
MANY BODY PHYSICS: 621. Spring 2022

Solutions to Problems 1 . February 28th, 2022.

1. (a) This question was an exercise to help you visualize the meaning of a coherent state

as a Gaussian wave packet centered around a shifted momentum and position.

The ground-state of a harmonic oscillator is a wavepacket centered at x = 0 and

p = 0. Consider the state

|p, x〉 = exp [−i(xp̂− px̂)] |0〉. (1)

By rewriting z = (x+ ip)/
√

2, b = (x̂+ ip̂)/
√

2 it follows that

b†z − z̄b =
1

2
[(x̂− ip̂)(x+ ip)− (x̂+ ip̂)(x− ip)] = i(px̂− xp̂) (2)

so that |p, x〉 = exp
[
b†z − z̄b

]
|0〉. Next, using the fact that eA+B = eAeBe−

1
2

[Â,B̂],

(provided [A,B] commutes with A and B). I apologize, as the minus sign before

the commutator was missing in the question. Putting Â = b†z and B̂ = −z̄b, so

that [A,B] = −z̄z[b†, b] = z̄z and thus

|p, x〉 = e−z̄z/2eb̂
†ze−z̄b̂|0〉 = e−z̄z/2eb̂

†z|0〉 = e−z̄z/2|z〉. (3)

In other words, the coherent state |z〉, is, up to a normalization factor, the trans-

lation of the vacuum to a state that is centered around z = (x + ip)/
√

2. Since

a translation preserves the shape of the ground-state wavefunction, the state

remains a minimum uncertainty wavepacket, with ∆p2 = ∆x2 = 1/2.

2. In this question, I wanted to check that you had understood how to set up a fermionic

path integral.

(a) The first step in setting up the path integral is to write the Trace using coherent

states. Let us define

|c〉 = exp[ĉ†c]|0〉, 〈c̄| = 〈0| exp[c̄ĉ].

Now, for a general operator Â, the matrix element between these coherent states

is

〈c̄|Â|c〉 = Aoo〈c̄|0〉〈0|c〉+ A01〈c̄|0〉〈1|c〉+ A10〈c̄|1〉〈0|c〉+ A11〈c̄|1〉〈1|c〉
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= Aoo + A01c+ A10 + A11c̄c (4)

so that the trace may be written

Tr[A] = A00 + A11 = −
∫
dc̄dcec̄c〈c̄|Â|c〉 (5)

Applying this to the partition function,

Tr[e−βH ] = −
∫
dc̄3dc0e

c̄3c0〈c̄3|e−βH |c0〉

=

∫
dc̄3dc3e

−c̄3c3〈c̄3|e−βH |c0〉, (6)

where we have used the definition, c3 = −c0. We now use the completeness

relation

1 =

∫
dc̄dce−c̄c|c〉〈c̄| (7)

to introduce two time-slices into the matrix element, writing e−βH = (e−∆τH)3 =

e−∆τH12e
−∆τH11e

−∆τH , where ∆τ = β/3, so that

〈c̄3|e−βH |c0〉 =

∫
dc̄2dc2dc̄1dc1〈c̄3|e−∆τH |c2〉〈c̄2|e−∆τH |c1〉〈c̄1|e−∆τH |c0〉e−(c̄2c2+c̄1c1)

(8)

so that

Tr[e−βH ] =

∫
dc̄3dc3dc̄2dc2dc̄1dc1〈c̄3|e−∆τH |c2〉〈c̄2|e−∆τH |c1〉〈c̄1|e−∆τH |c0〉e−(c̄3c3+c̄2c2+c̄1c1).

Finally, using the expansion of the matrix element in terms of coherent states,

〈c̄j|e−∆τH |cj−1〉 = eαc̄jcj−1 +O(∆τ 2) (9)

where α = (1−∆τε), we obtain with accuracy O(3∆τ 2)

Z3 =

∫
dc̄3dc3dc̄2dc2dc̄1dc1e

α[c̄3c2+c̄2c1+c̄1c0]−[c̄3c3+c̄2c2+c̄1c1]

=

∫
dc̄3dc3dc̄2dc2dc̄1dc1 exp

−(c̄3, c̄2, c̄1)


1 −α 0

0 1 −α

α 0 1



c3

c2

c1


 , (10)
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(b) Since this integral is Gaussian, the integral is given by the determinant of the

matrix:

Z3 = det


1 −α 0

0 1 −α

α 0 1

 = 1 + α3 (11)

(c) Generalizing this result to N time-slices, we obtain

ZN = det [M]

M =



1 −α 0 . . . 0

0 1 −α . . .
...

...
...

. . .
...

...
...

. . . −α

α . . . . . . . . . 1


det[M] = 1 + αN (by inspection) (12)

In the limit N →∞,

αN =

(
1− βε

N

)N
→ e−βε (13)

so that

ZN → 1 + e−βε. (14)

(d) Repeating the calculation using bosonic coherent states

|b〉 = exp[b̂†b]|0〉, 〈b̄| = 〈0| exp[b̄b̂].

