
15 Retardation and anisotropic pairing

This chapter continues our discussion of superconductivity, considering the effects of
repulsive interactions and the physics of anisotropic Cooper pairing. According to an apoc-
ryphal story, Landau is reputed to have said that “nobody has yet repealed Coulomb’s
law” [1]. In the BCS theory of superconductors, there is no explicit appearance of the the
repulsive Coulomb interaction between paired electrons. How then do real-world super-
conductors produce electron pairs, despite the presence of the strong interaction between
them?

This chapter we will examine two routes by which Nature is able to satisfy the Coulomb
interaction. In conventional superconductors, the attraction between electrons develops
because the positive screening charge created by the ionic lattice around an electron
remains in place long after the electron has moved away. This process that gives rise
to a short-time repulsion between electrons is followed by a retarded attraction which
drives s-wave pairing. However, since the 1980s physicists have been increasingly fas-
cinated by anisotropic superconductors. In these systems, it is the repulsive interaction
between the fermions that drives the pairing. The mechanism by which this takes place
is through the development of nodes in the pair wavefunction – often by forming a
higher angular momentum Cooper pair. The two classic examples of this physics are
the p-wave pairs of superfluid 3He and the d-wave pairs of cuprate high-temperature
superconductors.

In truth, the physics community is still trying to understand the full interplay of
superconductivity and the Coulomb force. The discovery of room-temperature supercon-
ductivity will surely involve finding a quantum material where strong correlations within
the electron fluid lead to a large reduction in the sum total of kinetic and Coulomb
energy.1

15.1 BCS theory withmomentum-dependent coupling

We now illustrate these two different ways in which superconductors “overcome” the
Coulomb interaction, by returning to the more generalized version of BCS theory with
a momentum-dependent interaction:

1 In weakly interacting systems we are trying to reduce the Coulomb energy in the face of a large kinetic energy,
but in strongly interacting systems we are more often trying to reduce the kinetic energy in the face of large
Coulomb interactions.
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H =
∑

kσ

ϵkc†
kσ ckσ +

HI︷ ︸︸ ︷∑

k,k′
Vk,k′ (c†

k↑c†
−k↓)(c−k′↓ck′↑) . (15.1)

Notice how we have deliberately included a + sign in front of the interaction HI , to empha-
size its predominantly repulsive character. As before, we carry out a Hubbard–Stratonovich
decoupling of the interaction:

HI →
∑

k

[
#̄kc−k↓ck↑ + H.c.

]
−

∑

k,k′
#̄kV−1

k,k′#k′ , (15.2)

where V−1
k,k′ is the inverse of the matrix Vk,k′ . While this is formally exact inside a path inte-

gral, following s-wave BCS theory we seek a mean-field theory in which the #k are static.
The only place where Vk,k′ appears is in the last term, so we can immediately diagonalize

the resulting BCS theory to obtain a quasiparticle dispersion Ek =
√

ϵ2
k + |#k|2 in which

the function #k is obtained self-consistenly by minimizing the free energy.
We can immediately generalize the mean-field free energy obtained for the momentum-

independent interaction (14.145),

F = −2T
∑

k

[
ln[2 cosh(βEk/2)]

]
−

∑

k,k′
#̄kV−1

k,k′#k′ , (15.3)

and if we differentiate with respect to #̄k, we obtain

δF

δ#̄k
= − tanh(βEk/2)

#k

2Ek
−

∑

k′
V−1

k,k′#k′ = 0. (15.4)

Inverting this equation by multiplying by Vk,k′ , we obtain the BCS gap equation:

#k = −
∑

k′
Vk,k′

(
#k′

2Ek′
tanh

(
βEk′

2

))
. (15.5)

BCS gap equation: momentum-dependent coupling

The zero-temperature limit of this equation takes the simpler form

#k = −
∑

k′
Vk,k′

(
#k′

2Ek′

)
. (15.6)

Note the minus sign in front of this equation! If the interaction is uniformly attractive,
so that Vk,k′ < 0 is negative, then this equation is satisfied by a uniformly positive gap
function. However, in general the interaction Vk,k′ will contain repulsive (i.e. positive)
terms, so a uniformly positive gap function cannot satisfy the gap equation, giving rise to
gap nodes where the gap changes sign. The most satisfying kind of solution occurs if the
sign of the gap function can satisfy

sgn(#k) = −sgn(Vk,k′ ) sgn(#k′ ), (15.7)
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so that regions of phase space that are linked by a repulsive interaction will have opposite
gap signs, whereas regions linked by an attractive interaction will have the same sign.
This is the situation that leads to the largest gap and the largest mean-field transition
temperature. We shall see that this can occur in two ways:

• In electron–phonon superconductors, where the interaction is repulsive at high energies,
the gap function #(ϵ) is largely isotropic in momentum space, but is energy-dependent
and changes sign at an energy comparable with the Debye frequency.

• In anisotropic superconductors, the gap function #k becomes strongly momentum-
dependent and acquires nodes in momentum space.

This last mechanism appears to be at work in all electronically mediated superconduc-
tors: organic, heavy-fermion, high-temperature cuprate and iron-based superconductors.
We shall now illustrate this physics by using the BCS gap equation.

Example 15.1 The simplest anisotropic pair potential takes a factorizable form Vk,k′ =
− g0

V γkγk′ , where γk is real and normalized,
∑

k(γk)2 = 1. In this case,

HI = −g0

V
A†A, (15.8)

but now the pairs acquire a spatial form factor

A =
∑

k

(
γkc−k↓ck↑

)
, A† =

∑

k

(
γkc†

k↑c†
−k↓

)
. (15.9)

For example, in a simple model of d-wave pairing in a square two-dimensional lattice of
side length a, γk = cos(kxa) − cos(ky).

(a) Show that the action for this case is identical to that of s-wave pairing, except that the
gap # → #k = #γk now acquires a form-factor γk. Write the action for the path
integral.

(b) Derive the gap equation for the factorizable interaction above.

Solution

(a) We carry out a Hubbard–Stratonovich decoupling of the interaction that is formally the
same as for s-wave pairing:

HI = −g0

V
ĀA → #̄A + Ā# + V

g0
#̄#. (15.10)

Now we substitute Ā = ∑
k γkc̄k↑c̄−k↓ and A = ∑

k γkc−k↓ck↑ to obtain

HI =
∑

k

γk
(
#̄c−k↓ck↑ + H.c.

)
+ V

g0
#̄#.



15.2 Retardation and the Coulomb pseudopotential 545

Following the approach of Section 13.6, written in a Nambu notation the action for the
path integral is then

S =
∫ β

0
dτ

∑

k

ψ̄k(∂τ + ϵkτ3)ψk + HI

=
∫ β

0
dτ

{
∑

k

ψ̄k(∂τ + hk)ψk + V
g0

#̄#

}

, (15.11)

where hk = ϵkτ3 + γk(#̄τ− + #τ+) and τ± = 1
2 (τ1 ± iτ2).

(b) Approximating the path integral by a mean-field saddle-point approximation, where
#̄(τ ) = #̄ is a real constant, the mean-field free energy is then given by

F = −T
∑

k,iωn

Tr ln (−iωn + hk) + V
g0

|#|2

= −T
∑

k

ln
[

2 cosh
(

βEk

2

)]
+ V

g0
|#|2, (15.12)

where Ek =
√

ϵ2
k + γ 2

k |#|2. Finally, differentiating with respect to #̄, we obtain

∂F

∂#̄
= 0 = −

∑

k

γ 2
k #

2Ek
tanh

(
βEk

2

)
+ V

g0
#, (15.13)

from which we have the gap equation

V
g0

=
∑

k

γ 2
k

2Ek
tanh

(
βEk

2

)
. (15.14)

In the continuum limit, this becomes

1
g0

=
∫

k

γ 2
k

2Ek
tanh

(
βEk

2

)
. (15.15)

15.2 Retardation and the Coulomb pseudopotential

In Chapter 7, we encountered the Bardeen–Pines model interaction,

Veff (q, ω) =
[

e2

ϵ0(q2 + κ2)

] (

1 +
ω2

q

ω2 − ω2
q

)

, (15.16)

where the first term describes the instantaneous Coulomb interaction and the second
describes the retarded attractive component due to phonons. Notice that the Bardeen–
Pines interaction, taken in its entirety, is always repulsive, but is less so at low energies.

static
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A simple BCS model that captures the character of this interaction has the form Vk,k′ =
Veff (ω)|ω=ϵk−ϵk′ , where

Veff (ω) = N(0)−1 ×
{

µ − g (|ω| < ωD)
µ (otherwise),

(15.17)

corresponding to an attractive electron–phonon interaction of strength −g/N(0) operating
at energy scales lower than the Debye frequency ωD, superimposed on an instanta-
neous Coulomb repulsive interaction of strength +µ/N(0) (Figure 15.1), where µ is a
dimensionless coupling constant representing the Fermi surface average of the Coulomb
interaction.2

If we Fourier transform this interaction to the time domain, we obtain

N(0)Veff (t) = N(0)
∫

dω

2π
Veff (ω)e−iωt = µ

∫ ∞

−∞

dω

2π
e−iωt − g

∫ ωD

−ωD

dω

2π
e−iωt

=
Instantaneous repulsion︷ ︸︸ ︷

µδ(t) − gωD

π

(
sin ωDt

ωDt

)

︸ ︷︷ ︸
retarded attraction

, (15.18)

where t is the time between “emission” and “absorption” of the exchange boson. We
see that the interaction contains an instantaneous delta-function repulsion and a retarded
attraction with an oscillatory tail. It is the second term that drives the pairing.

We now show that the retardation has the effect of renormalizing the effective Coulomb
interaction down to a much weaker value,

µ∗ = µ

1 + µ ln(D/ωD)
, (15.19)

where D is the half-bandwidth and ωD is the Debye energy. Typically, the ratio D/ωD ∼
105 K/500 K ∼ 102, so that ln(D/ωD) ∼ 5 and, even if the bare Coulomb coupling con-
stant is of order unity, the renormalized Coulomb coupling constant µ∗ ∼ 1/6. Provided
g − µ∗ > 0, the renormalized s-wave pairing interacton is attractive and superconductivity
develops.

