
MANY BODY PHYSICS: 621. Spring 2022

Solution to Exercise 2.

1. (a) Let us first write the density in terms of the Boson propagator.
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Now the Matsubara sum can be re-written as an anticlockwise contour integral C1

around the imaginary axis
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The convergence factor ez0
+

decays for negative real z = �|x| while n(z) decays for

positive real z = |x|, so the contour integral at infinity vanishes and we can accordingly

add null contours to distort the contour into C2, running clockwise around the pole in

the Green’s function at z = !k. (Note that had we chosen instead of n(z), n(z) + 1,

which has the same pole structure, we would not have been able to distort the contour,

because this function does not decay for positive real z). This then gives
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Here, we have taken the thermodynamic limit, assuming that nk remains finite. When

Bose Einstein condensation occurs, µ ! 0, so that the occupancy nk=0 ⇠ O(V) = n0

becomes macroscopic. In this case we must write
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(b) The Feynman diagram for the dynamic charge susceptibility is given by
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We rewrite the Matsubara sum as a Contour integral, replacing i⌫n ! z, along the

countour C1 enclosing the poles of n(z) at z = i⌫n, which runs anticlockwise around

the imaginary axis. We distort this countour into a contour C2 that runs clockwise

around the poles of the Greens functions at z = !k and z = !k+q � i⌫n,
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This then gives
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so that
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where we have used the fact that n(!k+q�i⌫n) = n(!k+q). Thus the charge susceptibility

of the Bose gas is given by
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which is a kind of Bosonic Lindhardt function.

(c) The pair susceptibility diagram is written
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There is no minus sign infront, because there is no fermion loop in the diagram. We

replace i!r ! z and carry out the out the Matsubara sum as a contour integral around

the poles of the Fermi function (C2). We then distort the contour around the poles in

the Green’s functions, as follows
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so that
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If we set q = (q, i⌫n) = 0, the static pair susceptibility is then given by
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We can replace the summation over momentum by an integral over the density of states

N(✏), so that
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To obtain a finite result we must introduce a cut-o↵ on the energy integral, which in

conventional superconductors is the Debye energy. As T ! 0, there is still an infra-red

divergence in the integral. To study this, we can approximate the density of states by

its value N(0) near the Fermi energy, so that
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Now for ✏ >
e

kBT , tanh(�✏/2) ⇠ 1, which gives rise to a logarithmic divergence in the

integral, which is cut-o↵ at ✏ ⇠ kBT , so that
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The pair susceptibility of a Fermi liquid is thus logarithimically divergent in the

temperature. This means that an arbitrarily small attractive pairing interaction g in-

nevitably gives rise to a Cooper pair instability at su�ciently low temperature.

2. (a) We begin by formulating the partition function as a path integral
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Next we make the Hubbard-Stratonovich transformation
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so that the partition function can be written
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Now let us look for saddle point (mean-field ) solutions where ~Mj = ~MeiQ·R
. The

magnetic field term can be cast in momentum space as follows
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we can combine (23) and (22) into a single matrix equation

H =
X

k2 1

2
BZ

 †kH(k) k (25)

where

H(k) =

0
BBBBBBB@
✏k � µ M · ~�

M · ~� ✏k+Q � µ

1
CCCCCCCA . (26)

The action associated with the mean-field theory is
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where Ns is the number of sites in the crystal.
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(b) From the action, we can read-o↵ the inverse Greens function of the  k field as

G
�1

(k,!) = (! �H(k)). (28)

The energy eigenvalues of the mean-field Hamiltonian are determined by the zeros of

the determinantof the inverse Greens function, i.e
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where we have used the particle-hole symmmetry ✏k+Q = �✏k. The zeros of the deter-

minant then determine the eigenvalues

Ekp = p!k � µ, (p = ±) (30)

where !k =

q
✏2

k + M2. Each of these eigenvalues has a two-fold spin degeneracy

(c) Using the one-particle Eigenvalues, the total free energy is
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where we have absorbed the factor of two by re-extending the summation to the full

Brillouin zone.

