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(a) Superconductivity in cuprate superconductors involves the two-dimensional motion of electrons on a square
lattice. The undoped material contains a square lattice of Cu2+ ions, each carrying a localized S = 1

2 moment. When
holes (or electrons) are introduced into the lattice via doping, the spins become mobile and the residual
antiferromagnetic interactions drive d-wave pairing. A simplified model treats this as a single band of electrons of
concentration 1 − x, moving on a square lattice with hopping strength−t and nearest-neighbor antiferromagnetic
interaction J. (b) Schematic phase diagram of cuprate superconductors where x is the degree of hole doping. A
commensurate antiferromagnetic insulator (pink) forms at small x, while at higher doping a superconducting dome
develops. The normal state contains a pseudogap at low doping, forming a strange metal at optimal doping, with a
linear resistivity. Fermi-liquid-like properties only develop at high doping, and it is only in this regime that the
superconducting instability can be treated as a bona-fide Cooper pair instability of a Fermi liquid.

!Fig. 15.4

The basic connection between anisotropic singlet superconductivity and antiferromag-
netic interactions is relevant to a wide variety of superconductors.

• If one is only interested in anisotropic singlet pairing, it is sufficient to work with an
interaction of the form

VBCS = −3
4

∑

k,k′

(
Jk−k′ + Jk+k′

2

)
(c†

k↑c†
−k↓)(c−k′↓ck′↑).

15.4 d-wave pairing in two-dimensions

One of the most dramatic examples of anisotropic pairing is provided by the d-wave pairing
in the copper oxide layers of the cuprate superconductors. These materials form antiferro-
magnetic Mott insulators, but when electrons or holes are introduced into the layers by
doping, the magnetism is destroyed and the doped Mott insulator develops d-wave super-
conductivity. The normal state of these materials is not well understood, and for most of the
phase diagram it cannot be treated as a Fermi liquid. For instance, at optimal doping these
materials exhibit a linear resistivity ρ(T) = AT + ρ0 due to electron–electron scattering
that cannot be understood within the Fermi liquid framework. However, in the over-doped
materials Fermi liquid behavior appears to recover and a BCS treatment is thought to be
applicable.
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Here we consider a drastically simplified model of a d-wave superconductor in which
the fermions move on a two-dimensional tight-binding lattice with a dispersion ϵk =
−2t(cos kxa + cos kya) −µ, where t is the nearest-neighbor hopping amplitude, interacting
via an onsite Coulomb repulsion and a nearest-neighbor antiferromagnetic interaction, so
that the Hamiltonian becomes

H =
∑

k

ϵkc†
kσ ckσ +

∑

j

Unj↑nj↓ + J
∑

(i,j)

S⃗i · S⃗j, (15.46)

while, in momentum space,

H =
∑

k

ϵkc†
kσ ckσ + 1

2

∑

q

[
Uρ−q · ρq + JqS⃗−q · S⃗q

]

Jq = 2J(cos qxa + cos qya). (15.47)

Provided U and J are small compared with the bandwidth of the electron band, we can
treat this as a Fermi liquid with a BCS interaction in the singlet channel given by

Vsinglet
q = U − 3J

2
(cos qxa + cos qya).

Here, following the previous section, we have multiplied the spin-dependent interaction by
−3/4 to take care of the expectation value of S⃗1 · S⃗2 = −3/4 in the singlet channel. When
we replace q → k − k′ and symmetrize on momenta to obtain the singlet interaction, we
obtain

Vk,k′ = 1
2

[
Vsinglet(k − k′) + Vsinglet(k + k′)

]
= U − 3J

2
(cxcx′ + cycy′ ), (15.48)

where we have used the notation cx ≡ cos kx, cy ≡ cos ky, and so on. The mean-field BCS
Hamiltonian is then

HBCS =
∑

kσ

ϵkc†
kσ ckσ +

∑

k,k′

(
U − 3J

2
(cxcx′ + cycy′ )

)
c†

k↑c†
−k↓c−k′↓ck′↑.