We shall slightly modify interaction (15.17), and write the BCS interaction in the form

Veff (k, k′) = N(0)−1 ×
{

µ − g (|ϵk|, |ϵk′ | < ωD)
µ (otherwise).

(15.20)

Let us assume a constant density of states N(ϵ) = N(0), replacing the momentum sum by
an energy integral,

∑
k′ → N(0)

∫
dϵ, and denoting #(ϵk) = #k. Then the gap equation

(15.6) becomes

#(ϵ) = −N(0)
∫ D

−D
dϵ′V(ϵ, ϵ′)

#(ϵ′)
2E(ϵ′)

, (15.21)

2 Caution: by convention we adopt the “µ” notation for the repulsive interaction, in the full knowledge that it
clashes with our notation for the chemical potential.



15.3 Anisotropic pairing 551
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Direct and exchange scattering of a triplet pair. !Fig. 15.3

where we have restricted the sum over momentum space to one-half of momentum space,
reflecting the fact that singlet and triplet pairs are only independently defined in half of
momentum space (k ∈ 1

2 BZ). Now the equal spin pairing terms also involve triplet pairs,
which also interact via the triplet interaction VT

k,k′ . We find

V↑↑
BCS + V↓↓

BCS =
∑

k,k′∈ 1
2 BZ

(Vk−k′ − Vk+k′ )
[
(c†

k↑c†
−k↑)(c−k′↑ck′↑) + (c†

k↓c†
−k↓)(c−k′↓ck′↓)

]
.

(15.39)
The appearance of scattering of amplitude Vk−k′ and amplitude Vk+k′ can be understood as
a result of the exchange scattering term shown in Figure 15.3. A compact way to represent
both parallel and unequal spin pair operators is to use the vector of S = 1 triplet pair
operators:

-⃗
T†
k = c†

kα

(
σ⃗ iσ2

)

αβ

c†
−kβ =

⎧
⎪⎨

⎪⎩

c†
k↓c†

−k↓ − c†
k↑c†

−k↑, x
i(c†

k↓c†
−k↓ + c†

k↑c†
−k↑), y

c†
k↑c†

−k↓ + c†
k↑c†

−k↓, z
(15.40)

refering to the x, y, and z components of the pair operator. The z component describes
unequal spin pairing, while the x and y components describe linear combinations of equal
spin pairing. Under a rotation, the triplet creation operator -⃗

T†
k transforms as a vector. In

this notation, the BCS interaction is written

V̂BCS =
∑

k,k′∈ 1
2 BZ

(
VS

k,k′-
S†
k -S

k′ + VT
k,k′-⃗

T†
k · -⃗T

k′
)

. (15.41)

Note the following:

– If one is only interested in singlet pairing, one can drop the triplet pairing terms and
consider the interaction

VBCS =
∑

VS
k,k′ (c†

k↑c†
−k↓)(c−k′↓ck′↑). (15.42)

– One can decompose pairs into their orbital angular momentum components. Since
the parity of a pair is related to its orbital angular momentum quantum number L
by P = (−1)L, even-parity superconductors involve even L (s, d, . . . wave), while
odd-parity triplet pairs involve L odd (p, f, . . . wave).
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Let us now return to consider the pair potential induced by the magnetic interaction

Vmag = 1
2

∑

q
Jq

[
S⃗−q · S⃗q

]

= 1
2

∑

k1,k2,q

Jqc†
k1+qαc†

k2−qγ

(
σ⃗

2

)

αβ

·
(

σ⃗

2

)

γ δ

ck2δck1β , (15.43)

where the Jq is an effective renormalized interaction between the quasiparticles. For exam-
ple, in the cuprate superconductors, nearest-neighbor antiferromagnetic interactions derive
from the vicinity to a Mott transition; these give rise to an antiferromagnetic interaction
of the form Jq = 2J(cos qxa + cos qya), where a is the separation of Cu atoms in a
two-dimensional square lattice.

Now we need to consider the spin dependence of the interaction, determined by the
matrices

(
σ⃗
2

)

αβ
·
(

σ⃗
2

)

γ δ
≡ S⃗1 · S⃗2. We note that the eigenvalue of S⃗1 · S⃗2 is different for

singlet and triplet states:

S⃗1 · S⃗2 =
{ + 1

4 (triplet)
− 3

4 (singlet).
(15.44)

Since the symmetric and antisymmetric parts of the interaction filter out the singlet and
triplet pairs, respectively, these eigenvalues must now enter as prefactors into the pairing
potentials, giving

VS
k,k′ = −3

4

(
Jk−k′ + Jk+k′

2

)

VT
k,k′ = 1

4

(
Jk−k′ − Jk+k′

2

)
. (15.45)

Remarks

• Antiferromagnetic interactions (Jk−k′ > 0 ⇒ VS
k,k′ < 0) attract in the anisotropic

singlet channel, whereas ferromagnetic interactions (J k−k′ < 0 ⇒ VT
k,k′ < 0) attract in

the triplet channel:

antiferromagnetic interaction ↔ singlet (mainly d-wave) anisotropic pairing
ferromagnetic interaction ↔ triplet (mainly p-wave) anisotropic pairing.

• The idea that ferromagnetic interactions could drive triplet pairing in nearly ferromag-
netic metals, such as palladium, was first proposed by Layzer and Fay in the early 1970s
[2]. In 1986 the discovery of antiferromagnetic spin fluctuations in the heavy-fermion
superconductor UPt3 led three separate groups (Zazie Béal Monod, Claude Bourbonnais,
and Victor Emery at Orsay, Sherbrooke, and Brookhaven National Laboratory [3]; Kazu
Miyake, Stefan Schmitt-Rink, and Chandra Varma at Bell Laboratories [4]; and Douglas
Scalapino, Eugene Loh, and Jorge Hirsh at the University of California, Santa Barbara
[5]), to propose that antiferromagnetic fluctuations drive d-wave superconductivity.
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(a) Superconductivity in cuprate superconductors involves the two-dimensional motion of electrons on a square
lattice. The undoped material contains a square lattice of Cu2+ ions, each carrying a localized S = 1

2 moment. When
holes (or electrons) are introduced into the lattice via doping, the spins become mobile and the residual
antiferromagnetic interactions drive d-wave pairing. A simplified model treats this as a single band of electrons of
concentration 1 − x, moving on a square lattice with hopping strength−t and nearest-neighbor antiferromagnetic
interaction J. (b) Schematic phase diagram of cuprate superconductors where x is the degree of hole doping. A
commensurate antiferromagnetic insulator (pink) forms at small x, while at higher doping a superconducting dome
develops. The normal state contains a pseudogap at low doping, forming a strange metal at optimal doping, with a
linear resistivity. Fermi-liquid-like properties only develop at high doping, and it is only in this regime that the
superconducting instability can be treated as a bona-fide Cooper pair instability of a Fermi liquid.

!Fig. 15.4

The basic connection between anisotropic singlet superconductivity and antiferromag-
netic interactions is relevant to a wide variety of superconductors.

• If one is only interested in anisotropic singlet pairing, it is sufficient to work with an
interaction of the form

VBCS = −3
4

∑

k,k′

(
Jk−k′ + Jk+k′

2

)
(c†

k↑c†
−k↓)(c−k′↓ck′↑).

15.4 d-wave pairing in two-dimensions

One of the most dramatic examples of anisotropic pairing is provided by the d-wave pairing
in the copper oxide layers of the cuprate superconductors. These materials form antiferro-
magnetic Mott insulators, but when electrons or holes are introduced into the layers by
doping, the magnetism is destroyed and the doped Mott insulator develops d-wave super-
conductivity. The normal state of these materials is not well understood, and for most of the
phase diagram it cannot be treated as a Fermi liquid. For instance, at optimal doping these
materials exhibit a linear resistivity ρ(T) = AT + ρ0 due to electron–electron scattering
that cannot be understood within the Fermi liquid framework. However, in the over-doped
materials Fermi liquid behavior appears to recover and a BCS treatment is thought to be
applicable.
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Here we consider a drastically simplified model of a d-wave superconductor in which
the fermions move on a two-dimensional tight-binding lattice with a dispersion ϵk =
−2t(cos kxa + cos kya) −µ, where t is the nearest-neighbor hopping amplitude, interacting
via an onsite Coulomb repulsion and a nearest-neighbor antiferromagnetic interaction, so
that the Hamiltonian becomes

H =
∑

k

ϵkc†
kσ ckσ +

∑

j

Unj↑nj↓ + J
∑

(i,j)

S⃗i · S⃗j, (15.46)

while, in momentum space,

H =
∑

k

ϵkc†
kσ ckσ + 1

2

∑

q

[
Uρ−q · ρq + JqS⃗−q · S⃗q

]

Jq = 2J(cos qxa + cos qya). (15.47)

Provided U and J are small compared with the bandwidth of the electron band, we can
treat this as a Fermi liquid with a BCS interaction in the singlet channel given by

Vsinglet
q = U − 3J

2
(cos qxa + cos qya).

Here, following the previous section, we have multiplied the spin-dependent interaction by
−3/4 to take care of the expectation value of S⃗1 · S⃗2 = −3/4 in the singlet channel. When
we replace q → k − k′ and symmetrize on momenta to obtain the singlet interaction, we
obtain

Vk,k′ = 1
2

[
Vsinglet(k − k′) + Vsinglet(k + k′)

]
= U − 3J

2
(cxcx′ + cycy′ ), (15.48)

where we have used the notation cx ≡ cos kx, cy ≡ cos ky, and so on. The mean-field BCS
Hamiltonian is then

HBCS =
∑

kσ

ϵkc†
kσ ckσ +

∑

k,k′

(
U − 3J

2
(cxcx′ + cycy′ )

)
c†

k↑c†
−k↓c−k′↓ck′↑.