(d) Taking the derivative of the free energy with respect to M, we obtain
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giving us the gap equation
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FIG. 1: 3D Plot of phase diagram for the spin density wave, calculated parametrically. Notice that the

backwards curvature of the phase boundary at finite µ indicates that at low temperature, the phase transition

becomes second order.

(e) At half filling, µ = 0. Setting M = 0 in the gap equation gives us the equation for Tc

1

I
=

Z

k
tanh

 
✏k

2Tc

!
1

✏k
= �Q(Tc) (36)

which is identical for the equation for Tc in a BCS superconductor. By replacing the

momentum sum by an energy integral, and approximating the density of states by its

value at the Fermi energy N(0), we see that spin density wave susceptibility �Q is

logarithmically divergent in temperature

�Q(T ) ⇠ 2N(0)

Z ⇤

T

d✏
✏
⇠ 2N(0) ln

 
⇤

T

!
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which diverges as T ! 0. The SDW instability at I�(T ) will thus occur for arbitrarily

small I, with transition temperature given by Tc ⇠ ⇤e�1/(2N(0)I)
.

At finite µ the critical value for Ic will become finite. We can calculate the phase
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diagram by computing the critical coupling constant as a function of Tc and µ,

1

I(µ,Tc)
=

Z
d3k

(2⇡)3

P
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⇥
(|✏k| ± µ)/2Tc

⇤

|✏k|
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where ✏k = �2t(cx + cy + cz). It is easiest to do this calculation by approximating

the density of states as a constant. If you wish to do the calculation for the true 3D

density of states, it is useful to first calculate the density of states and represent it as an

interpolation function, and to calculate

1
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=

Z
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�6t
d✏N(✏)

P
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⇥
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⇤
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A 3D plot of the phase diagram obtained using this procedure is shown in Fig. 1.

3. (a) We begin by using a complete basis of energy eigenstates, such that

H |�i = E� |�i ,
X

�

|�i h�| = 1,

D
�
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��� ⇣
E
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D
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���eiHtS ±q e�iHt

��� ⇣
E
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D
�
���S ±q

��� ⇣
E
.

The dynamic spin susceptibility is then given by

�R(q, t) = ih[S �q (t), S +
�q(0))] i✓(t � t0)

= i
X

�,⇣

e��(E��F)
nD
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��� ⇣
E D
⇣
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��� �
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�

D
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E D
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D
⇣
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��� �
E����

2

e�i(E⇣�E�)t✓(t),

where we have used the identity h�|S �q |⇣i = h⇣ |S
+
�q|�i

⇤
. Now, by introducing the spec-

tral function

�00(q,!) = ⇡(1 � e��!)

X

�,⇣

p�
����
D
⇣
���S +
�q

��� �
E����

2

�[! � (E⇣ � E�)], (40)

where p� = e��(E��F)
is the probability of being in the initial state |�i, we see that the

retarded response function can be written,

�R(q, t) = i✓(t)
Z

d!0

⇡
e�i!0t �00(q,!0). (41)
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(b) Fourier transforming this result,

�R(q,!) =

Z
1

0

dt�R(q, t)ei!te��t = i
Z

d!0

⇡
�00(q,!0)

Z
1

0

dtei(!�!0+i�) t, (42)

where we have inverted the order of the frequency and time integrations. Now using

i
Z
1

0

dtei(!�!0+i�) t =
1

!0 � ! � i�
, (43)

we obtain the “Kramers-Krönig” relation
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!0 � ! � i�
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(c) Next we evaluate the correlation function

S (q, t) = hS �q (t)S +
�q(0)i
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D
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��� �
E
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D
⇣
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��� �
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2
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If we now Fourier transform this expression, the frequency dependent correlation func-

tion can be written

S (q,!) =

Z
1

�1

dtei!tS (q, t)

=
X

�,⇣
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����
D
⇣
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�q

��� �
E����

2

2⇡�(E⇣ � E� � !). (46)

Now using (40), we can write this as

S (q,!) =
2

1 � e��!
�00(q,!) = 2[1 + n(!)]�00(q,!). (47)
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