Let us immediately jump forward to look at the gap equation,

$k = −
∫

d2k′

(2π )2 Vk,k′
$k′

2Ek′
tanh

(
βEk′

2

)
. (15.49)

In the gap equation, the interaction will preserve the symmetries of the pair. If we divide
the interaction into an s-wave and a d-wave term, Vk,k′ = VS

k,k′ + VD
k,k′ , as follows,

VS
k,k′ =

s-wave︷ ︸︸ ︷
U −

extended s-wave︷ ︸︸ ︷
3
4

J(cx + cy)(cx′ + cy′ ) (s-wave)

VD
k,k′ = −3

4
J(cx − cy)(cx′ − cy′ ) (d-wave), (15.50)

then we see that the s-wave term is invariant under 90◦ rotations of k or k′, whereas the
d-wave term changes sign:

VS
k,k′ = +VS

k,Rk′ , VD
k,k′ = −VD

k,Rk′ ,
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where Rk = (−ky, kx). Notice how the onsite Coulomb interaction is absent from the
d-channel. A condensate with d-symmetry,

$D
k = $D(cx − cy),

such that $D
Rk = −$D

k , will couple to Cooper pairs via the d-wave interaction, because
its integral with s-wave functions must change sign under π/2 rotations and is hence zero,∑

k′ VS
k,k′$

D
k′ (. . .) = 0. By contrast, a condensate with extended s-wave symmetry, with the

form

$S
k = $1 + $2(cx + cy),

for which $S
Rk = +$S

k, will vanish when integrated with the d-wave part of the interaction,∑
k′ VD

k,k′$
S
k′ (. . .) = 0. In this case the two types of pairing are symmetry decoupled;

moreoever, the symmetry of the d-wave pair condensate orthogonalizes against the local
Coulomb pseudopotential.

Let us now look more carefully at the d-wave condensate, where the gap function
$D

k = $D(cx −cy) vanishes along nodes along the diagonals kx = ±ky. The corresponding
quasiparticle energy

Ek =
√

ϵ2
k + $2

D(cx − cy)2 (15.51)

must therefore vanish at the intersection of the nodes (where $k = 0) and the Fermi
surface (where ϵk = 0), as illustrated in Figure 15.5. At the nodal points the dispersion can
be linearized in momentum, so that

E ∼
√

(vFδk2
⊥) + (v$δk∥)2

6

E(k)

–π/a

π/a

π/a

–π/a

4

2

0

0
0

kx

ky

nodal QP

Energy dispersion for a two-dimensional d-wave superconductor with a dx2−y2 gap function. The upper part of the
plot shows a cut-away three-dimensional plot of the dispersion, showing the banana-shaped quasiparticle cones of
quasiparticle excitations around the nodes. In the lower contour plot, the position of the nodal excitations is seen to
occur at the intersections of the Fermi surface (white line) and the nodal lines of the gap function (red line).

!Fig. 15.5
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where vF = ∂E/∂k⊥ is the Fermi velocity at the node and v$ = ∂E/∂k∥ =√
2$Da sin

(
kFa√

2

)
is the group velocity parallel to the Fermi surface created by the pairing.

These excitations form a “Dirac cone” of excitations.
Let us now write out the gap equation for the d-wave solution in full:

$D(cx − cy) = −
∫

d2k′

(2π )2

VD
k,k′

︷ ︸︸ ︷(
−3

4
J(cx − cy)(cx′ − cy′ )

)
$D(cx′ − cy′ )

2Ek′
tanh

(
βEk′

2

)
.

(15.52)
Fortunately, the d-wave form factor cx − cy drops out of both sides, to give

1 = 3
4

J
∫

d2k
(2π )2

(cx − cy)2

2Ek
tanh

(
βEk

2

)
. (15.53)

Though it is straightforward to evaluate this kind of integral numerically, to get a feel of
the physics let us suppose that the interaction only extends by an energy ωSF around the
Fermi energy, and that, furthermore, the band-filling around the * (k = 0) point is small
enough to use a quadratic approximation, ϵk = −4t − µ + tk2. In this case, the 2D density
of states per spin N(0) = 1

4π t is a constant, while the gap function is

$D(cy − cx) = $D(k2
x − k2

y ) = $0 cos 2θ , (15.54)

where $0 = $D(kFa)2/2 and a is the lattice spacing. Notice the characteristic $(θ ) ∝
cos 2θ form, characteristic of an l = 2, d-wave Cooper pair. Now the gap equation becomes

1 = 3
4

JN(0)
∫ ωSF

−ωSF

dϵ

∫ 2π

0

dθ

2π

cos2 2θ

2E
tanh

(
βE
2

)

E =
√

ϵ2 + ($0 cos 2θ )2. (15.55)

