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∆2!Fig. 15.1 Showing model interaction (orange line) and energy-dependent gap function that it gives rise to. The gap function
changes sign around ϵ = ωD to minimize the effect of the Coulomb interaction. In this exampleµ − g > 0, but
because of renormalization the effective interaction at low energies becomesµ∗ − g < 0.

gap function contains an essentially instantaneous negative component and a retarded
positive component, of the form

#(t) = −|#2|δ(t) + #1
ωD

π

(
sin ωDt

ωDt

)
.

It is thus adapted to the interaction so as to minimze the energy.
• The renormalization of the Coulomb interaction can be understood as the screening

effect of high-frequency virtual pair fluctuations on energy scales between ωD and the
bandwidth D. Whereas pair fluctuations enhance an attractive interaction, they screen a
repulsive interaction, driving it logarithmically towards weak coupling at low energies.
The renormalized Coulomb interaction can be written self-consistently as follows:
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Carrying out the integral over the intermediate virtual pairs, we obtain

µ∗ = µ − µµ∗
[∫ −ωD

−D
+

∫ D

ωD

]
dϵ

2|ϵ| = µ − µµ∗ ln
(

D
ωD

)
, (15.30)

from which we obtain the result µ∗ = µ/[1 + µ ln(D/ωD)].

15.3 Anisotropic pairing

At the turn of the 1960s, physicists on both sides of the Iron Curtain independently
predicted that fermions interacting via repulsive interactions can develop pair condensates
with pairs which carry finite orbital and spin angular momentum, giving rise to gap
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Table 15.1 Pair potentials.

Interaction Singlet VS
k,k′ Triplet VT

k,k′

1
2

Vq : ρ−qρq :
1
2

(Vk−k′ + Vk+k′ )
1
2

(Vk−k′ − Vk+k′ )

e.g. V(q) = −g −g 0
1
2

Jq : S⃗−q · S⃗q : −3
4

(
Jk−k′ + Jk+k′

2

)
1
4

(
Jk−k′ − Jk+k′

2

)

e.g. Jq = 2J(cos qx + cos qy) −3
2

J
(

cos kx cos k′
x + cos ky cos k′

y

) 1
2

J
(

sin kx sin k′
x + sin ky sin k′

y

)

functions that are anisotropic in momentum space. This idea was to have a wide
applicability, accounting for superfluidity in 3He and in certain kinds of nuclear matter;
it also holds the key to high-temperature superconductivity.

Let us now explore the relationship between interactions and the pair potential Vk,k′ . We
will examine two important examples, a repulsive potential,

V = 1
2

∑
Vq

[
: ρ−qρq :

]
= 1

2

∑

k1,k2,q

Vqc†
k1+qσ c†

k2−qσ ′ck2σ ′ck1σ , (15.31)

and a “magnetic” interaction,

Vmag = 1
2

∑

q
Jq

[
S⃗−q · S⃗q

]
, (15.32)

where Jq is an effective interaction between quasiparticles on the Fermi surface. For
example, in the spin fluctuation model discussed in Section 12.6, this interaction is given
by Jq ∼ −I/(1 − Iχ0(q)), where χ0(q) is the momentum-dependent spin susceptibility
and I = U/3 is the local repulsive Hubbard interaction. Such magnetic interactions are
enhanced in the vicinity of a magnetic instability or quantum critical point. A summary of
the pair potentials associated with these interactions, which we shall now derive, is given
in Table 15.1.

Let’s first consider the potential interaction (15.31). The pairing potential Vk,k′ it gives
rise to is determined by the influence of the interaction on Cooper pairs, which have zero
total momentum. The BCS interaction is thus a projection of those terms in the interaction
in which the incoming and outgoing Cooper pairs have zero momentum, so that k1 =
−k2 = k′ and k1 + q = −(k2 − q) = k, hence q = k − k′. The resulting interaction is

VBCS = 1
2

∑

k,k′,σ ,σ ′
Vk−k′c†

kσ c†
−kσ ′c−k′σ ′ck′σ = V↑↑

BCS + V↓↓
BCS + V↑↓

BCS, (15.33)

which we have split up into terms according to the spin of the fermions in the pair. Let us
first focus on the opposite-spin pairing term V↑↓

BCS,

V↑↓
BCS =

∑

k,k′
Vk−k′ (c†

k↑c†
−k↓)(c−k′↓ck′↑) =

∑

k,k′
Vk−k′)†

k)k′ , (15.34)



550 Retardation and anisotropic pairing

k ′↑

k↑

k ′↑ k↑–k↓

–k ′↓

–k ′↓ –k↓

k–k ′ k–k ′

(a) (b)!Fig. 15.2 (a) Illustrating transfer of momentum between Cooper pairs in condensate. (b) Feynman diagram representation of
the transfer of momentum q = k − k′ between Cooper pairs.

