
MANY BODY PHYSICS: 621. Spring 2024

Exercise 1 solutions. Kondo Effect.

1. (a) In a non-interacting impurity problem, the asymptotic wavefunction’s experience a

scattering phase shift, with a radial wavefunction that takes the form

ψ(r) ∼
sin(kr + δ(Ek))

r
. (1)

If we put the system inside a sphere of radius R, and the boundary condition ψ(R) = 0,

then kR + δ(Ek) = nπ determines the allowed momenta of the quasiparticles, given by

kn = n
π

R
−
δ(Ek)

R
, separated in momentum by ∆k =

π

R
. The level spacing in the absence

of scattering is ∆ϵ =
∂ϵ

∂k
∆k =

∂ϵ

∂k
π

R
. Now in the presence of the scattering phase shift,

momenta are reduced by an amount ∆k = −
δ[Ek]

R
, so the corresponding energy levels

are shifted downwards by an amount

Ek → ϵk −
∂ϵ

∂k
δ(Ek)

R
= ϵk −

δ(Ek)
π
∆ϵ. (2)

(b) Since there is a one-to-one correspondence between the original states with energy ϵ

and the scattered eigenstates with energy E, we can write

N(ϵ)dϵ = N∗(E)dE (3)

where N(ϵ) and N∗(E) are the unscattered and scattered density of states, respectively.

It thus follows that

N∗(E) = N(ϵ)
dϵ
dE

(4)

Now from (2) we have

E = ϵ −
δ(E)
π
∆ϵ (5)

so that
dϵ
dE
= 1 +

∆ϵ

π

∂δ(E)
∂E

(6)

Combining this with (4) we thus obtain

N∗(E) = N(E)
(
1 +
∆ϵ

π

dδ(E)
dE

)
(7)

where we have replaced N(ϵ)→ N(E), because E and ϵ differ by the infinitesimal ∆ϵ.

But N(E) =
1
∆ϵ

, so that

N∗(E) = N(E) +
1
π

dδ(E)
dE

(8)
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2. (a) Let us write the basis of singlet states as

{|1⟩, |2⟩, |3⟩} =
{
ψ†
↑
ψ†
↓
|0⟩,

1
√

2

(
ψ†
↑

f †
↓
+ f †
↑
ψ†
↓

)
|0⟩, f †

↑
f †
↓
|0⟩

}
, (9)

then the action of the Hamiltonian

H =
∑
σ=↑,↓

[
ϵψ†σψσ + V[ψ†σ fσ + H.c] + E f n fσ

]
+ Un f↑n f↓, (10)

on these states is

H|1⟩ =
(
2ϵψ†

↑
ψ†
↓
+ V

∑
( f †
↑
ψ†
↓
+ ψ†

↑
f †
↓

)
)
|0⟩ = 2ϵ |1⟩ +

√
2V |2⟩ (11)

similarly ,

H|2⟩ = (ϵ + E f )|2⟩ +
√

2V(|1⟩ + |3⟩), (12)

and

H|3⟩ = (2E f + U)|3⟩ +
√

2V |2⟩. (13)

Note the appearance of U in the last equaation From this we see that H|i⟩ = | j⟩Hi j =

| j⟩⟨ j|H|i⟩ , where

Hi j =


2ϵ

√
2V 0

√
2V ϵ + E f

√
2V

0
√

2V 2E f + U

 = H (14)

(b) The determinantal equation for the eigenvalues E ofH is

det[E1 −H] = (E − 2ϵ)
[
(E − (ϵ + E f ))(E − 2E f − U) − 2V2

]
− 2V2

[
E − 2E f − U

]
= (E − 2ϵ)(E − 2E f − U)

[
E − ϵ − E f − Σ(E)

]
, (15)

where the “self energy”

Σ(E) =
2V2

E − 2E f − U
+

2V2

E − 2ϵ
. (16)

It follows that the three energy eigenvalues are roots of the equation

E = (ϵ + E f ) + Σ(E) (17)

(c) The triplet states 
ψ†
↑

f †
↑
|0⟩,

ψ†
↓

f †
↓
|0⟩,

(ψ†
↑

f †
↓
+ ψ†

↓
f †
↑

)|0⟩,

(18)

do not hybridize with each other, and have energies E f + ϵ.
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(d) To obtain the energy eigenstates to leading order in V2, we can use second-order per-

turbation theory, to obtain

E∗1 = 2ϵ −
2V2

E f − ϵ

E∗2 = ϵ + E f −
2V2

ϵ − E f
−

2V2

E f + U − ϵ

E∗3 = 2E f + U −
2V2

ϵ − E f − U
(19)