BCS gap equation: d-wave pairing

At Tc the average over angle gives 1
2 , so the equation for Tc is

1 = 3
8

JN(0)
∫ ωSF

0
dϵ

1
ϵ

tanh
(

ϵ

2Tc

)
. (15.56)

This is identical to the BCS gap equation, but with g = 3
8 JN(0), with the same formal form

for Tc = 1.13ωSFe−1/g.
It is particularly interesting to compute the d-wave density of states. Let us continue

to use our approximation $(θ ) = $0 cos 2θ . To compute the density of states, we must
average the density of states we obtained for an s-wave superconductor (14.186) over angle:

N∗
D(E) = N(0) Re

〈
|E|

√
(E − iδ)2 − $2 cos2 2θ

〉

θ

, (15.57)

where ⟨. . .⟩θ ≡
∫ dθ

2π (. . .) and the real part cleverly builds in the fact that the density of
states vanishes when |E| < |$(θ )|. We can recast this expression as a standard elliptic inte-
gral by making the change of variable 2θ → φ −π/2. The resulting integral over φ is then
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N∗
D(E)

N(0)
= Re

⎡

⎣
∫ π

0

dφ

π

|E|
√

(E − iδ)2 − $2 sin2 φ

⎤

⎦ = -

[
E − iδ

$

]
, (15.58)

where

-[x] = 2
π

Re
[

K
(

1
x2

)]
(15.59)

is expressed in terms of the elliptic function

K(x) =
∫ π/2

0

dφ
√

1 − x sin2 φ

, (15.60)

known from the study of the pendulum.3 This function is plotted in Figure 15.6. The clean
gap of the s-wave superconductor is now replaced by a V-shaped structure, with a low-
lying linear density of states derived from the Dirac cones in the excitation spectrum, and
a sharp coherence peak in the density of states around E ∼ ±$. We can understand the
linear density of states at low energies by remembering that, for a relativistic spectrum
E = ck, the density of states is 1

2π k dk
dE = |E|

(2πc2) . For these anisotropic Dirac cones, we

must replace c2 → vFv$; taking into account the four nodal cones and remembering the
tricky factor of 1

2 that enters because of the energy average of the coherence factors in the
tunneling density of states (14.184), we obtain

N∗(E) = 1
2

× 4 × 1
2π

|E|
vFv$

=

N(0)︷ ︸︸ ︷
kF

2πvF

|E|
$

= N(0)
|E|
$

, (15.61)
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Density of statesN∗(E)/N(0)) for a d-wave superconductor. !Fig. 15.6

3 Note: here we use the notation used by Mathematica, with x multiplying sin2 φ.
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where we have put v$ = ∂E/∂k∥ = (kF)−1∂$(θ )/∂θ = 2$/kF , identifying N(0) = m
2π =

kF
2πvF

.
Lastly, let us take a brief look at the alternative s-wave solution, where $k = $1 +

$2(cx + cy). The first, momentum-independent term is entirely local, whereas the second
term describes s-waves pairing with nearest neighbors. The gap equation

$S
k = −

∫
d2k′

(2π )2

VS
k,k′

︷ ︸︸ ︷(
U − 3

4
J(cx + cy)(cx′ + cy′ )

)
$1+$2(cx′+cy′ )︷︸︸︷

$S
k

2Ek′
tanh

(
βEk′

2

)
(15.62)

is more complicated because there is cross-talk between the local and extended s-wave
terms. To simplify our discussion, suppose we confine the interaction to within an energy
ωSF of the Fermi surface and assume that the filling of the Fermi surface is small enough
that we can take k = k′ ∼ 0 in the pair potential. Then the effective s-wave coupling
constant will be

Vk,k′ = U − 3
4

J

∼2︷ ︸︸ ︷
(cx + cy)

∼2︷ ︸︸ ︷
(cx′ + cy′ ) → U − 3J, (15.63)

which is only attractive providing J > U/3. We see that, for a single Fermi surface,
the attraction in the extended-s-wave channel is suppressed by the Coulomb interaction,
entirely vanishing if J < Jc = U/3. In fact, extended s-wave solutions are possible, and
are believed to occur in the iron-based superconductors, but they require compensating
Fermi surfaces in regions where cx +cy have opposite signs, so that the Fermi surface aver-
age of the gap function vanishes, permitting a decoupling of the pairing from the repulsive
Coulomb interaction.