Let us immediately jump forward to look at the gap equation,

#k = −
∫

d2k′

(2π )2 Vk,k′
#k′

2Ek′
tanh

(
βEk′

2

)
. (15.49)

In the gap equation, the interaction will preserve the symmetries of the pair. If we divide
the interaction into an s-wave and a d-wave term, Vk,k′ = VS

k,k′ + VD
k,k′ , as follows,

VS
k,k′ =

s-wave︷ ︸︸ ︷
U −

extended s-wave︷ ︸︸ ︷
3
4

J(cx + cy)(cx′ + cy′ ) (s-wave)

VD
k,k′ = −3

4
J(cx − cy)(cx′ − cy′ ) (d-wave), (15.50)

then we see that the s-wave term is invariant under 90◦ rotations of k or k′, whereas the
d-wave term changes sign:

VS
k,k′ = +VS

k,Rk′ , VD
k,k′ = −VD

k,Rk′ ,
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where Rk = (−ky, kx). Notice how the onsite Coulomb interaction is absent from the
d-channel. A condensate with d-symmetry,

#D
k = #D(cx − cy),

such that #D
Rk = −#D

k , will couple to Cooper pairs via the d-wave interaction, because
its integral with s-wave functions must change sign under π/2 rotations and is hence zero,∑

k′ VS
k,k′#

D
k′ (. . .) = 0. By contrast, a condensate with extended s-wave symmetry, with the

form

#S
k = #1 + #2(cx + cy),

for which #S
Rk = +#S

k, will vanish when integrated with the d-wave part of the interaction,∑
k′ VD

k,k′#
S
k′ (. . .) = 0. In this case the two types of pairing are symmetry decoupled;

moreoever, the symmetry of the d-wave pair condensate orthogonalizes against the local
Coulomb pseudopotential.

Let us now look more carefully at the d-wave condensate, where the gap function
#D

k = #D(cx −cy) vanishes along nodes along the diagonals kx = ±ky. The corresponding
quasiparticle energy

Ek =
√

ϵ2
k + #2

D(cx − cy)2 (15.51)

must therefore vanish at the intersection of the nodes (where #k = 0) and the Fermi
surface (where ϵk = 0), as illustrated in Figure 15.5. At the nodal points the dispersion can
be linearized in momentum, so that

E ∼
√

(vFδk2
⊥) + (v#δk∥)2

6

E(k)

–π/a

π/a

π/a

–π/a

4

2

0

0
0

kx

ky

nodal QP

Energy dispersion for a two-dimensional d-wave superconductor with a dx2−y2 gap function. The upper part of the
plot shows a cut-away three-dimensional plot of the dispersion, showing the banana-shaped quasiparticle cones of
quasiparticle excitations around the nodes. In the lower contour plot, the position of the nodal excitations is seen to
occur at the intersections of the Fermi surface (white line) and the nodal lines of the gap function (red line).

!Fig. 15.5
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where vF = ∂E/∂k⊥ is the Fermi velocity at the node and v# = ∂E/∂k∥ =√
2#Da sin

(
kFa√

2

)
is the group velocity parallel to the Fermi surface created by the pairing.

These excitations form a “Dirac cone” of excitations.
Let us now write out the gap equation for the d-wave solution in full:

#D(cx − cy) = −
∫

d2k′

(2π )2

VD
k,k′

︷ ︸︸ ︷(
−3

4
J(cx − cy)(cx′ − cy′ )

)
#D(cx′ − cy′ )

2Ek′
tanh

(
βEk′

2

)
.

(15.52)
Fortunately, the d-wave form factor cx − cy drops out of both sides, to give

1 = 3
4

J
∫

d2k
(2π )2

(cx − cy)2

2Ek
tanh

(
βEk

2

)
. (15.53)

Though it is straightforward to evaluate this kind of integral numerically, to get a feel of
the physics let us suppose that the interaction only extends by an energy ωSF around the
Fermi energy, and that, furthermore, the band-filling around the 0 (k = 0) point is small
enough to use a quadratic approximation, ϵk = −4t − µ + tk2. In this case, the 2D density
of states per spin N(0) = 1

4π t is a constant, while the gap function is

#D(cy − cx) = #D(k2
x − k2

y ) = #0 cos 2θ , (15.54)

where #0 = #D(kFa)2/2 and a is the lattice spacing. Notice the characteristic #(θ ) ∝
cos 2θ form, characteristic of an l = 2, d-wave Cooper pair. Now the gap equation becomes

1 = 3
4

JN(0)
∫ ωSF

−ωSF

dϵ

∫ 2π

0

dθ

2π

cos2 2θ

2E
tanh

(
βE
2

)

E =
√

ϵ2 + (#0 cos 2θ )2. (15.55)

BCS gap equation: d-wave pairing

At Tc the average over angle gives 1
2 , so the equation for Tc is

1 = 3
8

JN(0)
∫ ωSF

0
dϵ

1
ϵ

tanh
(

ϵ

2Tc

)
. (15.56)

This is identical to the BCS gap equation, but with g = 3
8 JN(0), with the same formal form

for Tc = 1.13ωSFe−1/g.
It is particularly interesting to compute the d-wave density of states. Let us continue

to use our approximation #(θ ) = #0 cos 2θ . To compute the density of states, we must
average the density of states we obtained for an s-wave superconductor (14.186) over angle:

N∗
D(E) = N(0) Re

〈
|E|

√
(E − iδ)2 − #2 cos2 2θ

〉

θ

, (15.57)

where ⟨. . .⟩θ ≡
∫ dθ

2π (. . .) and the real part cleverly builds in the fact that the density of
states vanishes when |E| < |#(θ )|. We can recast this expression as a standard elliptic inte-
gral by making the change of variable 2θ → φ −π/2. The resulting integral over φ is then
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N∗
D(E)

N(0)
= Re

⎡

⎣
∫ π

0

dφ

π

|E|
√

(E − iδ)2 − #2 sin2 φ

⎤

⎦ = 3

[
E − iδ

#

]
, (15.58)

where

3[x] = 2
π

Re
[

K
(

1
x2

)]
(15.59)

is expressed in terms of the elliptic function

K(x) =
∫ π/2

0

dφ
√

1 − x sin2 φ

, (15.60)

known from the study of the pendulum.3 This function is plotted in Figure 15.6. The clean
gap of the s-wave superconductor is now replaced by a V-shaped structure, with a low-
lying linear density of states derived from the Dirac cones in the excitation spectrum, and
a sharp coherence peak in the density of states around E ∼ ±#. We can understand the
linear density of states at low energies by remembering that, for a relativistic spectrum
E = ck, the density of states is 1

2π k dk
dE = |E|

(2πc2) . For these anisotropic Dirac cones, we

must replace c2 → vFv#; taking into account the four nodal cones and remembering the
tricky factor of 1

2 that enters because of the energy average of the coherence factors in the
tunneling density of states (14.184), we obtain

N∗(E) = 1
2

× 4 × 1
2π

|E|
vFv#

=

N(0)︷ ︸︸ ︷
kF

2πvF

|E|
#

= N(0)
|E|
#

, (15.61)
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Density of statesN∗(E)/N(0)) for a d-wave superconductor. !Fig. 15.6

3 Note: here we use the notation used by Mathematica, with x multiplying sin2 φ.
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where we have put v# = ∂E/∂k∥ = (kF)−1∂#(θ )/∂θ = 2#/kF , identifying N(0) = m
2π =

kF
2πvF

.
Lastly, let us take a brief look at the alternative s-wave solution, where #k = #1 +

#2(cx + cy). The first, momentum-independent term is entirely local, whereas the second
term describes s-waves pairing with nearest neighbors. The gap equation

#S
k = −

∫
d2k′

(2π )2

VS
k,k′

︷ ︸︸ ︷(
U − 3

4
J(cx + cy)(cx′ + cy′ )

)
#1+#2(cx′+cy′ )︷︸︸︷

#S
k

2Ek′
tanh

(
βEk′

2

)
(15.62)

is more complicated because there is cross-talk between the local and extended s-wave
terms. To simplify our discussion, suppose we confine the interaction to within an energy
ωSF of the Fermi surface and assume that the filling of the Fermi surface is small enough
that we can take k = k′ ∼ 0 in the pair potential. Then the effective s-wave coupling
constant will be

Vk,k′ = U − 3
4

J

∼2︷ ︸︸ ︷
(cx + cy)

∼2︷ ︸︸ ︷
(cx′ + cy′ ) → U − 3J, (15.63)

which is only attractive providing J > U/3. We see that, for a single Fermi surface,
the attraction in the extended-s-wave channel is suppressed by the Coulomb interaction,
entirely vanishing if J < Jc = U/3. In fact, extended s-wave solutions are possible, and
are believed to occur in the iron-based superconductors, but they require compensating
Fermi surfaces in regions where cx +cy have opposite signs, so that the Fermi surface aver-
age of the gap function vanishes, permitting a decoupling of the pairing from the repulsive
Coulomb interaction.

Example 15.2 For a single Dirac cone of excitations with dispersion

Ek =
√

(vxkx)2 + (vyky)2, (15.64)

show that the density of states is given by

N(E) = E
2πvxvy

.

Solution

We write the density of states as

N(E) =
∑

k

δ(E − Ek) =
∫

dkxdky

(2π )2 δ

(
E −

√
(vxkx)2 + (vyky)2

)
. (15.65)

Changing variables, x = vxkx, y = vyky, then

N(E) =
∫

dxdy
(2π )2 δ

(
E −

√
(x2 + y2)

)
. (15.66)

Changing x = r cos θ , y = r sin θ , then the measure becomes dxdy → rdrdθ and the
integral is

N(E) = 1
vxvy

∫
dθrdr
(2π )2 δ(E − r) = E

2πvxvy
.
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Example 15.3

(a) Carry out a Hubbard–Stratonovich decoupling of the BCS Hamiltonian on a two-
dimensional lattice, where the pair potential is

Vk,k′ = N −1
s

(
U − 3

2
J(cxcx′ + cycy′ )

)
, (15.67)

(cx ≡ cos kxa, cy ≡ cos kya), and show that the mean-field action takes the form

SMFT =
∫ β

0

⎧
⎪⎨

⎪⎩

∑

k

ψ̄k(∂τ +
hk︷ ︸︸ ︷

ϵkτ3 + #̄kτ− + #kτ+)ψk

+ Ns

[
4
3J

(#̄2S#2S + #̄D#D) − #1S#1S

U

]
⎫
⎪⎬

⎪⎭
, (15.68)

where
#k = #1S + #2S(cx + cy) + #D(cx − cy) (15.69)

is the momentum-dependent gap function.
(b) Write down the mean-field free energy.
(c) Assuming a d-wave solution (i.e. #D ̸= 0, #1 = #2 = 0), rederive the gap equation

for this problem.
(d) For a single Fermi surface, why will a d-wave condensate have a higher Tc than an

extended s-wave condensate?