as shown in Figure 15.2, where we have lumped V↑↓ and V↓↑ together, absorbing the factor
of 1

2 . Now despite appearances, an opposite-spin pair is not a well-defined singlet or triplet,
since this requires appropriately symmetrized wavefunctions. If F(k)αβ = ⟨kα, −kβ|kP⟩
is the pair wavefunction, then we can define a spatial parity P by F(−k)αβ = PF(k)αβ

and a spin exchange parity X by F(k)βα = XF(k)αβ . Since this interaction is inversion-
symmetric, Vq = V−q, it preserves the parity of the Cooper pairs. The spin-exchange
parity discriminates between spin singlets with X = −1 and spin triplets with X = +1.
The joint process of spin and momentum exchange exchanges two fermions and must give
an exchange eigenvalue of −1, F(−k)βα = XPF(k)αβ = −F(k)αβ , so that XP = −1.
Even-parity pairs are thus singlets, (P, X) = (+, −), whereas odd-parity pairs are triplets,
(P, X) = (−, +). To display the singlet and triplet pair scattering, we divide the interaction
into symmetric and antisymmetric parts:

V↑↓
BCS =

∑

k,k′

[
VS

k,k′
︷ ︸︸ ︷(

Vk−k′ + Vk+k′

2

)
+

VT
k,k′

︷ ︸︸ ︷(
Vk−k′ − Vk+k′

2

)]
)†

k)k′ , (15.35)

where

VS,T
k,k′ = 1

2

(
Vk−k′ ± Vk+k′

)
(15.36)

are the BCS pairing interactions in the singlet and triplet channels, respectively. Now
because the first term is even in k and k′ while the second is odd, the summations over
momenta will project out pairs of definite parity: the first term scatters even-parity singlets
while the second scatters odd-parity triplets, represented as

)S†
k = (c†

k↑c†
−k↓ + c†

−k↑c†
k↓), )S†

k = +)S†
−k

)T†
k = (c†

k↑c†
−k↓ − c†

−k↑c†
k↓), )T†

k = −)T†
−k.

(15.37)

In terms of these operators, the unequal spin pairing interaction takes the form

V↑↓
BCS = 1

4

∑

k,k′

[
VS

k,k′)
S†
k )S

k′ + VT
k,k′)

T†
k )T

k′
]

=
∑

k,k′∈ 1
2 BZ

[
VS

k,k′)
S†
k )S

k′ + VT
k,k′)

T†
k )T

k′
]

, (15.38)
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Direct and exchange scattering of a triplet pair. !Fig. 15.3

where we have restricted the sum over momentum space to one-half of momentum space,
reflecting the fact that singlet and triplet pairs are only independently defined in half of
momentum space (k ∈ 1

2 BZ). Now the equal spin pairing terms also involve triplet pairs,
which also interact via the triplet interaction VT

k,k′ . We find

V↑↑
BCS + V↓↓

BCS =
∑

k,k′∈ 1
2 BZ

(Vk−k′ − Vk+k′ )
[
(c†

k↑c†
−k↑)(c−k′↑ck′↑) + (c†

k↓c†
−k↓)(c−k′↓ck′↓)

]
.

(15.39)
The appearance of scattering of amplitude Vk−k′ and amplitude Vk+k′ can be understood as
a result of the exchange scattering term shown in Figure 15.3. A compact way to represent
both parallel and unequal spin pair operators is to use the vector of S = 1 triplet pair
operators:

)⃗
T†
k = c†

kα

(
σ⃗ iσ2

)

αβ

c†
−kβ =

⎧
⎪⎨

⎪⎩

c†
k↓c†

−k↓ − c†
k↑c†

−k↑, x
i(c†

k↓c†
−k↓ + c†

k↑c†
−k↑), y

c†
k↑c†

−k↓ + c†
k↑c†

−k↓, z
(15.40)

refering to the x, y, and z components of the pair operator. The z component describes
unequal spin pairing, while the x and y components describe linear combinations of equal
spin pairing. Under a rotation, the triplet creation operator )⃗

T†
k transforms as a vector. In

this notation, the BCS interaction is written

V̂BCS =
∑

k,k′∈ 1
2 BZ

(
VS

k,k′)
S†
k )S

k′ + VT
k,k′)⃗

T†
k · )⃗T

k′
)

. (15.41)

Note the following:

– If one is only interested in singlet pairing, one can drop the triplet pairing terms and
consider the interaction

VBCS =
∑

VS
k,k′ (c†

k↑c†
−k↓)(c−k′↓ck′↑). (15.42)

– One can decompose pairs into their orbital angular momentum components. Since
the parity of a pair is related to its orbital angular momentum quantum number L
by P = (−1)L, even-parity superconductors involve even L (s, d, . . . wave), while
odd-parity triplet pairs involve L odd (p, f, . . . wave).