Example 15.2 For a single Dirac cone of excitations with dispersion

Ek =
√

(vxkx)2 + (vyky)2, (15.64)

show that the density of states is given by

N(E) = E
2πvxvy

.

Solution

We write the density of states as

N(E) =
∑

k

δ(E − Ek) =
∫

dkxdky

(2π )2 δ

(
E −

√
(vxkx)2 + (vyky)2

)
. (15.65)

Changing variables, x = vxkx, y = vyky, then

N(E) =
∫

dxdy
(2π )2 δ

(
E −

√
(x2 + y2)

)
. (15.66)

Changing x = r cos θ , y = r sin θ , then the measure becomes dxdy → rdrdθ and the
integral is

N(E) = 1
vxvy

∫
dθrdr
(2π )2 δ(E − r) = E

2πvxvy
.
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Example 15.3

(a) Carry out a Hubbard–Stratonovich decoupling of the BCS Hamiltonian on a two-
dimensional lattice, where the pair potential is

Vk,k′ = N −1
s

(
U − 3

2
J(cxcx′ + cycy′ )

)
, (15.67)

(cx ≡ cos kxa, cy ≡ cos kya), and show that the mean-field action takes the form

SMFT =
∫ β

0

⎧
⎪⎨

⎪⎩

∑

k

ψ̄k(∂τ +
hk︷ ︸︸ ︷

ϵkτ3 + $̄kτ− + $kτ+)ψk

+ Ns

[
4
3J

($̄2S$2S + $̄D$D) − $1S$1S

U

]
⎫
⎪⎬

⎪⎭
, (15.68)

where
$k = $1S + $2S(cx + cy) + $D(cx − cy) (15.69)

is the momentum-dependent gap function.
(b) Write down the mean-field free energy.
(c) Assuming a d-wave solution (i.e. $D ̸= 0, $1 = $2 = 0), rederive the gap equation

for this problem.
(d) For a single Fermi surface, why will a d-wave condensate have a higher Tc than an

extended s-wave condensate?

Solution

(a) Let us factorize the interaction into s- and d-wave component, as follows:

Vk,k′ = U
Ns

γ1S(k)γ1S(k′) − 3J
4Ns

[
γ2S(k)γ2S(k′) + γD(k)γD(k′)

]
, (15.70)

where γ1S(k) = 1, γ2S(k) = cx + cy, γD(k) = cx − cy are a set of normalized s-,
extended s-, and d-wave form factors, respectively. We can then write the interaction
Hamiltonian as

HI = U
Ns

A†
1SA1S − 3J

4Ns

[
A†

2SA2S + A†
DAD

]
, (15.71)

where

A* =
∑

k

φ*(k)c−k↓ck↑ (* ∈ {1S, 2S, D}) (15.72)

create s-, extended s-, and d-wave pairs, respectively. If we carry out a Hubbard–
Stratonovich decoupling of each of the product terms in this interaction, we then obtain

HI →
∑

*∈{1S,2S,D}

(
$̄*A* + H.c.

)
+ 4Ns

3J

(
$̄2S$2S + $̄D$D

)
− Ns

U
$̄1S$1S

=
∑

k

(
$̄kc−k↓ck↑ + c̄k↑c̄−k↓$k

)
+ 4Ns

3J

(
$̄2S$2S + $̄D$D

)

− Ns

U
$̄1S$1S, (15.73)
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where $k = ∑
* γ*(k)$* = $2S(cx + cy) + $D(cx − cy). Then the complete

transformed Hamiltonian takes the form

H =
∑

k

ϵkc†
kσ ckσ +

∑

k

($kc†
k↑c†

−k↓ + H.c.)

+ Ns

(
4
3J

($̄D$̄D + $̄2S$2S) − 1
U

$̄1S$1S

)

=
∑

k

ψ†
k

(
ϵkτ3 + $kτ+ + $̄kτ−

)
ψk

+ Ns

(
4
3J

($̄D$D + $̄2S$2S) − 1
U

$̄1S$1S

)
, (15.74)

where we’ve dropped the constant remainder
∑

k ϵk. The corresponding action is
given by

S =
∫ β

0

⎧
⎪⎨

⎪⎩

∑

k

ψ̄k(∂τ +
hk︷ ︸︸ ︷

ϵkτ3 + $̄kτ− + $kτ+)ψk

+ Ns

[
4
3J

($̄2S$2S + $̄D$D) − $1S$1S

U

]
⎫
⎪⎬

⎪⎭
.