Solution

(a) Let us factorize the interaction into s- and d-wave component, as follows:

Vk,k′ = U
Ns

γ1S(k)γ1S(k′) − 3J
4Ns

[
γ2S(k)γ2S(k′) + γD(k)γD(k′)

]
, (15.70)

where γ1S(k) = 1, γ2S(k) = cx + cy, γD(k) = cx − cy are a set of normalized s-,
extended s-, and d-wave form factors, respectively. We can then write the interaction
Hamiltonian as

HI = U
Ns

A†
1SA1S − 3J

4Ns

[
A†

2SA2S + A†
DAD

]
, (15.71)

where

A0 =
∑

k

φ0(k)c−k↓ck↑ (0 ∈ {1S, 2S, D}) (15.72)

create s-, extended s-, and d-wave pairs, respectively. If we carry out a Hubbard–
Stratonovich decoupling of each of the product terms in this interaction, we then obtain

HI →
∑

0∈{1S,2S,D}

(
#̄0A0 + H.c.

)
+ 4Ns

3J

(
#̄2S#2S + #̄D#D

)
− Ns

U
#̄1S#1S

=
∑

k

(
#̄kc−k↓ck↑ + c̄k↑c̄−k↓#k

)
+ 4Ns

3J

(
#̄2S#2S + #̄D#D

)

− Ns

U
#̄1S#1S, (15.73)
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where #k = ∑
0 γ0(k)#0 = #2S(cx + cy) + #D(cx − cy). Then the complete

transformed Hamiltonian takes the form

H =
∑

k

ϵkc†
kσ ckσ +

∑

k

(#kc†
k↑c†

−k↓ + H.c.)

+ Ns

(
4
3J

(#̄D#̄D + #̄2S#2S) − 1
U

#̄1S#1S

)

=
∑

k

ψ†
k

(
ϵkτ3 + #kτ+ + #̄kτ−

)
ψk

+ Ns

(
4
3J

(#̄D#D + #̄2S#2S) − 1
U

#̄1S#1S

)
, (15.74)

where we’ve dropped the constant remainder
∑

k ϵk. The corresponding action is
given by

S =
∫ β

0

⎧
⎪⎨

⎪⎩

∑

k

ψ̄k(∂τ +
hk︷ ︸︸ ︷

ϵkτ3 + #̄kτ− + #kτ+)ψk

+ Ns

[
4
3J

(#̄2S#2S + #̄D#D) − #1S#1S

U

]
⎫
⎪⎬

⎪⎭
.

(b) Carrying out the Gaussian path integral over the Fermi fields for constant gap functions,
we obtain

ZMF = e−βFMF =
∫

D[ψ̄ , ψ]e−S,

where

FMF = −T ln ZMF = −T
∑

k,iωn

ln det[−iωn + hk]

+ Ns

[
4
3J

(#̄2S#2S + #̄D#D) − #1S#1S

U

]

= −T
∑

k,iωn

2 ln[(iωn)2 − ϵ2
k − #̄k#k]

+ Ns

[
4
3J

(#̄2S#2S + #̄D#D) − #1S#1S

U

]

= −T
∑

k

ln
[

2 cos
(

βEk

2

)]

+ Ns

[
4
3J

(#̄2S#2S + #̄D#D) − #1S#1S

U

]
, (15.75)
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where the last line follows from carrying out the Matsubara sum and Ek =√
ϵ2

k + |#k|2.
(c) Suppose #D is the only non-zero component of the gap function. Then

FMF = −T
∑

k

ln
[

2 cos
(

βEk

2

)]
+ Ns

4
3J

(#̄2S#2S), (15.76)

where Ek =
√

ϵ2
k + γD(k)2#̄D#D.

Taking the derivative of FMF with respect to #̄D, we obtain

δFMF

δ#̄D
= 0 = −

∑

k

tanh
(

βEk

2

)
γD(k)2#D

2Ek
+ Ns

4#D

3J
, (15.77)

giving us the gap equation,

4
3J

=
∫

k
tanh

(
βEk

2

)
γD(k)2

2Ek
. (15.78)

(d) Whereas the d-wave condensate is completely decoupled from the repulsive U, so that
∂2FMF/∂#1S#D = 0, the extended s-wave component always mixes with the local
s-wave component, which leads to a reduction of the effective coupling constant, so
the d-wave Cooper instability will typically occur at a higher temperature. If we set
the differentials of the free energy with respect to #1S and #2S to zero, we obtain two
coupled gap equations, which, written in shorthand, are

4#2S

3J
= #2S⟨γ 2

1S⟩ + #1S⟨γ1Sγ2S⟩

−#1S

U
= ⟨γ 2

1S⟩#1S + ⟨γ1Sγ2S⟩#2S, (15.79)

where we have used the shorthand ⟨. . .⟩ = ∑
k

1
2Ek

tanh
(

βEk
2

)
(. . .)k (although

γ1S = 1, we have kept it in its symbolic form to show the symmetry of the equa-
tions). The two equations are coupled, because in general ⟨γ1Sγ2S⟩ ̸= 0 for two s-wave
form factors. We can eliminate #1S from the second equation, to obtain

#1S = − ⟨γ1Sγ2S⟩
⟨γ 2

1S⟩ + 1
U

#2S. (15.80)

In other words, providing ⟨γ1Sγ2S⟩ ̸= 0, the extended s-wave solution will always
induce a finite onsite s-wave pairing, which costs a lot of Coulomb repulsion energy.
Substituting this into the first of the mean-field equations (15.79), we obtain

4
3Jeff

=
(

4
3J

+ ⟨γ1Sγ2S⟩2

1
U + ⟨γ 2

1S⟩

)

= ⟨γ2S(k)2⟩ =
∫

k
tanh

(
Ek

2Tc

)
γ2S(k)2. (15.81)

Since 1/Jeff is increased, we see that the effective coupling constant Jeff is reduced
by the cross-talk between the extended s-wave channel and the onsite Coulomb inter-
action, suppressing the extended s-wave Tc. When the higher Tc d-wave condensate
develops, this opens up a gap in the spectrum, pre-empting any lower-temperature
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s-wave instability. This is presumably why d-wave pairing predominates in the cuprate
superconductors.

An important exception to this case occurs when there are multiple Fermi surface
sheets which live in sectors of the extended s-wave form factor which have opposite
sign. In this case, the average ⟨γ1Sγ2S⟩ ∼ 0 and the larger average gap of the s-wave
solution then favors extended s-wave over d-wave.

Example 15.4

(a) Show that the Nambu Green’s function for a singlet superconductor with a momentum-
dependent gap is

G(k, iωn) = [iωn − ϵkτ3 − #kτ1]−1, (15.82)

where the gap function #k = #−k assumed to be real.
(b) Using the Nambu Green’s function, compute the tunneling density of states for a three-

dimensional d-wave superconductor with gap #k = # cos 2φ.

Solution

(a) The Nambu Hamiltonian for a singlet superconductor with a momentum-dependent
gap #k = #(φ) = # cos 2φ is given by

H =
∑

k

ψ†
khkψk

hk = ϵkτ3 + # cos 2θτ1,
(15.83)

where we taken the gap to be real. The Nambu Green’s function is then

G(k, ω) = 1
ω − hk

= ω + hk

ω2 − (ϵ2
k + #2 cos2 2φ)

.

(b) The diagonal part of the Nambu Green’s function is given by

[G(k)]11 = ω + ϵk

ω2 − (ϵ2
k + #2 cos2 2φ)

and the tunneling density of states is given by

N(ω) = 1
π

∑

k

Im

(
ω + ϵk

(ω − iδ)2 − E2
k

)

= 1
π

N(0)
∫

dφ

2π

∫
dϵ Im

(
ω + ϵ

(ω − iδ)2 − ϵ2 + #(φ)2

)

= −N(0)
∫

dφ

2π
Im

(
ω

√
#2 cos2 2φ − (ω − iδ)2

)

= N(0)
∫ π/2

0

dφ

π/2
Re

⎛

⎝ |ω|
√

(ω − iδ)2 − #2 sin2 φ

⎞

⎠

= 2N(0)
π

Re K
(

#

ω − iδ

)
, (15.84)
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where

K(x) =
∫ π/2

0

dx
√

1 − x2 sin2 φ

.

The last few stages of this calculation are the same as those in the derivation of the s-wave
density of states in (14.185). We see that the form of the mean-field density of states of a
three-dimensional d-wave system is the same as the density of states of a two-dimensional
one.

Example 15.5

(a) By generalizing the approach taken in Section 13.8 for an s-wave superconductor,
compute the London stiffness of a d-wave superconductor with gap #(φ) = # cos φ,
showing that it takes the form

QD(T) = Q0

[

1 −
∫ ∞

−∞
dω

∫
dφ

2π

(
−df (ω)

dω

)
Re

(
ω

√
ω2 − #(φ)2

)]

#(θ ) = # cos(2φ). (15.85)

(b) Contrast the temperature dependence of the penetration depth in an s-wave and a clean
d-wave superconductor.

Solution

This question is a little subtle at the beginning, because the d-wave gap has momen-
tum dependence #k, and it is not immediately clear whether, when a vector potential is
included, we should make the Peierls replacement #k → #k−eA or not.

