1 − k′)

= δk−k′ × G0(k, iωn)2ni
∑

k1

u(k − k1)2G0(k1, iωn)G0(k, iωn). (8.85)

Notice something fascinating: after impurity averaging, momentum is now conserved. We
can denote the impurity-averaged double scattering event Feynman diagram by

k k

k − q

q

=

(8.86)
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where we have introduced the Feynman diagram

k’

k’+q

k−q

k

q
ni|u(q)|2 = −Veff (q)

(8.87)

to denote the momentum transfer produced by the quenched fluctuations in the random
potential. In writing the diagram this way, we bring out the notion that quenched disorder
can be very loosely thought of as an interaction with an effective potential

Veff(q, iνn) =
∫ β

0
dτeiνnτ

−ni|u(q)|2︷ ︸︸ ︷
Veff(q, τ ) = −βδn0ni|u(q)|2,

where the βδn0 ≡
∫

dτeiνnτ , derived from the fact that the interaction Veff(q, τ ) does
not depend on the time difference, guarantees that there is no energy transfered by the
quenched scattering events. In other words, quenched disorder induces a sort of infinitely
retarded attractive potential between electrons.2 The notion that disorder induces interac-
tions is an interesting one, for it motivates the idea that disorder can lead to new kinds of
collective behavior.

After the impurity averaging, we notice that momentum is now conserved, so that the
impurity-averaged Green’s function is now diagonal in momentum space:

G(k, k′, iνn) = δk−k′G(k, iνn).

If we now carry out the impurity averaging on multiple scattering events, only repeated
scattering events at the same sites will give rise to non-vanishing contributions. If we
take account of all scattering events induced by the Gaussian fluctuations in the scattering
potential, then we generate a series of diagrams of the form

G(k) = + + + .

In the Feynman diagrams, we can group all scatterings into connected self-energy
diagrams, as follows:

2 Our statement can be made formally correct in the language of replicas: this interaction takes place between
electrons of the same or different replica index. In the N → 0 limit, the residual interaction only acts on one
electron in the same replica.
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Σ(k) = Σ = + .. .

+ . . .

++

G(k) = + += ΣΣΣ

= [iωn − k − Σ(k)] .−1

(8.88)
In the case of s-wave scattering, all momentum dependence of the scattering processes
is lost, so that in this case !(k) = !(iωn) only depends on the frequency. In the above
diagram, the double line on the electron propagator indicates that all self-energy corrections
have been included. From the above, you can see that the self-energy corrections calculated
from the first expression are fed into the electron propagator, which in turn is used in a
self-consistent way inside the self-energy.

We shall begin by trying to calculate the above first-order diagrams for the self-energy
without imposing any self-consistency. This diagram is given by

Σ(iωn) = = ni
k
|u(k − k )|2G(k , iωn)

= ni
k
|u .(k − k )|2 1

iωn − k (8.89)

Now we can replace the summation over momentum inside this self-energy by an
integration over solid angle and energy, as follows:

∑

k′
→

∫
d#k′

4π
dε′N(ε′),

where N(ε) is the density of states. With this replacement,

!(iωn) = niu2
0

∫
dεN(ε)

1
iωn − ε

,

where

u2
0 =

∫
d#k′

4π
|u(k − k′)|2 = 1

2

∫ 1

−1
d cos θ |u(θ )|2

is the angular average of the squared scattering amplitude. To a good approximation, this
expression can be calculated by replacing the energy-dependent density of states by its
value at the Fermi energy. In so doing, we neglect a small real part of the self-energy,
which can in any case be absorbed by the chemical potential. This kind of approximation
is extremely common in many-body physics, in cases where the key physics is dominated
by electrons close to the Fermi energy. The deviations from constancy in N(ε) will in
practice affect the real part of !(iωn), and these small changes can be accomodated by a
shift in the chemical potential. The resulting expression for !(iωn) is then

!(iωn) = niu2
0N(0)

∫ ∞

−∞
dε

1
iωn − ε

= −i
1

2τ
sgn(ωn), (8.90)
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where we have identified 1
τ = 2πniu2

0 as the electron elastic scattering rate. We notice
that this expression is entirely imaginary, and it only depends on the sign of the Matsubara
frequency. Notice that in deriving this result we have extended the limits of integration to
infinity, an approximation that involves neglecting terms of order 1/(εFτ ).