(b) Carrying out the Gaussian path integral over the Fermi fields for constant gap functions,
we obtain

ZMF = e−βFMF =
∫

D[ψ̄ , ψ]e−S,

where

FMF = −T ln ZMF = −T
∑

k,iωn

ln det[−iωn + hk]

+ Ns

[
4
3J

($̄2S$2S + $̄D$D) − $1S$1S

U

]

= −T
∑

k,iωn

2 ln[(iωn)2 − ϵ2
k − $̄k$k]

+ Ns

[
4
3J

($̄2S$2S + $̄D$D) − $1S$1S

U

]

= −T
∑

k

ln
[

2 cos
(

βEk

2

)]

+ Ns

[
4
3J

($̄2S$2S + $̄D$D) − $1S$1S

U

]
, (15.75)
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where the last line follows from carrying out the Matsubara sum and Ek =√
ϵ2

k + |$k|2.
(c) Suppose $D is the only non-zero component of the gap function. Then

FMF = −T
∑

k

ln
[

2 cos
(

βEk

2

)]
+ Ns

4
3J

($̄2S$2S), (15.76)

where Ek =
√

ϵ2
k + γD(k)2$̄D$D.

Taking the derivative of FMF with respect to $̄D, we obtain

δFMF

δ$̄D
= 0 = −

∑

k

tanh
(

βEk

2

)
γD(k)2$D

2Ek
+ Ns

4$D

3J
, (15.77)

giving us the gap equation,

4
3J

=
∫

k
tanh

(
βEk

2

)
γD(k)2

2Ek
. (15.78)

(d) Whereas the d-wave condensate is completely decoupled from the repulsive U, so that
∂2FMF/∂$1S$D = 0, the extended s-wave component always mixes with the local
s-wave component, which leads to a reduction of the effective coupling constant, so
the d-wave Cooper instability will typically occur at a higher temperature. If we set
the differentials of the free energy with respect to $1S and $2S to zero, we obtain two
coupled gap equations, which, written in shorthand, are

4$2S

3J
= $2S⟨γ 2

1S⟩ + $1S⟨γ1Sγ2S⟩

−$1S

U
= ⟨γ 2

1S⟩$1S + ⟨γ1Sγ2S⟩$2S, (15.79)

where we have used the shorthand ⟨. . .⟩ = ∑
k

1
2Ek

tanh
(

βEk
2

)
(. . .)k (although

γ1S = 1, we have kept it in its symbolic form to show the symmetry of the equa-
tions). The two equations are coupled, because in general ⟨γ1Sγ2S⟩ ̸= 0 for two s-wave
form factors. We can eliminate $1S from the second equation, to obtain

$1S = − ⟨γ1Sγ2S⟩
⟨γ 2

1S⟩ + 1
U

$2S. (15.80)

In other words, providing ⟨γ1Sγ2S⟩ ̸= 0, the extended s-wave solution will always
induce a finite onsite s-wave pairing, which costs a lot of Coulomb repulsion energy.
Substituting this into the first of the mean-field equations (15.79), we obtain

4
3Jeff

=
(

4
3J

+ ⟨γ1Sγ2S⟩2

1
U + ⟨γ 2

1S⟩

)

= ⟨γ2S(k)2⟩ =
∫

k
tanh

(
Ek

2Tc

)
γ2S(k)2. (15.81)

Since 1/Jeff is increased, we see that the effective coupling constant Jeff is reduced
by the cross-talk between the extended s-wave channel and the onsite Coulomb inter-
action, suppressing the extended s-wave Tc. When the higher Tc d-wave condensate
develops, this opens up a gap in the spectrum, pre-empting any lower-temperature
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s-wave instability. This is presumably why d-wave pairing predominates in the cuprate
superconductors.

An important exception to this case occurs when there are multiple Fermi surface
sheets which live in sectors of the extended s-wave form factor which have opposite
sign. In this case, the average ⟨γ1Sγ2S⟩ ∼ 0 and the larger average gap of the s-wave
solution then favors extended s-wave over d-wave.