One way to rationalize this is to notice that, in Nambu notation, the correct gauge-
invariant Peierls replacement is k → k − eAτ3, so that in pairing terms of the form #kτ1

we must replace

#kτ1 → 1
2
{#k−eAτ3 , τ1} = #k − e

2
∇k#k

=0︷ ︸︸ ︷
{τ3, τ1} = #k + O(A2), (15.86)

so there is no correction to the current operator derived from the pairing, and the only
important dependence of the BCS Hamiltonian on the vector potential comes from the
kinetic energy ϵk−eAτ3τ3 (14.241).

An alternative and more convincing way to argue the above is to explicitly introduce
the vector potential into the pairing interaction using a Peierls substitution in real space.
Consider the local pairing interaction, −g

∫
x -†

D(x)-D(x), where

-†
D =

∫

R
γD(R)ψ†

↑(x + R/2)ψ†
↓(x − R/2) (15.87)

creates a d-wave pair with spatial form factor γD(R) centered at x. If we write the
interaction out in full, it takes the form
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HI = −g
∫

x,R,R′
γD(R)γD(R′)

(
ψ†

↑(x + R/2)ψ†
↓(x − R/2)

) (
ψ↓(x − R′/2)ψ↑(x + R′/2)

)

= −g
∫

x,R,R′
γD(R)γD(R′) :

(
ψ†

↑(x + R/2)ψ↑(x + R′/2)
)

×
(
ψ

†
↓(x − R/2)ψ↓(x − R′/2)

)
: , (15.88)

which involves the normal-ordered product of two hopping terms. To make this gauge-
invariant, we need to make a Peierls substitution on each hopping term, replacing

ψ†
↑(x + R/2)ψ↑(x + R′/2) → ψ†

↑(x + R/2)ψ↑(x + R′/2)

e−iA(x)·(R−R′)/2
︷ ︸︸ ︷

e−i
∫ x+R′/2

x+R/2 A·dl

ψ†
↓(x − R/2)ψ↓(x − R′/2) → ψ†

↓(x − R/2)ψ↓(x − R′/2)

eiA(x)·(R−R′)/2
︷ ︸︸ ︷

e−i
∫ x−R′/2

x−R/2 A·dl, (15.89)

where the Peierls factors have been evaluated ignoring gradients in the vector potential. We
notice that the two Peierls factors cancel, so there is no dependence of the pairing term on
the external vector potential.

(a) We can now follow the methodology of Section 13.8, including the momentum
dependence of the gap, throughout the calculation. We obtain

Qab = 4e2

βV

∑

k

∇aϵk∇bϵk
#2

k

[(ωn)2 + ϵ2
k + #2

k]2
. (15.90)

Carrying out the integral over energy for each direction, and the summation over the
Matsubara frequencies following the method of Section 14.8, then gives an angular-
averaged version of (14.260):

Q(T) = Q0

[

1 −
∫ ∞

−∞
dω

(
−df (ω)

dω

)∫
dφ

2π

Re

(
|ω|

√
(ω − iδ)2 − #2 cos2 2φ

)]

, (15.91)

where we have taken the real part of the integrand to eliminate terms where |ω| <

|#(φ)|.
We recognize the last term as the thermal average of the density of states, so that

Q(T) = Q0

[

1 −
(

A(ω)
N(0)

)]

,

where (see (15.58))

A(ω) = 2N(0)
π

Re K
(

#

ω − iδ

)

and K(x) is the elliptic integral (15.60).
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(b) At low temperatures, the density of states is given by A(ω)/N(0) = (|ω|/#), so that
the thermally averaged density of states

(
A(ω)
N(0)

)
= kBT

#
2
∫ ∞

0

x
(ex + 1)(e−x + 1)

= kBT
#

ln 4 (15.92)

grows linearly with temperature. Thus in a d-wave superconductor the inverse pen-
etration depth 1

λ2
L

∝ Q(T) will exhibit a linear dependence on temperature at low

temperatures, rather than the exponential dependence expected from a fully gapped
s-wave superconductor:

1 − λ2
L(0)

λ2
L(T)

∼ kBT
#

(kBT << #).

(Note that in a dirty d-wave superconductor the density of states is constant at low tem-
peratures, which leads to a quadratic temperature dependence of the inverse penetration
depth at the lowest temperatures.)

15.5 Superfluid 3He

15.5.1 Early history: theorists predict a new superfluid

As our second example of anisotropic pairing, we discuss the remarkable case of superfluid
3He. As the 1950s came to an end and the wider significance of the BCS pairing instability
was appreciated, the condensed-matter community began to realize that 3He might form
a BCS superfluid condensate, avoiding the mutual repulsion of the atoms by pairing in
a higher angular momentum channel. Four independent groups (Lev Pitaevksii [6] at the
Kapitza institute in Moscow; David Thouless at the Lawrence Radiation Laboratory, Uni-
versity of California, Berkeley [7]; Victor Emery and Andrew Sessler at the University of
California, Berkeley [8]; and the Gang of Four, Keith Brueckner and Toshio Soda at the
University of California, La Jolla, and Philip W. Anderson with Pierre Morel at Bell Labo-
ratories, New Jersey 4 [9, 10]) came up with the idea of anisotropic pairing. Although these
early papers examined both p- and d-wave pairs, each of them used bare nuclear interaction
parameters as input to the BCS theory, and on the basis of these calculations came to the
conclusion that the leading attractive channel was the l = 2, d-wave channel, predicting a
d-wave superfluid condensate would develop in 3He around Tc = 50−150 mK. The theory
community would later be vindicated in their prediction of anistropic superfluidity in 3He,
but at a much lower temperature and with a p-wave rather than a d-wave symmetry.

During the 1960s the theory of anisotropic superfluidity developed rapidly, providing the
framework for p-wave pairing that would ultimately be used to understand 3He. In 1961
Morel and Anderson [10] introduced the ground state of what would later be identified

4 Pierre Morel was officially a scientific attache at the French Embassy in New York City.
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as the “A” phase, while in 1963 Roger Balian at the Centre d’Etude Nucléaires, Saclay,
and Richard Werthamer at Bell Laboratories [11] discovered, an isotropic triplet paired
ground state that would later be identified as the “B” phase. Gradually, towards the end
of the 1960s, it became clear that the use of a bare interaction parameter as an input to
BCS theory needed to be corrected for many-body effects, particularly with ladder diagram
corrections to the pair scattering amplitude [12]. In a pioneering work, Walter Kohn at the
University of California, San Diego, and Joaquin Luttinger at Columbia University, New
York, [13] showed that, when many-body corrections to the Cooper channel interaction are
considered, the sharpness of the Fermi surface guarantees that Fermi liquids are inevitably
unstable to anisotropic pairing in some higher angular momentum channel. Using an input
delta-function potential, Kohn and Luttinger derived an approximate asymptotic formula
for Tc as a function of angular momentum l in 3He, given by

Tc(l) ∼ ϵF exp
{
− π2

(kFa)2 l4
}

, (15.93)

where l is the angular momentum of the pair, ϵF and kF are the Fermi energy and momen-
tum, respectively, and a is the diameter of the 3He atom. Curiously, Kohn and Luttinger
chose to illustrate this equation for l = 2, d-wave pairing, which for kFa ∼ 2 gives
Tc ∼ 10−17ϵF . Had they made the bold but uncontrolled insertion of l = 1, they would
have obtained Tc ∼ 0.05ϵF ∼ 50 mK, surely an indication that p-wave pairing is a stronger
candidate than d-wave! Then in 1967 D. Fay and A. Layzer, working at the Stevens Insti-
tute of Technology, New Jersey, made the critical observation [14] that in dilute neutral
fluids many-body effects, which tend to ferromagnetically enhance interactions, will also
generally lead to p-wave pairing.

It was not until 1972 that Douglas Osheroff, Robert Richardson, and David Lee at Cor-
nell University finally discovered superfluidity in 3He, developing at 2.65 mK [15] (see
Figure 15.7). From the anomalies in the NMR response, this team was able to identify two
phases: a high-temperature A phase and a low-temperature B phase in which most of the
magnetic response disappeared. By carefully analyzing the detailed NMR measurements
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carried out on these phases, Anthony Leggett, working at Sussex University [16], was
able to show [17–19] that the pair symmetry of the A phase is triplet and probably cor-
responds to the Anderson–Morel state (now called the Anderson–Brinkman–Morel state).
The pair symmetry of the B phase was later identified with the isotropic and fully gapped
Balian–Werthamer state [20].

Curiously, although the early 3He theorists predicted the wrong pair symmetry for
3He, their efforts were not in vain, for d-wave pairing was realized seven years later
in superconductors, with the discovery of the first anisotropic superconductor, CeCuSi2,
by Frank Steglich at Cologne University [21]. We now know many examples of d-wave
superconductors, including the high-temperature cuprate superconductors.

15.5.2 Formulation of a model

The beauty of 3He is that its isotropy provides us with a model system. The Fermi surface
is perfectly spherical and in this case the pairing interaction between the quasiparticles
depends only on the relative angle between the initial and final pair momenta k and k′,
i.e. Vk,k′ = V(cos θk,k′ ). This implies that the pairing interaction can be decomposed as a
multipole expansion involving Legendre polynomials:

Vk,k′ =
∑

l

(2l + 1)VlPl(k̂ · k̂
′
). (15.94)

This is reminiscent of the multipole expansion of Fermi liquid interactions (6.38). Using
the orthogonality relation

∫ dc
2 Pl(c)Pl′ (c) = δl,l′/(2l + 1), the parameters Vl are given by

Vl =
∫ 1

−1

d cos θ

2
Pl(cos θ )V(cos θ ) l ∈

{
even (singlet)
odd (triplet).

(15.95)

These are the higher angular momentum analogues of the BCS s-wave interaction para-
meter. Now the parity of the Legendre polynomials alternates with l, Pl = (−1)l (Pl(−x) =
(−1)lPl(x)), so the even l define singlet pair potentials while the odd l define triplet (S = 1)
pair potentials.