We can now attempt to recompute $(iωn) with self-consistency. In this case,

Σ(iωn) = = .niu2
0

k

1
iωn − k − Σ(iωn) (8.91)

If we carry out the energy integration again, we see that the imposition of self-consistency
has no effect on the scattering rate:

$(iωn) = niu2
0N(0)

∫ ∞

−∞
dε

1
iωn − ε − $(iωn)

= −i
1

2τ
sgn(ωn). (8.92)

Our result for the electron propagator, ignoring the vertex corrections to the scattering
self-energy, is given by

G(k, z) = 1

z − εk + i 1
2τ sgn Im z

,

where we have boldly extended the Green’s function into the complex plane. We may now
make a few remarks:

• The original pole of the Green’s function has been broadened. The electron spectral
function,

A(k, ω) = 1
π

Im G(k, ω − iδ) = 1
π

(2τ )−1

(ω − εk)2 + (2τ )−2 ,

is a Lorentzian of width 1/τ . The electron of momentum k now has a lifetime τ due to
elastic scattering effects.

• Although the electron has a mean free path l = vFτ , its propagator displays no features
of diffusion. The main effect of the finite scattering rate is to introduce a decay length
into the electron propagation. The electron propagator does not bear any resemblance
to the “diffusion propagator” χ = 1/(iν − Dq2) – that is, the Green’s function for the
diffusion equation (∂t − D∇2)χ = −δ(x, t). The physics of diffusion and Ohm’s law
do not appear until we are able to examine the charge and spin response functions, and
for this we have to learn how to compute the density and current fluctuations in thermal
equilibrium (Chapter 9).

• The scattering rate that we have computed is often called the “classical” electron scat-
tering rate. The neglected higher-order diagrams with vertex corrections are actually
smaller than the leading-order contribution by an amount of order

1
εFτ

= 1
kFl

.
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This parameter defines the size of “quantum corrections” to the Drude scattering physics,
which are the origin of the physics of electron localization. To understand how this small
number arises in the self-energy, consider the first vertex correction to the impurity
scattering:

k  + k   − k1 2

k2 k1k k .

(8.93)

This diagram is given by

!2 =

−i 1
2τ︷ ︸︸ ︷

N(0)
∫

dε1

iωn − ε1

−i 1
2τ︷ ︸︸ ︷

N(0)
∫

dε2

iωn − ε2

∼ −i
kFvF︷ ︸︸ ︷∫

d%1d%2

(4π )2

1
iωn − εk1+k2−k

∼ i
1
τ

× 1
kFl

, (8.94)

where the last term in the integral derives from the central propagator in the self-energy.
In this self-energy, the momentum of the central propagator is entirely determined by
the momentum of the two other internal legs, so that the energy associated with this
propagator is ε−k+k1+k2 . This energy is only close to the Fermi energy when k1 ∼
−k2, so that only a small fraction 1/(kFl) of the possible directions of k2 give a large
contribution to the scattering processes.

8.7 Interacting electrons and phonons

The electron–phonon interaction is one of the earliest successes of many-body physics in
condensed matter. In many ways, it is the condensed-matter analogue of quantum elec-
trodynamics – and the early work on the electron–phonon problem was carried out by
physicists who had their early training in the area of quantum electrodynamics.

When an electron passes through a crystal, it attracts the nearby ions, causing a local
build-up of positive charge. Perhaps a better analogy is with a supersonic aircraft, for an
electron moves at about Mach 100. We can confirm this with a back-of-the envelope cal-
culation. First notice that the ratio of the sound velocity vs to the Fermi velocity vF is
determined by the ratio of the Debye frequency to the Fermi energy:

vs

vF
∼ ∇kωk

∇kεk
∼ ωD/a

εF/a
= ωD

εF
,

where a is the size of the unit cell. Now an approximate estimate for the Debye frequency
is given by ω2

D ∼ k/M, where M is the mass of an atomic nucleus and k ∼ εF/a2 is the
“spring constant” associated with atomic motions.
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Thus,