Example 15.4

(a) Show that the Nambu Green’s function for a singlet superconductor with a momentum-
dependent gap is

G(k, iωn) = [iωn − ϵkτ3 − $kτ1]−1, (15.82)

where the gap function $k = $−k assumed to be real.
(b) Using the Nambu Green’s function, compute the tunneling density of states for a three-

dimensional d-wave superconductor with gap $k = $ cos 2φ.

Solution

(a) The Nambu Hamiltonian for a singlet superconductor with a momentum-dependent
gap $k = $(φ) = $ cos 2φ is given by

H =
∑

k

ψ†
khkψk

hk = ϵkτ3 + $ cos 2θτ1,
(15.83)

where we taken the gap to be real. The Nambu Green’s function is then

G(k, ω) = 1
ω − hk

= ω + hk

ω2 − (ϵ2
k + $2 cos2 2φ)

.

(b) The diagonal part of the Nambu Green’s function is given by

[G(k)]11 = ω + ϵk

ω2 − (ϵ2
k + $2 cos2 2φ)

and the tunneling density of states is given by

N(ω) = 1
π

∑

k

Im

(
ω + ϵk

(ω − iδ)2 − E2
k

)

= 1
π

N(0)
∫

dφ

2π

∫
dϵ Im

(
ω + ϵ

(ω − iδ)2 − ϵ2 + $(φ)2

)

= −N(0)
∫

dφ

2π
Im

(
ω

√
$2 cos2 2φ − (ω − iδ)2

)

= N(0)
∫ π/2

0

dφ

π/2
Re

⎛

⎝ |ω|
√

(ω − iδ)2 − $2 sin2 φ

⎞

⎠

= 2N(0)
π

Re K
(

$

ω − iδ

)
, (15.84)
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where

K(x) =
∫ π/2

0

dx
√

1 − x2 sin2 φ

.

The last few stages of this calculation are the same as those in the derivation of the s-wave
density of states in (14.185). We see that the form of the mean-field density of states of a
three-dimensional d-wave system is the same as the density of states of a two-dimensional
one.

Example 15.5

(a) By generalizing the approach taken in Section 13.8 for an s-wave superconductor,
compute the London stiffness of a d-wave superconductor with gap $(φ) = $ cos φ,
showing that it takes the form

QD(T) = Q0

[

1 −
∫ ∞

−∞
dω

∫
dφ

2π

(
−df (ω)

dω

)
Re

(
ω

√
ω2 − $(φ)2

)]

$(θ ) = $ cos(2φ). (15.85)

(b) Contrast the temperature dependence of the penetration depth in an s-wave and a clean
d-wave superconductor.

Solution

This question is a little subtle at the beginning, because the d-wave gap has momen-
tum dependence $k, and it is not immediately clear whether, when a vector potential is
included, we should make the Peierls replacement $k → $k−eA or not.

One way to rationalize this is to notice that, in Nambu notation, the correct gauge-
invariant Peierls replacement is k → k − eAτ3, so that in pairing terms of the form $kτ1

we must replace

$kτ1 → 1
2
{$k−eAτ3 , τ1} = $k − e

2
∇k$k

=0︷ ︸︸ ︷
{τ3, τ1} = $k + O(A2), (15.86)

so there is no correction to the current operator derived from the pairing, and the only
important dependence of the BCS Hamiltonian on the vector potential comes from the
kinetic energy ϵk−eAτ3τ3 (14.241).

An alternative and more convincing way to argue the above is to explicitly introduce
the vector potential into the pairing interaction using a Peierls substitution in real space.
Consider the local pairing interaction, −g

∫
x 1†

D(x)1D(x), where

1†
D =

∫

R
γD(R)ψ†

↑(x + R/2)ψ†
↓(x − R/2) (15.87)

creates a d-wave pair with spatial form factor γD(R) centered at x. If we write the
interaction out in full, it takes the form
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HI = −g
∫

x,R,R′
γD(R)γD(R′)

(
ψ†

↑(x + R/2)ψ†
↓(x − R/2)

) (
ψ↓(x − R′/2)ψ↑(x + R′/2)

)

= −g
∫

x,R,R′
γD(R)γD(R′) :

(
ψ†

↑(x + R/2)ψ↑(x + R′/2)
)

×
(
ψ

†
↓(x − R/2)ψ↓(x − R′/2)

)
: , (15.88)

which involves the normal-ordered product of two hopping terms. To make this gauge-
invariant, we need to make a Peierls substitution on each hopping term, replacing