Using the relationship (2l + 1)Pl(k̂ · k̂
′
) = 4π

∑l
m=−l Y∗

lm(k̂)Ylm(k̂
′
), we can factorize

the anisotropic BCS interaction in the form

Vk,k′ =
∑

l,m

Vl y∗
lm(k̂)ylm(k̂

′
), (15.96)

where we have used the notation ylm =
√

4πYlm to denote spherical harmonics normalized
to give unit norm when averaged over the sphere

∫ d5
4π y∗

lmylm = δl,l′δm,m′ . This is the same
kind of factorized interaction encountered in the previous section, and we can treat it in the
same way. For 3He, the hard-core repulsion between the atoms rules out an s-wave insta-
bility5 and it is the p-wave (l = 1) triplet (S = 1) channel that takes over. Approximating
V1 = −g/V and ignoring all other channels, then

5 Curiously, in optical atom traps in which the atomic interactions among highly dilute fermions can be tuned
through a Feshbach resonance, it is possible to produce an attractive s-wave interaction, so a conventional BCS
instability does occur.
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Vk,k′ = − g
V

3 cos(k · k′) = −3g
V

(k̂ak̂′
a), (15.97)

where k̂a = ka/kF and the sum over the repeated index a = 1, 2, 3 is implied. The BCS
Hamiltonian for a triplet superfluid is then [11]

HBCS =
∑

kσ

ϵkc†
kσ ckσ − 3g0

V

∑

k,k′∈ 1
2 BZ

(-⃗†
k k̂ℓ) · (k̂′

ℓ-⃗k′ )

-⃗k = c−kα

(
−iσ2σ⃗

)

αβ

ckβ

-⃗†
k = c†

kα

(
σ⃗ iσ2

)

αβ

c†
−kβ . (15.98)

Notice that there are now three triplet channels (-⃗k ≡ -a
k , a = 1, 2, 3) and three orbital

channels (k̂l, l = x, y, z) in which the pairing takes place. The summation over momentum
in the interaction takes place over one-half the Brillouin zone.

15.5.3 Gap equation

If we carry out a Hubbard–Stratonovich transformation, we get

HMFT =
∑

kσ

ϵkc†
kσ ckσ +

∑

k∈ 1
2 BZ

[
-⃗†

k · (#⃗l) k̂l + H.c.
]

+ V
3g0

(#⃗∗
l · #⃗l). (15.99)

The three vectors #⃗l (l = x, y, z) define a three-dimensional matrix #a
l ≡ (#⃗l)a which

links the spin and orbital degrees of freedom. If we denote #⃗k = ∑
l=x,y,z #⃗lk̂l, then, since

∫ d5k̂
4π k̂lk̂m = 1

3δlm, it follows that

#a
l = (#⃗l)a = 3

∫ d5k̂

4π
(#⃗k)ak̂l. (15.100)

Thus we can write

V
3g0

(#⃗∗
l · #⃗l) = 3V

g0

∫ d5k̂

4π

d5k̂′

4π
#⃗k · #⃗k′ (k̂ · k̂′) ≡ −

∫

k̂,k̂′
#⃗∗

kV−1
k,k′#⃗k′ , (15.101)

where we have identified V−1
k,k′ ≡ − V

g0
(3k̂ · k̂′) and denoted

∫
k̂ =

∫ d5k̂
4π . The mean-field

Hamiltonian is then

HMFT =
∑

kσ

ϵkc†
kσ ckσ +

∑

k∈ 1
2 BZ

(
-⃗†

k · #⃗k + H.c.
)

+ 3V
g0

∫ d5k̂

4π

d5k̂′

4π
#⃗k · #⃗k′ (k̂ · k̂′).

(15.102)

Now, to diagonalize this mean-field theory we need to cast it into spinors. Triplet pairing
mixes up and down electrons, which obliges us to use a four-component spinor called a
Balian–Werthamer spinor [11] after its inventors:
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ψk ≡
(

ck

iσ2c†
−k

)

≡

⎛

⎜⎜⎜⎝

ck↑
ck↓

c†
−k↓

−c†
−k↑

⎞

⎟⎟⎟⎠
. Balian–Werthamer spinor (15.103)

The upper two entries are the destruction operators for particles of momentum k, while the
lower two,

(
ak↑
ak↓

)
≡

(
c†
−k↓

−c†
−k↑

)

, (15.104)

are the destruction operators for holes of momentum k. Hole-destruction operators are
the time reversal (denoted by the operator θ ) of the corresponding particle-creation opera-
tors, and the minus sign in the lower entry appears on time reversal of a down-spin state,
a†

k↓ = θck↓θ−1 = −c−k↑.6 Notice how the iσ2 that appears in the triplet pair opera-
tors is now neatly absorbed into the spinor. Moreoever, the BW spinor obeys canonical
anticommutation rules:

{ψkα , ψ†
k′β} = δk,k′δαβ .

Of course, we have doubled the number of components in the spinor, so we must now
restrict the momentum to one-half of momentum space, k ∈ 1

2 BZ. The payoff is that we
now have a rotationally invariant representation in which the spin operator is defined in
terms of block-diagonal Pauli matrices:

σ⃗4 ≡ 1 ⊗ σ⃗ =
(

σ⃗

σ⃗

)
, (15.105)

while the Nambu matrices are now block matrices:

τ⃗4 ≡ τ⃗ ⊗ 1 =
{(

1
1

)
,
( −i1

i1

)
,
(

1
−1

)}
. (15.106)

In this notation, the BCS Hamiltonian can be succinctly rewritten as

HMFT =
∑

k∈ 1
2 BZ

ψ†
khkψk + 3V

g0

∫ d5k̂

4π

d5k̂′

4π
#⃗k · #⃗k′ (k̂ · k̂′)

hk =
(

ϵk #⃗k · σ⃗

#⃗∗
k · σ⃗ −ϵk

)

≡ ϵkτ3 + (#⃗k · σ⃗ )τ+ + (#⃗∗
k · σ⃗ )τ−, (15.107)

where τ± = 1
2 (τ1 ± iτ2). It is common to denote the direction of the gap function in spin

space by the complex d-vector d⃗k,

#⃗k = #d⃗k, (15.108)

which is normalized so that its angular average over the Fermi surface is unity:
∫

d5k

4π
|d⃗k|2 = 1. (15.109)

6 You can also verify that the diagonal and off-diagonal matrix elements of the spin operator are the same for
particles and for holes, so that h†

kσ⃗hk = c−k(iσ2)σ⃗ (−iσ2)c−k = c†
−kσ⃗c−k, where the last step follows

because σ⃗T = −σ2σ⃗ σ2.
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The d-vector is an emergent property of the Fermi surface, and the textures it gives rise to
in momentum space define the state of the condensate.

If we take the determinant of ω − hk by multiplying out its two-dimensional block
diagonals, we find

det(ω − hk) = det
[
(ω2 − ϵ2

k)1 − (#⃗∗
k · σ⃗ )(#⃗k · σ⃗ )

]

= det
[
(ω2 − ϵ2

k)1 − #2(|d⃗k|2 + id⃗∗
k × d⃗k · σ⃗ )

]

= det
[
(ω2 − ϵ2

k)1 − #2(|d⃗k|2 + 2d⃗1k × d⃗2k · σ⃗ )
]

, (15.110)

where we have used the identity σ aσ b = δab + iϵabcσ c on the second line and decomposed
d⃗k = d⃗1k − id⃗2k into its real and imaginary parts on the last line. The quasiparticle energies
determined by pairing matrix hk are then

Ek± =
√

ϵ2
k + #2(|d⃗k|2 ± 2|d⃗1k × d⃗2k|).

There are in fact two superfluid phases of 3He, and, in both, d⃗1k and d⃗2k are parallel, and
the gap functions take the form

#⃗k = # ×
{

k̂xx̂ + k̂yŷ + k̂zẑ BW or B phase√
3
2 (k̂x + iky)ẑ . ABM or A phase

(15.111)

The BW or B phase is named after Balian and Werhammer. In this phase the d-vector points
radially outwards from the Fermi sea, forming a topological “hedgehog” configuration (see
Figure 15.8(a)) with a uniform gap and quasiparticle energy given simply by

Ek =
√

ϵ2
k + #2. B phase

The B phase, with a full gap, dominates the phase diagram. The ABM or A-phase, named
after its discoverers, Anderson, Brinkman, and Morel, develops in a small sliver of the
phase diagram under pressures of about 2 MPa (see Figure 15.7(b)). This phase involves
pairing in a single triplet orbital channel with a uniform (“z”) direction of the d-vector;
now the magnitude of the gap is momentum-dependent:

∆ (θ) = ∆ ∆ (θ) = ∆ sin θ

d(κ)^

d(κ)^

B phase A phase!Fig. 15.8 Showing the gap structure and d-vector orientation for the B and A phases of superfluid 3He.
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#⃗k =
√

3
2
# sin θeiφ ẑ. A phase

This function vanishes at the poles, giving rise to a quasiparticle excitation spectrum

Ek =
√

ϵ2
k + 3

2
#2 sin2 θ . A phase

The derivation of the mean-field equations for these two solutions is simplified by the
observation that, for both of them, the potential energy term is

3V
g0

∫ d5k̂

4π

d5k̂′

4π
#⃗k · #⃗k′ (k̂ · k̂′) = V

g0
#2.

The free energy of the mean-field theory then takes precisely the same form as in BCS
theory:

FMFT = −2T
∑

k

ln
(

2 cosh
βEk

2

)
+ V

g0
#2.

If we differentiate with respect to #2 we obtain the gap equation:

1
g0N(0)

=
∫ 1

−1

d cos θ

2

∫ ωD

−ωD

dϵ
#(θ )2/#2

√
ϵ2 + #(θ )2

tanh

[√
ϵ2 + #(θ )2

2

]

.

According to this analysis, the A and B phases have identical mean-field transition tem-
peratures. However, at lower temperatures the B phase wins out because its fully gapped
Fermi surface gives rise to a lower free energy.