ω2
D ∼

(εF

a2

) 1
M

and
ω2

D

ε2
F

∼ 1

(εFa2)︸ ︷︷ ︸
∼1/m

1
M

∼ m
M

,

so that
vs

vF
∼

√
m
M

∼ 1
100

,

confirming the supersonic nature of electrons at the Fermi surface. As it moves through the
crystal, an electron leaves behind a narrow wake of positive charge caused by the distortion
in the crystal lattice in response to its momentary presence. This distortion attracts other
electrons, long after the original disturbance has passed by. This is the origin of the weak
attractive interaction induced by the exchange of virtual phonons. This attraction is highly
retarded, quite unlike the repulsive Coulomb interaction which is almost instantaneous in

time (the ratio of characteristic time scales being ∼ εF
ωD

∼
√

M
m ∼ 100). Thus, whereas two

electrons at the same place and time feel a strong mutual Coulomb repulsion, two electrons
which arrive at the same place but at different times are generally subject to an attractive
electron–phonon interaction. It is this attraction that is responsible for the development of
superconductivity in many conventional metals.

In an electron fluid, we must take into account the quantum nature of the sound vibra-
tions. An electron cannot continuously interact with the surrounding atomic lattice – it must
do so by the emission and absorption of sound quanta or phonons. The basic Hamiltonian
to describe the electron–phonon problem is the Fröhlich Hamiltonian, derived by Herbert
Fröhlich, a German emigré to Britain, who worked in Liverpool shortly after the Second
World War [7, 8]. He recognized that the electron–phonon interaction is closely analogous
to the electron-photon interaction of quantum electrodynamics. Fröhlich appreciated that
this interaction would give rise to an effective attraction between electrons and, together
with Bardeen, was the first to identify the electron–phonon interaction as the driving force
behind conventional superconductivity.

To introduce the Fröhlich Hamiltonian, we will imagine we have three phonon modes,
labeled by the index λ = (1, 2, 3), with frequencies ωqλ. For the moment, we shall ignore
the Coulomb interaction between electrons. The Fröhlich Hamiltonian is then

He =
∑

kσ

εkc†
kσ ckσ

Hp =
∑

q,λ

ωqλ(a†
qλaqλ + 1

2
)

HI =
∑

k,q,λ

gqλc†
k+qσ ckσ

[
aqλ + a†

−qλ

]
. (8.95)
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To understand the electron–phonon coupling, let us consider how long-wavelength fluctu-
ations of the lattice couple to the electron energies. Let !!(x) be the displacement of the
lattice at a given point x, so that the strain tensor in the lattice is given by

uµν(x) = 1
2

(
∇µ!ν(x) + ∇ν!µ(x)

)
.

In general, we expect a small change in the strain to modify the background potential of
the lattice, modifying the energies of the electrons so that, locally,

ε(k) = ε0(k) + Cµνuµν(x) + · · · .

Consider the following very simple model. In a free electron gas, the Fermi energy is
related to the density of the electrons N/V by

εF = 1
2m

(
3π2N

V

) 2
3

. (8.96)

When a portion of the lattice expands from V → V + dV , the positive charge of the
background lattice is unchanged, and preservation of overall charge neutrality guarantees
that the number of electrons N remains constant, so the change in the Fermi energy is
given by

δεF

εF
= −2

3
dV
V

∼ −2
3

!∇ · !!.

On the basis of this simple model, we expect the following coupling between the
displacement vector and the electron field:

HI = C
∫

d3xψ†
σ (x)ψσ (x) !∇ · !!, C = −2

3
εF . (8.97)

The quantity C is often called the deformation potential. Now the displacement of the
the phonons was studied in Chapter 3. In a general model, it is given by

!(x) = −i
∑

qλ

eλ
q )xqλ

[
aqλ + a†

−qλ

]
eiq·x,

where we’ve introduced the shorthand

)xqλ =
(

!
2MNsωqλ

) 1
2

to denote the characteristic zero-point fluctuation associated with a given mode. (Ns is
the number of sites in the lattice. ) The body of this expression is essentially identical
to the displacement of a one-dimensional harmonic lattice (see (2.88)), dressed up with
additional polarization indices. The unfamiliar quantity eλ

q is the polarization vector of the
mode. For longitudinal phonons, for instance, eL

q = q̂. The −i in front of the expression
has been introduced into the definition of the phonon creation and annihilation operators
so that the requirement that the Hamiltonian be Hermitian (which implies (eλ

q)∗ = −(eλ
−q))
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10.1 Introduction