552 Retardation and anisotropic pairing

Let us now return to consider the pair potential induced by the magnetic interaction

Vmag = 1
2

∑

q
Jq

[
S⃗−q · S⃗q

]

= 1
2

∑

k1,k2,q

Jqc†
k1+qαc†

k2−qγ

(
σ⃗

2

)

αβ

·
(

σ⃗

2

)

γ δ

ck2δck1β , (15.43)

where the Jq is an effective renormalized interaction between the quasiparticles. For exam-
ple, in the cuprate superconductors, nearest-neighbor antiferromagnetic interactions derive
from the vicinity to a Mott transition; these give rise to an antiferromagnetic interaction
of the form Jq = 2J(cos qxa + cos qya), where a is the separation of Cu atoms in a
two-dimensional square lattice.

Now we need to consider the spin dependence of the interaction, determined by the
matrices

(
σ⃗
2

)

αβ
·
(

σ⃗
2

)

γ δ
≡ S⃗1 · S⃗2. We note that the eigenvalue of S⃗1 · S⃗2 is different for

singlet and triplet states:

S⃗1 · S⃗2 =
{ + 1

4 (triplet)
− 3

4 (singlet).
(15.44)

Since the symmetric and antisymmetric parts of the interaction filter out the singlet and
triplet pairs, respectively, these eigenvalues must now enter as prefactors into the pairing
potentials, giving

VS
k,k′ = −3

4

(
Jk−k′ + Jk+k′

2

)

VT
k,k′ = 1

4

(
Jk−k′ − Jk+k′

2

)
. (15.45)

Remarks

• Antiferromagnetic interactions (Jk−k′ > 0 ⇒ VS
k,k′ < 0) attract in the anisotropic

singlet channel, whereas ferromagnetic interactions (J k−k′ < 0 ⇒ VT
k,k′ < 0) attract in

the triplet channel:

antiferromagnetic interaction ↔ singlet (mainly d-wave) anisotropic pairing
ferromagnetic interaction ↔ triplet (mainly p-wave) anisotropic pairing.

• The idea that ferromagnetic interactions could drive triplet pairing in nearly ferromag-
netic metals, such as palladium, was first proposed by Layzer and Fay in the early 1970s
[2]. In 1986 the discovery of antiferromagnetic spin fluctuations in the heavy-fermion
superconductor UPt3 led three separate groups (Zazie Béal Monod, Claude Bourbonnais,
and Victor Emery at Orsay, Sherbrooke, and Brookhaven National Laboratory [3]; Kazu
Miyake, Stefan Schmitt-Rink, and Chandra Varma at Bell Laboratories [4]; and Douglas
Scalapino, Eugene Loh, and Jorge Hirsh at the University of California, Santa Barbara
[5]), to propose that antiferromagnetic fluctuations drive d-wave superconductivity.
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(a) Superconductivity in cuprate superconductors involves the two-dimensional motion of electrons on a square
lattice. The undoped material contains a square lattice of Cu2+ ions, each carrying a localized S = 1

2 moment. When
holes (or electrons) are introduced into the lattice via doping, the spins become mobile and the residual
antiferromagnetic interactions drive d-wave pairing. A simplified model treats this as a single band of electrons of
concentration 1 − x, moving on a square lattice with hopping strength−t and nearest-neighbor antiferromagnetic
interaction J. (b) Schematic phase diagram of cuprate superconductors where x is the degree of hole doping. A
commensurate antiferromagnetic insulator (pink) forms at small x, while at higher doping a superconducting dome
develops. The normal state contains a pseudogap at low doping, forming a strange metal at optimal doping, with a
linear resistivity. Fermi-liquid-like properties only develop at high doping, and it is only in this regime that the
superconducting instability can be treated as a bona-fide Cooper pair instability of a Fermi liquid.

!Fig. 15.4

The basic connection between anisotropic singlet superconductivity and antiferromag-
netic interactions is relevant to a wide variety of superconductors.

• If one is only interested in anisotropic singlet pairing, it is sufficient to work with an
interaction of the form

VBCS = −3
4

∑

k,k′

(
Jk−k′ + Jk+k′

2

)
(c†

k↑c†
−k↓)(c−k′↓ck′↑).

15.4 d-wave pairing in two-dimensions

One of the most dramatic examples of anisotropic pairing is provided by the d-wave pairing
in the copper oxide layers of the cuprate superconductors. These materials form antiferro-
magnetic Mott insulators, but when electrons or holes are introduced into the layers by
doping, the magnetism is destroyed and the doped Mott insulator develops d-wave super-
conductivity. The normal state of these materials is not well understood, and for most of the
phase diagram it cannot be treated as a Fermi liquid. For instance, at optimal doping these
materials exhibit a linear resistivity ρ(T) = AT + ρ0 due to electron–electron scattering
that cannot be understood within the Fermi liquid framework. However, in the over-doped
materials Fermi liquid behavior appears to recover and a BCS treatment is thought to be
applicable.