(e) When ϵ − E f > 0 and E f + U − ϵ > 0, then the lowest energy eigenvalue of the

singlet states is E∗2 ≈ ϵ+E f , corresponding to a state with one f-electron: a stable local

moment, bound-into a singlet with a conduction electron. The energy of this singlet

state is, to leading order in perturbation theory

E∗2 = ϵ + E f −
2V2

ϵ − E f
−

2V2

E f + U − ϵ
= ϵ + E f − 2J (20)

where

J =
V2

ϵ − E f
+

V2

E f + U − ϵ
(21)

If we project into the sub-space with 1 f-electron, then the energy of the triplet state

is ϵnc + E f − 2J for the singlet state and ϵnc + E f otherwise, so that in this case, the

effective Hamiltonian is

H =
∑
σ

ϵψ†σψσ − 2JPS=0,nc=1 (22)

where

PS=0,nc=1 =
1
4

Pnc=1 −
1
2

(ψ†ασ⃗αβψβ) · S⃗ f (23)

where Pnc=1 = nc − 2nc↑nc↓ projects into the state with nc = 1, Where ncσ = ψ†σψσ,

nc = nc↑+nc↓. Notice how this Hamiltonian contains a potential and a Kondo scattering

term.

3. (a) The one loop Feynman diagrams for the anisotropic Kondo model are basically the

same as for the isotropic case. There are two contributions to the t-matrix. Process I is
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k′β

b

kα

σ σ′σ′′
a

k′′λ

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =
∑

ϵk′′∈[D−δD,D]

[
1

E − ϵk′′

]
JaJb(σaσb)βα(S aS b)σ′σ

≈ JaJbρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (24)

In process (II),

σ′σ′′
b a

k′β

k′′λ

kα

σ

the formation of a particle-hole pair involves a conduction electron line that crosses

itself, leading to a negative sign. Notice how the spin operators of the conduction sea

and antiferromagnet reverse their relative order in process II, so that the T-matrix for

scattering into a high-energy hole-state is given by

T (II)(E)k′βσ′;kασ = −
∑

ϵk′′∈[−D,−D+δD]

[
1

E − (ϵk + ϵk′ − ϵk′′)

]
JaJb(σbσa)βα(S aS b)σ′σ

= −JaJbρδD
[

1
E − D

]
(σbσa)βα(S aS b)σ′σ (25)

where we have assumed that the energies ϵk and ϵk′ are negligible compared with D.

Adding (Eq. 24) and (Eq. 25) gives

δHint
k′βσ′;kασ = T̂ I + T̂ II = −

JaJbρ|δD|
D

[σa, σb]βαS aS b

= −
1
2

JaJbρ|δD|
D

2iϵabcσc︷     ︸︸     ︷
[σa, σb]βα

iϵabdS d︷   ︸︸   ︷
[S a, S b]

=
ρ|δD|

D
JaJb

|ϵabc |δcd︷  ︸︸  ︷
ϵabcϵabd σc

βαS d

=
ρ|δD|

D
JaJb|ϵabc|σ

c
βαS c

σ′σ, (26)
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where we are using a summation convention throughout. In this way we see that the

virtual emission of a high energy electron and hole generates an antiferromagnetic

correction to the original Kondo coupling constant

Ja(D − |δD|) = Ja(D) + 2JbJcρ
|δD|
D
= Ja(D) − JbJcρ

δD
D
, (b , c , a), (27)

since we have reduced the band-width, δD = −|δD|. Note that in removing the sum-

mation convention, and the |ϵabc|, we pick up a factor of two and must now impose the

condition a , b , c In other words,

∂Jaρ

∂ ln D
= −2JbJc, (a , b , c). (28)

(b) In the easy-plane/easy axis case where Jx = Jy = J⊥, the three scaling equations in

(28) become

∂J⊥
∂ ln D

= −2JzJ⊥ρ + O(J3),
∂Jz

∂ ln D
= −2(Jz)2ρ + O(J3), (29)

Multiplying the first equation by J⊥ and the second equation by Jz, and subtracting the

two we then get

∂

∂D
(J2

z − J2
⊥) = 0, ⇒ J2

z − J2
⊥ = constant. (30)

(c) The scaling flows contain three domains of attraction corresponding to three stable

fixed points: (Fig. 1):

• Fully Screened Kondo singlet, with domain of attraction J⊥ > 0, Jz > −|J⊥|.

• Unscreened local moment, with domain of attraction Jz < −|J⊥|.

• Entangled Kondo triplet, with domain of attraction J⊥ < 0, Jz > −|J⊥|.

(d) In the easy-plane ferromagnetic Kondo model, J⊥ < 0. Provided Jz > −|J⊥|, i.e

providing the Ising part of the Kondo coupling is not too ferromagnetic, a “triplet

Kondo” effect will take place, scaling to strong coupling to produce a S=1, triplet

entangled Kondo state.
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FIG. 1: Scaling flows for the anisotropic Kondo model, showing three stable fixed points: the Kondo

singlet, the entangled triplet and unscreened moment fixed points.
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