Resistivity is one of the most basic properties of conductors. Surprisingly, Ohm’s law,

V = IR, (10.1)

requires quite a sophisticated understanding of quantum many-body physics. In a classical
electron gas, the electron current density

!j(x) = ne!v(x) (10.2)

is a simple c-number related to the average drift velocity !v(x) of the negatively charged
electron fluid. This is the basis of the Drude model of electricity, which Paul Drude intro-
duced shortly after the discovery of the electron [1]. Fortunately, many of the key concepts
evolved in the Drude model extend to the a quantum description of electrons, where !j(x)
is an operator. To derive the current operator, we may appeal to the continuity equation,
or alternatively we can take the derivative of the Hamiltonian with respect to the vector
potential:

!j(x) = − δH

δ!A(x)
, (10.3)

where

H =
∫

d3x

[
1

2m
ψ†(x)

(
− i! !∇ − e!A(x)

)2

ψ(x) − eφ(x)ψ†(x)ψ(x)

]

+ VINT , (10.4)

where the Hamiltonian is written out for electrons of charge q = e = −|e|. Now only the
kinetic energy term depends on !A, so that

!j(x) = − ie!
m

ψ†(x)
↔
∇ψ(x) −

(
e2

m

)
!A(x)ρ(x), (10.5)

where
↔
∇= 1

2

(→
∇ − ←

∇
)

is the symmetrized derivative.
The discussion we shall follow dates back to pioneering work by Fritz London [2, 3].

London noticed, in connection with his research on superconductivity, that the current oper-
ator splits up into components, which he identified with the paramagnetic and diamagnetic
responses of the electron fluid:

!j(x) = !jP(x) +!jD(x), (10.6)
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where

!jP(x) = − ie!
m

ψ†(x)
↔
∇ ψ(x) (10.7)

and

!jD(x) = −
(

e2

m

)
!A(x)ρ(x). (10.8)

Although the complete expression for the current density is invariant under gauge trans-
formations, ψ(x) → eiφ(x)ψ(x), !A(x) → !A − !

e
!∇φ(x), the separate parts are not. However,

in a specific gauge such as the London or Coulomb gauge, where !∇ · A = 0, they do have
physical meaning. We shall identify this last term as the term responsible for the diamag-
netic response of a conductor, while the first term, the paramagnetic current, is responsible
for the decay of the current in a metal.

In a non-interacting system, the current operator commutes with the kinetic energy oper-
ator H0 and is formally a constant of the motion. In a periodic crystal, electron momentum
is replaced by the lattice momentum k, which is, in the absence of lattice vibrations, a
constant of the motion, with the result that the electron current still does not decay. What
is the origin of electrical resistance?

There are then two basic sources of current decay inside a conductor:

• disorder, which destroys the translational invariance of the crystal
• interactions, between the electrons and phonons and between the electrons themselves,

which cause the electron momenta and currents to decay.

The key response function which determines electron current is the conductivity, relating
the Fourier component of current density at frequency ω to the corresponding frequency-
dependent electric field:

!j(ω) = σ (ω)!E(ω). (10.9)

We would like to understand how to calculate this response function in terms of
microscopic correlation functions.

The classical picture of electron conductivity was developed by Paul Drude in 1900,
while working at the University of Leipzig [1]. Although his model was introduced before
the advent of quantum mechanics, many of his basic concepts carry over to the quan-
tum theory of conductivity. Drude introduced the the concept of the electron mean free
path l, the mean distance between scattering events. The characteristic time scale between
scattering events is called the transport scattering time τtr. (We use the “tr” subscript to
distinguish this quantity from the quasiparticle scattering time τ , because not all scattering
events cause the electric current to decay.) In a Fermi gas, the characteristic velocity of
electrons is the Fermi velocity and the mean free path and transport scattering time are
related by the simple relation

l = vFτtr. (10.10)