Example 15.6 Consider a single triplet Cooper pair described by the state

|-⟩ = 1√
2

(
d̂ · -⃗†

k

)
|0⟩ = 1√

2
d̂ ·

(
c†

kσ⃗ iσ2c†
−k

)
|0⟩,

where d̂ is a real unit vector.

(a) Show that

S⃗|-⟩ = i√
2

(d̂ × -⃗
†
k)|0⟩

and use this to prove that the spin of the state is S = 1, i.e.

S2|-⟩ = 2|-⟩, (15.112)

while the component of the spin in the direction of the d-vector vanishes:

(d̂ · S⃗)|-⟩ = 0 (15.113)

and the expectation value of the magnetic moment is zero, i.e. ⟨-|S⃗|-⟩ = 0.
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(b) Show that the expectation value is

⟨-|SaSb|-⟩ = δab − d̂ad̂b, (15.114)

so that ⟨S2⟩ = S(S + 1) = 2, corresponding to a spin-quadrupole with a fluctuating
moment in the plane perpendicular to the d-vector.

Solution

(a) The effective spin operator for this state only involves momenta ±k, so we may use S⃗ =
1
2 [c†

kσ⃗ck+c†
−kσ⃗c−k]. To determine the action of the spin operator on the triplet pair, we

need to commute it past the triplet pair operator onto the vacuum. The commutator is
[
Sa, (-⃗†

k)
b] =

[(
c†

kσ ack + c†
−kσ ac−k

)
,
(

c†
kσ biσ2c†

−k

)]

= c†
k

(
σ aσ biσ2 + σ biσ2(σ a)T

)
c†
−k,

where the first and second terms derive from the positive and negative momentum
components of the spin operator. Using σ2(σ a)T = −σ aσ2 we obtain

[
Sa, (-⃗†

k)b
]

= 1
2

c†
k

[
σ a, σ b

]
iσ2c†

−k = iϵabcc†
kσ ciσ2c†

−k (15.115)

or [
Sa, d̂ ·

(
c†

kσ⃗ iσ2c†
−k

)]
= iϵabcdb

(
c†

kσ ciσ2c†
−k

)
= i(d̂ × -⃗†

k)a, (15.116)

and hence

S⃗|-⟩ = 1√
2

[S⃗,
(
d̂ · -⃗†

k
)
]|0⟩ = i√

2

(
d̂ × -⃗†

k

)
|0⟩. (15.117)

Using (15.115 ), we have

Sa(-⃗†
k)b|0⟩ = iϵabc(-⃗†

k)c|0⟩, (15.118)

so that

S2(-⃗†
k)b|0⟩ = SaSa(-⃗†

k)b|0⟩
= iϵabcSa(-⃗†

k)c|0⟩

=
2δbd︷ ︸︸ ︷

iϵabciϵacd(-⃗†
k)d|0⟩ = 2(-⃗†

k)b|0⟩, (15.119)

so, writing this in vector notation,

S2-⃗†
k|0⟩ = 2-⃗†

k|0⟩. (15.120)

Hence S2|-⟩ = S2(d̂ · -⃗†
k)|0⟩ = 2|-⟩, corresponding to a spin of 1.

If we evaluate the expectation value of the moment, we get

⟨-|S⃗|-⟩ = 1
2
⟨0|(d̂∗ · -⃗k)(d̂ × -⃗†

k)|0⟩ = id̂ × d̂∗. (15.121)
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In our case d̂ is real, so that ⟨S⃗⟩ = 0. Note, however, that if d̂ = d̂1 + id̂2 is complex,
then ⟨S⃗⟩ = 2d̂1 × d̂2, so that if d̂1 and d̂2 are not parallel, the Cooper pair state carries
a net magnetic moment.

(b) Taking the result (15.117), we have

⟨-|SaSb|-⟩ = 1
2
ϵapqϵbrsdpdr

2δqs
︷ ︸︸ ︷
⟨0|

(
-⃗k

)q (
-⃗†

k

)s
|0⟩ = ϵapqϵbrq

=
(
δabδpr − δarδpb

)
dpdr

= δab − dadb, (15.122)

so the moment fluctuations of the pair lie in the plane perpendicular to the d-vector.

Example 15.7 Derive the BCS pair wavefunction for the B phase of 3He.

Solution

By analogy with the case of singlet pairing, we expect the ground state to be a coherent
state of a triplet pair,

|-⟩ = exp
[
7†

T

]
|0⟩, (15.123)

where

7†
T = 1

2

∑

k

φk(k̂ · -⃗†
k) (15.124)

creates a triplet pair and φk = φ−k is an even function of momentum. The factor of 1
2 is

included as a normalization that takes account of the fact that -†
k is only independent in

one-half of momentum space.
Now the ground state is annihilated by the quasiparticle destruction operators. For the

triplet B phase we write the quasiparticle-creation operators as

a†
k = ψ†

k ·
(

uk
vk

)
= c†

kσ ukσ + c̃kσ vkσ , (15.125)

where c̃kα = c−kβ [−iσ2]βα and the ukσ and vkσ are two-component spinors. For the B
phase, we can take the mean-field Hamilonian to be

HMFT =
∑

k∈ 1
2 BZ

ψ†
khkψk, hk =

(
ϵk #(k̂ · σ⃗ )

#(k̂ · σ⃗ ) −ϵk

)

. (15.126)

Now since [H, ak] = Ekak, it follows that
(

ϵk #(k̂ · σ⃗ )
#(k̂ · σ⃗ ) −ϵk

)(
uk
vk

)
= Ek

(
uk
vk

)
. (15.127)

(Notice that, if we choose a spin quantization axis parallel to k̂, then this eigenvalue
equation is identical to singlet pairing.)
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Now we must find the condensate that is annihilated by the quasiparticle operators:

ak = (u†
k, v†

k) · ψk = u†
kσ ckσ + v†

kσ c̃†
kσ . (15.128)

To commute the quasiparticle operator with the pair creation operator, we note that

[ak, c†
k′σ ] = u†

kσ δk,k′ , (15.129)

so that

[ak, 7†
T ] = 1

2

⎡

⎣ak,
∑

k′
φk′c†

k′ (k̂′ · σ⃗ )iσ2c†
−k′

⎤

⎦

= 1
2
φk

[
u†

k(k̂ · σ⃗ )iσ2c†
−k + c†

−k(k̂ · σ⃗ )iσ2(u†
k)T

]

= 1
2
φk

⎡

⎢⎢⎣u†
k(k̂ · σ⃗ )iσ2c†

−k + u†
k

(k̂·σ⃗ )iσ2︷ ︸︸ ︷
−iσ2(k̂ · σ⃗ T ) c†

−k

⎤

⎥⎥⎦

= φk

[
u†

k(k̂ · σ⃗ )c̃†
−k

]
, (15.130)

where we have used σ2σ⃗
T = −σ⃗ σ2 and the fact that φk = φ−k. Now by (15.127),

u†
k(k̂ · σ⃗ ) = (Ek + ϵk)

#
v†

k, (15.131)

so that
|uk|
|vk| = (Ek + ϵk)

#
, (15.132)

enabling the commutator of the quasiparticle operator with the pair creation operator to be
written in the compact form

[αk, 7†
T ] = |uk|

|vk|φk(v†
kc̃†

−k). (15.133)

As in the case of singlet pairing, if we choose

φk = − |vk|
|uk| (15.134)

then

[αk, 7†
T ] = −v†

k · c̃†
−k, (15.135)

and since c̃k commutes with 7†
T , it follows that

[αk, (7†
T )n] = −n(7†

T )n−1v†
kc̃k, (15.136)

so that

[αk, exp[7†
T ]] = − exp[7†

T ]v†
kc̃k. (15.137)

This means that

αk exp[7†
T ] = exp[7†

T ]αk − exp[7†
T ]v†

kc̃k = exp[7†
T ]u†

k · ck, (15.138)



15.5 Superfluid 3He 575

so that αk annihilates the coherent state:

αk exp[7†
T ]|0⟩ = exp[7†

T ]u†
k · ck|0⟩ = 0, (15.139)

proving that

|-⟩ = exp
[
−1

2

∑ |vk|
|uk| (k̂ · -⃗

†
k)

]
|0⟩ (15.140)

is the ground state.
Note that we have to be careful in reducing this to the usual multiplicative BCS form,

for the square of the triplet pair operator is not zero. If one splits the sum over momentum
space into two parts, kz > 0 and kz < 0, then the Cooper pair operator can be written as

7†
T =

∑

kz>0

φkc†
k

(
k̂ · σ⃗ + 1

2

)

c̃−k +
∑

kz<0

φkc†
k

(
k̂ · σ⃗ − 1

2

)

c̃−k

=
∑

k

φkc†
k

(
k̂ · σ⃗ + sgn(kz)

2

)

c̃−k. (15.141)

The additional singlet term that has been added and subtracted from the upper and lower
halves of momentum space cancel with each other. Now the terms inside the pair operators
are projection operators, and the squares of these operators do vanish. We can now expand
the coherent triplet paired state as a BCS product, as follows:

|-⟩ =
∏

k

(

|uk| − |vk|c†
k

(
k̂ · σ⃗ + sgn(kz)

2

)

c̃−k

)

|0⟩. (15.142)

Example 15.8

(a) Show that the Nambu Green’s function for 3HeB is given by

G(k) = [iωn − ϵkτ3 − (#⃗k · σ⃗ )τ1]−1 = iωn + ϵkτ3 + (#⃗k · σ⃗ )τ1

(iωn)2 − E2
k

.

(b) Calculate the magnetic susceptibility of the B phase of 3He. Show that the ground-state
condensate has a finite Pauli susceptibility equal to 2/3 of the normal state.