ψ†
↑(x + R/2)ψ↑(x + R′/2) → ψ†

↑(x + R/2)ψ↑(x + R′/2)

e−iA(x)·(R−R′)/2
︷ ︸︸ ︷

e−i
∫ x+R′/2

x+R/2 A·dl

ψ†
↓(x − R/2)ψ↓(x − R′/2) → ψ†

↓(x − R/2)ψ↓(x − R′/2)

eiA(x)·(R−R′)/2
︷ ︸︸ ︷

e−i
∫ x−R′/2

x−R/2 A·dl, (15.89)

where the Peierls factors have been evaluated ignoring gradients in the vector potential. We
notice that the two Peierls factors cancel, so there is no dependence of the pairing term on
the external vector potential.

(a) We can now follow the methodology of Section 13.8, including the momentum
dependence of the gap, throughout the calculation. We obtain

Qab = 4e2

βV

∑

k

∇aϵk∇bϵk
$2

k

[(ωn)2 + ϵ2
k + $2

k]2
. (15.90)

Carrying out the integral over energy for each direction, and the summation over the
Matsubara frequencies following the method of Section 14.8, then gives an angular-
averaged version of (14.260):

Q(T) = Q0

[

1 −
∫ ∞

−∞
dω

(
−df (ω)

dω

)∫
dφ

2π

Re

(
|ω|

√
(ω − iδ)2 − $2 cos2 2φ

)]

, (15.91)

where we have taken the real part of the integrand to eliminate terms where |ω| <

|$(φ)|.
We recognize the last term as the thermal average of the density of states, so that

Q(T) = Q0

[

1 −
(

A(ω)
N(0)

)]

,

where (see (15.58))

A(ω) = 2N(0)
π

Re K
(

$

ω − iδ

)

and K(x) is the elliptic integral (15.60).
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(b) At low temperatures, the density of states is given by A(ω)/N(0) = (|ω|/$), so that
the thermally averaged density of states

(
A(ω)
N(0)

)
= kBT

$
2
∫ ∞

0

x
(ex + 1)(e−x + 1)

= kBT
$

ln 4 (15.92)

grows linearly with temperature. Thus in a d-wave superconductor the inverse pen-
etration depth 1

λ2
L

∝ Q(T) will exhibit a linear dependence on temperature at low

temperatures, rather than the exponential dependence expected from a fully gapped
s-wave superconductor:

1 − λ2
L(0)

λ2
L(T)

∼ kBT
$

(kBT << $).

(Note that in a dirty d-wave superconductor the density of states is constant at low tem-
peratures, which leads to a quadratic temperature dependence of the inverse penetration
depth at the lowest temperatures.)

15.5 Superfluid 3He

15.5.1 Early history: theorists predict a new superfluid

As our second example of anisotropic pairing, we discuss the remarkable case of superfluid
3He. As the 1950s came to an end and the wider significance of the BCS pairing instability
was appreciated, the condensed-matter community began to realize that 3He might form
a BCS superfluid condensate, avoiding the mutual repulsion of the atoms by pairing in
a higher angular momentum channel. Four independent groups (Lev Pitaevksii [6] at the
Kapitza institute in Moscow; David Thouless at the Lawrence Radiation Laboratory, Uni-
versity of California, Berkeley [7]; Victor Emery and Andrew Sessler at the University of
California, Berkeley [8]; and the Gang of Four, Keith Brueckner and Toshio Soda at the
University of California, La Jolla, and Philip W. Anderson with Pierre Morel at Bell Labo-
ratories, New Jersey 4 [9, 10]) came up with the idea of anisotropic pairing. Although these
early papers examined both p- and d-wave pairs, each of them used bare nuclear interaction
parameters as input to the BCS theory, and on the basis of these calculations came to the
conclusion that the leading attractive channel was the l = 2, d-wave channel, predicting a
d-wave superfluid condensate would develop in 3He around Tc = 50−150 mK. The theory
community would later be vindicated in their prediction of anistropic superfluidity in 3He,
but at a much lower temperature and with a p-wave rather than a d-wave symmetry.

During the 1960s the theory of anisotropic superfluidity developed rapidly, providing the
framework for p-wave pairing that would ultimately be used to understand 3He. In 1961
Morel and Anderson [10] introduced the ground state of what would later be identified

4 Pierre Morel was officially a scientific attache at the French Embassy in New York City.