The ratio of the mean free path to the electron wavelength is determined by the product of
the Fermi wavevector and the mean free path. This quantity is the same order of magnitude
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as the ratio of the scattering time to the characteristic time scale !/εF associated with the
Fermi energy, so that

l
λF

= kFl
2π

∼ τtr

!/εF
= ετtr

!
. (10.11)

In very pure metals, the mean free path l of Bloch wave electrons can be tens or even
hundreds of microns, l ∼ 10−6 m, so this ratio can become as large as 104 or even 106.
From this perspective, the rate at which current decays in a good metal is very slow on
atomic time scales.

There are two important aspects to the Drude model (see Figure 10.1):

• the diffusive nature of density fluctuations
• the Lorentzian lineshape of the optical conductivity,

σ (ω) = ne2

m
1

τ−1
tr − iω

. (10.12)

Drude recognized that, on length scales much larger than the mean free path, multiple
scattering events induce diffusion in the electron motion. On large length scales, the current
and density will be related by he diffusion equation,

#j(x) = −D #∇ρ(x), (10.13)

where D = 1
3

l2
τtr

= 1
3 v2

Fτtr, which together with the continuity equation

#∇ · #j = −∂ρ

∂t
(10.14)

gives rise to the diffusion equation,
[
− ∂

∂t
+ D∇2

]
ρ = 0. (10.15)

The response function χ (q, ν) of the density to small changes in potential must be the
Green’s function for this equation, so that in Fourier space

[iν − Dq2]χ (q, ν) = 1, (10.16)

ω

σ(ω)
l

2

τtr

= m
ne

π
area

τtr
2

m

(b)(a)

ne

!Fig. 10.1 Illustrating (a) the diffusion of electrons on length scales large compared with the mean free path l; (b) The Drude
frequency-dependent conductivity. The short-time behavior of the current is determined by Newton’s law, which
constrains the area under the curve to equal

∫
dωσ (ω) = π ne2

m , a relation known as the f -sum rule.
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from which we expect the response function and density–density correlation functions to
contain a diffusive pole,

〈δρ(q, ν)δρ(−q, −ν)〉 ∼ 1
iν − Dq2 . (10.17)

The second aspect of the Drude theory concerns the slow decay of current on the typical
time scale τtr, so that, in response to an electric field pulse E = E0δ(t), the current decays as

j(t) = e− t
τtr . (10.18)

In the previous chapter, we discussed how, from a quantum perspective, this current is
made up of two components, a diamagnetic component,

jDIA = −ne2

m
A = ne2

m
E0, (t > 0) (10.19)

and a paramagnetic part associated with the relaxation of the electron wavefunction,

jPARA = ne2

m
E0(e−t/τtr − 1), (t > 0) (10.20)

which grows to cancel this component. We would now like to see how each of these heuris-
tic features emerges from a microscopic treatment of the conductivity and charge response
functions. To do this, we need to relate the conductivity to a response function – and this
brings us to the Kubo formula.

10.2 The Kubo formula

Let’s now look again at the form of the current density operator. According to (10.5), it can
divided into two parts:

%j(x) = %jP +%jD, (10.21)

where

%jP = − i!
m

ψ†(x)
↔
∇ ψ(x) paramagnetic current

%jD = −e2

m

∫
d3x ρ(x)%A(x) diamagnetic current (10.22)

are the paramagnetic and diamagnetic parts of the current. The total current operator is
invariant under gauge transformations, ψ(x) → eiφ(x)ψ(x), %A(x) → %A + !

e
%∇φ(x), and,

strictly speaking, the two terms in this expression for the current can’t be separated in a
gauge-invariant fashion. However, we can separate these two terms if we work in a specific
gauge. We shall choose to work in the London gauge:

%∇ · %A = 0. London gauge (10.23)
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Φ(t) = Φ0θ (t)

t

tj0

τtrjD

A (t)
A0

A
→→ ne2

m= –
A0– ne2

m!Fig. 10.2 Schematic illustration of a diamagnetic current pulse produced by a sudden change of flux through the conducting
loop.