Solution

(a) As in the case of singlet pairing, we can write the propagator as G(k) = − 1
∂τ +hk

. Let
us start with the imaginary-time propagator, which we will write

G(k, τ ) = −⟨Tψk(τ )ψ†
k(0)⟩ (15.143)

or, written out explicitly, Gαβ (k, τ ) = −⟨Tψkα(τ )ψ†
kβ (0)⟩, where ψkα is a Balian–

Werthamer spinor. The expectation values are to be evaluated with the mean-field
Hamiltonian H = ∑

k∈ 1
2 BZ ψ†

khkψk, where
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hk = ϵkτ3 + (#⃗k · σ⃗ )τ1. (15.144)

When we take account of the time-ordering, the equation of motion for G is

∂τG(k, τ ) = −δ(τ )⟨{ψk, ψ†
k}⟩ − ⟨T(∂τψk(τ ))ψ†

k(0)⟩
= −δ(τ )1 − ⟨T[H, ψk(τ )]ψ†

k(0)⟩
= −δ(τ )1 − hkG(k, τ ), (15.145)

where we have used ψk(τ ) = eHτψke−Hτ and ∂τψk(τ ) = [H, ψk(τ )] = −hkψk. It
follows that

(∂τ + hk)G(k, τ ) = −δ(τ )1 (15.146)

or G(k, τ ) = −1/[∂τ + hk]. Fourier transforming this expression in time (G(k, τ ) →
G(k, iωn), ∂τ → −iωn), it follows that (−iωn + hk)G(k) = −1, or

G(k, iωn) = 1

iωn − ϵkτ3 − (#⃗k · σ⃗ )τ1
= iωn + ϵkτ3 + (#⃗k · σ⃗ )τ1

(iωn)2 − E2
k

, (15.147)

where, for 3He-B, we can take #k = #k̂ , so that (#⃗k · σ⃗ )2 = #2.
(b) In a magnetic field, the free energy becomes

F = −T
2

∑

k

Tr ln[−G−1(k) − µN σ⃗ · B⃗] + field-independent terms, (15.148)

where the factor of 1
2 derives from expanding the summation over one-half the Bril-

louin zone to the entire momentum space and µN is the nuclear moment of the
3He-atom. We can either differentiate this twice with respect to the field or write the
spin susceptibility as a mean-field polarization bubble, to obtain

χab = − ∂2F
∂Ba∂Bb

=

k

k

a b = −Tµ2
N

2 k
Tr σaG(k)σbG(k) .

(15.149)
Inserting (15.147), we obtain

χab = −Tµ2
N

2

∑

k

Tr

[

σ a iωn + ϵkτ3 + (#⃗k · σ⃗ )τ1

(iωn)2 − E2
k

σ b iωn + ϵkτ3 + (#⃗k · σ⃗ )τ1

(iωn)2 − E2
k

]

.

(15.150)

Now we can carry out the traces over the Nambu and Pauli matrices separately. Carrying
out the trace over the Nambu components, we obtain

χab = −Tµ2
N

∑

k

1

[(iωn)2 − E2
k]2

(
[(iωn)2 + ϵ2

k]Tr[σ aσ b] +
[
σ a(#⃗k · σ⃗ )σ b(#⃗k · σ⃗ )

])
.
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Now Tr[σ aσ b] = 2δab. To calculate Tr[σ aσ bσ cσ d], one can cyclically anticommute σ a

around the trace (using σ aσ b = 2δab − σ bσ a), picking up the remainders, to obtain

Tr[σ aσ bσ cσ d] = 2
(
δabδcd − δacδbd + δadδbc

)
,

so that

Tr[σ a(#⃗k · σ⃗ )σ b(#⃗k · σ⃗ )] = 2[2#a
k#b

k − δab#k · #k] = 2#2[2k̂ak̂b − δab], (15.151)

so the susceptibility can be rewritten

χab = −2Tµ2
N

∑

k

1

[(iωn)2 − E2
k]2

(
[(iωn)2 + ϵ2

k]δab + #2[2k̂ak̂b − δab]
)

= −2Tµ2
N

∑

k

1

[(iωn)2 − E2
k]2

(
[(iωn)2 + ϵ2

k + #2]δab + 2#2[k̂ak̂b − δab]
)

.

(15.152)

After the momentum sums, k̂ak̂b → 1
3δab so the susceptibility is isotropic, χab = χ (T)δab,

where

χ = −2Tµ2
N

∑

k

1

[(iωn)2 − E2
k]2

(
[(iωn)2 + E2

k] − 4
3
#2

)
. (15.153)

The first term is recognized as the Pauli susceptibility of a singlet BCS superconductor,
which drops exponentially to zero as T → 0, while the second term must be interpreted
as an additional contribution derived from the polarizability of the triplet condensate. The
evaluation of the Matsubara sums follows the same lines as for a singlet superconductor.
We obtain

χ = −2µ2
N

∑

k

∮

z=±Ek

dz
2π i

f (z)
1

(z − Ek)2(z + Ek)2

(
z2 + E2

k − 4
3
#2

)

= −2µ2
N

∑

k

{
∂

∂z

[
f (z)

1
(z + Ek)2

(
z2 + E2

k − 4
3
#2

)]

z=Ek

+ (Ek → −Ek)

}

= 2µ2
N

∑

k

{

−f ′(Ek)

(

1 − 2#2

3E2
k

)

+ (1 − 2f (Ek))
#2

3E3
k

}

. (15.154)

At zero temperature, the first term vanishes. The second term becomes

χ (T = 0) = 2µ2
NN(0)

∫ ∞

−∞
dϵ

(
#2

3[ϵ2 + #2]3/2

)

= 2µ2
NN(0)

[
ϵ

3
√

ϵ2 + #2

]∞

−∞
= 2

3
× 2µ2

NN(0), (15.155)

so the zero-temperature susceptibility is 2/3 of the normal-state Pauli susceptibility. This
intrinsic susceptibility of the condensate is present because the triplet pairs become slightly
spin-polarized in a magnetic field.
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We can actually do a little better than this, however, by noticing that, at a finite
temperature (denoting E =

√
ϵ2 + #2),

2
3

= 1
3

∫ ∞

−∞
dϵ

d
dϵ

[
ϵ√

ϵ2 + #2
[1 − 2f (E)]

]

= 1
3

∫ ∞

−∞
dϵ

d
dϵ

[
#3

E2 [1 − 2f (E)] − 2f ′(E)
(

1 − #2

E2

)]
, (15.156)

which we recognize as the argument of the second part of the integral in (15.154). We can
thus rewrite the susceptibility as

χ (T) = 1
3
χS(T) + 2

3
χP,

where χP = 2µ2
NN(0) is the Pauli susceptibility of the normal state and

χS(T) = 2µ2
NN(0)

∫ ∞

−∞
dϵ[−f ′(

√
ϵ2 + #2)] = 2µ2

NN(0)Y
[

#

2T

]
, (15.157)

where

Y[x] = 1
2

∫ ∞

−∞

du

cosh2[
√

u2 + x2]
(15.158)

is called the Yoshida function, after its inventor, Kei Yoshida. The final expression for the
susceptibility of the B phase is then

χB(T) = χP

[
2
3

+ 1
3

Y[#/2T]
]

. (15.159)

Exercises

Exercise 15.1 The standard two-component Nambu spinor approach does not allow a rota-
tionally invariant treatment of the electron spin and the Zeeman coupling of
fermions to a magnetic field. This drawback can be overcome by switching to a
four-component Balian–Werthamer spinor, denoted by

ψk =
(

c†
k

−iσ2(c†
k)T

)
=

⎛

⎜⎜⎝

ck↑
−ck↓
c†−k↓
c†−k↑

⎞

⎟⎟⎠ . (15.160)

(a) Show, using this notation, that the total electron spin can be written

S⃗ = 1
4

∑

k

ψ†
kσ⃗(4)ψk, (15.161)

where

σ⃗4 =
(

σ⃗ 0
0 σ⃗

)
(15.162)
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is the four-component Pauli matrix. (You may find it useful to use the relationship
σ⃗ T = iσ2σ⃗ iσ2.) In practical usage, the subscript 4 is normally dropped.

(b) Show that, in a Zeeman field, the BCS Hamiltonian

HMFT =
∑

kσ

c†
kα[ϵkδαβ − σ⃗αβ · B⃗]ckβ +

∑

k

[
#̄c−k↓ck↑ + c†

k↑c†−k↓#
]

+ V
g0

#̄#

(15.163)
can be rewritten using Balian–Werthamer spinors in the compact form

HMFT = 1
2

∑

k

ψ†
k
[
hk − σ⃗4 · B⃗

]
ψk + V

g0
#̄#, (15.164)

where hk = ϵkτ1 + #1τ1 + #2τ2 as before, but the τ⃗ now refer to the four-
dimensional Nambu matrices

τ⃗ =
([

0 1
1 0

]
,
[

0 −i1
i1 0

]
,
[

1 0
0 −1

])
. (15.165)

(c) Show that the quasiparticle energies in a field are given by ±Ek − σB.
Exercise 15.2 Pauli limited type II superconductors.

The BCS Hamiltonian introduced in describes a Pauli limited superconductor, in
which the Zeeman coupling of the paired electrons with the magnetic field domi-
nates over the orbital coupling to the magnetic field. In the flux lattice of a Pauli
limited type II superconductor, the magnetic field penetrates the condensate and can
be considered to be approximately uniform.

(a) Assuming that the orbital coupling of the electron to the magnetic field is negli-
gible, use the Balian–Werthamer approach developed in the previous problem to
formulate BCS theory in a uniform Zeeman field, as a path integral. Show that the
free energy can be written

F = −T
2

∑

k

Tr ln[∂τ + hk − σ⃗4 · B⃗] + V
g0

#̄#

= −T
2

∑

k,iωn,σ

ln
[
E2

k − (iωn − σB)2
]

+ V
g0

#̄#

= −T
∑

k,σ

ln
[

2 cosh
β(Ek − σB)

2

]
+ V

g0
#̄#. (15.166)

(b) Show that the gap equation for a Pauli limited superconductor becomes

1
g0

= 1
2

∑

k,σ

tanh
(

β(Ek − σB)
2

)
1

2Ek
.

Use this expression to show that the upper critical field is given by gµBBc2/2 =
#/2, where # is the zero-temperature value of the gap.

(c) Pauli limited superconductors usually undergo a first-order transition to the flux
state at a higher field than the one just estimated. Why is this?
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