In this gauge, the vector potential is completely transverse, !q · !A(!q) = 0. The equations of
the electromagnetic field in the London gauge are

(
1
c2 ∂2

t − ∇2
)

!A(x) = µ0 !j(x)

−∇2φ(x) = ρ(x)
ε0

, (10.24)

so that the potential field ρ(x) is entirely determined by the distribution of charges inside
the material, and the only independent external dynamical field coupling to the material
is the vector potential. We shall then regard the vector potential as the only external field
coupling to the material.

We shall now follow London’s argument for the interpretation of these two terms. Let
us carry out a thought experiment in which we imagine a toroidal piece of metal, as in
Figure 10.2, in which a magnetic flux passing up through the conducting ring is turned on
at t = 0, creating a vector potential around the ring given by A = A0θ (t) = φ0

2πr θ (t), where
r is the radius of the ring. The electric field is related to the external vector potential via
the relation

!E = −∂ !A
∂t

= −A0δ(t), (10.25)

so !E = −!Aoδ(t) is a sudden inductively induced electrical pulse.
Suppose the system is described in the Schrödinger representation by the wavefunction

|ψ(t)〉. Then the current flowing after time t is given by

〈!j(t)〉 = 〈ψ(t)| !jP|ψ(t)〉 − ne2

m
Aoθ (t), (10.26)

where we have assumed that 〈ρ(x)〉 = n is the equilibrium density of electrons in the mate-
rial. We see that the second, diamagnetic term switches on immediately after the pulse. This
is nothing more than the diamagnetic response – the effect of the field induced by Faraday’s
effect. What is so interesting is that this component of the current remains indefinitely after
the initial step in the flux through the toroid. But the current must decay! How?
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The answer is that the initial paramagnetic contribution to the current starts to develop
after the flux is turned on. Once the vector potential is present, the wavefunction |ψ(t)〉
starts to evolve, producing a paramagnetic current that rises and, in a regular conductor,
ultimately exactly cancels the time-independent diamagnetic current. From this point of
view, the only difference between an insulator and a metal is the time scale required for
the paramagnetic current to cancel the diamagnetic component. In an insulator this time
scale is of the order of the inverse (direct) gap "g, τ ∼ !/"g, whereas in a metal it is the
transport relaxation time, τ ∼ τtr.

These arguments were first advanced by London. He noticed that if for some unknown
reason the wavefunction of the material could become “rigid,” so that it would not respond
to the applied vector potential, in this special case the paramagnetic current would never
build up, and one would then have a perfect diamagnet – a superconductor. Let’s now look
at this in more detail. We need to compute

#j(#x, t) = 〈#jP(x, t)〉 − ne2

m
#A(x, t). (10.27)

If we are to compute the response of the current to the applied field, we need to compute the
build-up of the paramagnetic part of the current. Here we can use linear response theory.
The coupling of the vector potential to the paramagnetic current is simply–

∫
d3x#j(x) · #A(x),

so the response of this current is given by

〈j α
P (t)〉 =

∫

t′<t
d3x′dt′i〈[ j α

P (x), jβP(x′)]〉Aβ (x′). (10.28)

In other words, we may write

#j(1) = −
∫

d2Q(1 − 2)#A(2)

Q αβ (1 − 2) = ne2

m
δαβδ(1 − 2) − i〈[ j α

P (1), jβP(2)]〉θ (t1 − t2). (10.29)

The quantity Q(1−2) is the London response kernel. In the most general case, this response
is non-local in both space and time. In a metal, this response is non-local over a distance
given by the electron mean free path l = vFτtr. In a superconductor the response to the
vector potential is non-local over the Pippard coherence length ξ = vF/", where " is the
superconducting gap. We can write the above result in Fourier space as

#j(q) = −Q(q)#A(q), (10.30)

where

Qαβ (q) = ne2

m
δαβ − i〈[j α(q), j β (−q)]〉. (10.31)

We have used the cavalier notation

〈[j α(q), jβ (−q)]〉 =
∫

d3x
∫ ∞

0
dt〈[j α(x, t), j β (0)]〉e−i(#q·#x−νt). (10.32)
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Finally, if we write !E = −∂A
∂t

, or A(q) = 1
iν

E(q), we deduce that

!j(q) = σ (q)!E(q)

σαβ (q) = − 1
iν

Qαβ (q) = 1
−iν

{
ne2

m
δαβ − i〈[jα(q), jβ (−q)]〉

}
. (10.33)

Kubo formula

This is the famous Kubo formula [4] that allows us to relate current fluctuations to the
conductivity. In practice, the high velocity of light means that q = ν/c << kF is much
shorter than an electronic wavevector, so that in electronic condensed matter physics we
may consider the limit !q = 0, writing σ (ν) = σ (!q = 0, ν). This is the quantity that
is measured in optical conductivity measurements. The DC conductivity is given by the
zero-frequency limit of the uniform conductivity, i.e. σDC = limν→0 σ (ν).

In a metal, σDC is finite, which implies that Q(ν = 0) = 0, so that

i〈[jα(q), jβ (−q)]〉|q=0 = ne2

m
δαβ . (10.34)

We shall see that this identity breaks down in a system with broken gauge invariance – and
this is the origin of superconductivity. In a normal fluid, however, we can use this identity
to rewrite the expression for the conductivity as

σαβ (ν) = 1
−iν

[
− i〈[jα(ν′), jβ (−ν′)]〉

]ν′=ν

ν′=0
. (10.35)

A practical calculation of conductivity depends on our ability to extract this quantity
from the imaginary-time response function. We can quickly generalize expression (10.29)
to imaginary time by replacing i〈[A(1), B(2)]〉 → 〈TA(1)B(2)〉, so that, in imaginary time,

!j(1) = −
∫

d2Q(1 − 2)!A(2) (1 ≡ (!x1, τ1))

Qαβ (1 − 2) = ne2

m
δαβδ(1 − 2) − 〈TjαP(1) jβP(2)〉, (10.36)

so that in Fourier space our expression for the optical conductivity is given by

σαβ (iνn) = − 1
νn

[
〈 jα(ν′)jβ (−ν′)〉

]ν′=iνn

ν′=0
, (10.37)

where we have used the shorthand notation

〈jα(iνn)jβ (−iνn)〉 =
∫ β

0
dτeiνnτ 〈Tjα(τ )jβ (0)〉. (10.38)

10.3 Drude conductivity: diagrammatic derivation

In the previous section we showed how the fluctuations of the electric current can be related
to the optical conductivity. Let us now see how these fluctuations can be computed using
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Feynman diagrams, in a disordered electron gas with dispersion εk = k2

2m . First, let us
review the Feynman rules. We shall assume that we have taken the leading-order effects of
disorder into account in the electron propagator, denoted by

= G(k) = 1
iωn − k + i sgn

.
ωn

1
2τ

(10.39)

The current operator is jα(q) = ∑
e kα

m ψ
†
k−q/2σ ψk+q/2σ , which we denote by the vertex

α ≡ ekα

m
.

(10.40)

The set of diagrams that represents the current fluctuations can then be written

jα(q)jβ(−q) = βα

k+q

k

+ +α β βα + . . .

+ .+ . . .+βα βα

(10.41)

In the above expansion, we have identified three classes of diagrams. The first diagram
denotes the simplest contribution to the current fluctuation: we shall see shortly that this
is already sufficient to capture the Drude conductivity. The second set of diagrams repre-
sents the leading impurity corrections to the current vertex: these terms take account of the
fact that low-angle scattering does not affect the electric current, and it is these terms that
are responsible for the replacement of the electron scattering rate τ by the transport relax-
ation rate τtr. We shall see that these terms vanish for isotropically scattering impurities,
justifying our neglect of these contributions in our warm-up calculation of the conductivity.

The last set of diagrams involves crossed impurity scattering lines. We have already
encountered these types of diagrams in passing, and the momentum restrictions associated
with crossed diagrams lead to a reduction factor of order O( 1

kFl ) ∼ λ
l , or the ratio of

the electron wavelength to the mean free path. These are the quantum corrections to the
conductivity. These maximally crossed diagrams were first investigated by Langer and
Neal in 1966 [5], during the early years of research into electron transport, but it was not
until the late 1970s that they became associated with the physics of electron localization.
More on this later.