The trace formula is now

Tr[A] =
∑
n

〈n|A|n〉 =

∫
db̄db

2πi
e−b̄b〈b̄|Â|b〉, (15)

while the completeness relation is

1 =

∫
db̄dbe−b̄b|b〉〈b̄|, (16)

enabling us to write

Z3 =

∫
db̄3db0

2πi

2∏
j=1

db̄db

2πi
eα[b̄3b2+b̄2b1+b̄1b0]−[

b̄3 b̄3︷︸︸︷
b̄3b0 +b̄2b2+b̄1b1]
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=

∫ 3∏
j=1

db̄db

2πi
exp

−(b̄3, b̄2, b̄1)


1 −α 0

0 1 −α

−α 0 1



b3

b2

b1




=
1

(1− α3)
. (17)

where we have defined b3 = b0 in the second step. The same limiting procedure

then leads to the result

lim
N→∞

ZN =
1

1− e−βε
. (18)

3. We are evaluating the partition function

Z = Tr
[
e−βH

]
(19)

where

H = −µBBσf †σfσ, (20)

with an implied summation over the repeated σ = ±1 index. Casting this as a path

integral,

Z =

∫
D[f̄ , f ]e−S,

where

S = S =
∑
σ=±1

∫
dτ f̄σ

(
∂τ − µBσB

)
fσ, (21)

we can write

Z = det[∂τ − µBσzB] = det[∂τ − µBB]det[∂τ + µBB] (22)

Switching to Fourier space,

Z =
∏
σ=±

∏
iνn

[−iνn − σµBB]

The Free energy is then

F = −T
∑
σ=±1

∑
iνn

ln[−iνn − σµBB] (23)

We can carry out this summation using the contour integral method, rewriting

F =
∑
σ=±1

∮
dz

2πi
f(z) ln[−z − σµBB], (24)
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where the integral is anticlockwise around the real axis. The function ln[−z+ ε] has a

branch cut along the real axis from z = ε to z =∞, and since F [ω + iδ]− Fω − iδ =

2iImF (ω + iδ), it follows that

F =
∑
σ

∫
dω

π
f(ω)Im ln[−(ω + iδ)− σµBB]

= −
∑
σ

∫ ∞
−σµBB

dωf(ω) =
[
Tn(1 + e−βx)

]∞
−σµBB

=
∑
σ

(−T ) ln[1 + eβσµBB]

= −T ln(2 + 2 cosh[βµBB]) (25)

The correct answer is

F = −T ln(2 cosh[βµBB])

Our answer is correct, given our original Hamiltonian, but it is not correct for a single

spin-1/2. We have obtained

Z = 2 + ZS=1/2 = 2 + 2 cosh[βµBB]

Had we removed the empty and doubly occupied states, then the partition function

becomes

Z = 2 cosh[βµBB]

FIG. 1: a) f [ψ] as a function of µ in profile and b) in three dimensions, showing the Mexican hat

potential.

4. This problem was an exercise in thinking about the Ginzburg Landau theory for a

superfluid, using the concept of a coherent state.

5



(a) The free energy f = S/(βV ) per unit volume for a uniform Bose field ψ is given

by

f = −µ|ψ|2 +
g

2
|ψ|4 (26)

A sketch of the free energy is given in Fig (1).

(b) The minimum of the free energy is determined by ∂f/∂|ψ|2 = −µ + g|ψ|2, i.e

ψ =
√

µ
g
eiφ where φ is the phase of the order parameter and ns = µ

g
is the

superfluid density.

(c) The coherent state for the ground-state is

|ψ〉 = exp
[√

Nsb
†
q=0

]
|0〉 = exp

[∫
d3x
√
nse

iφψ†(x)

]
|0〉

where b†q = 1√
V

∫
d3xψ†(x)eiq·x and Ns = nsV is the number of bosons in the

condensate. You can normalize this state by noting that 〈ψ|ψ〉 = eNs .

(d) In this situation, φ(x) = l(2π/L)x = Q · x where L is the circumference of the

torus in the x-direction and Q = (2πl/L, 0, 0) so that now

|ψ〉 = exp

[∫
d3x
√
nse

iQ·xψ†(x)

]
|0〉.

Two of you noted that if one reminimizes the action, µ→ µ̃ = µ− h̄2Q2

2m
, so that

now ns = µ̃/g. The superfluid velocity is given by

vs =
h̄

m
∇φ =

h̄

m
Q (27)

(e) So long as the superfluid velocity is lower than the critical velocity, it costs energy

for the walls to create quasiparticles, and the superflow can not decay without a

passage of vortices through the medium, which costs a large amount of energy or

action, causing the rate of current decay to be exponentially small.

(f) One can include fluctuations into the path integral, writing

ψ(x, τ) = ψ0 +
1√
βV

∑
q,µn

bq,ne
i(q·x−νnτ)

and one can then carry out the Gaussian integration over the fluctuations. The

resulting quasiparticle dispersion is given by ωq =
√

(Eq + gnc)2 − (gnc)2, and
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the correction to the mean-field Free energy derived from these gaussian fluctua-

tions is given by F = Fo + T
2
Tr ln[−G−1]. This correction is approximately given

by

F = F0 + T
∑
q

ln[1− e−βωq ] (28)

where F0 is the ground-state energy.

5. (a) In this problem, it actually was not necessary to choose the dimension of A to be

even. Lets take it to be dimension N . We shall use a coherent state representation

to write

T = Tr[MM†] = (−1)N
∫ ∏

i=1,2N

dc̄idcie
c̄ici〈c̄|MM†|c〉 (29)

Now since M = exp[1
2
Aijc

†
icj] is already normal ordered, it follows that

〈c̄|MM†|c〉 = exp

[
c̄jcj +

1

2
Aij c̄ic̄j + cjciĀij

]
(30)

so we can write the trace as

T = Tr[MM†] = (−1)N
∫ ∏

i=1,2N

dc̄idci exp

[
2c̄jcj +

1

2
Aij c̄ic̄j + cjciĀij

]
= (−1)N

∫ ∏
i=1,2N

dc̄idci exp

[
1

2
ψ̄ · Λ · ψ

]
(31)

where the matrix

Λ =



2
. . .

. . . Aij

2
. . .

. . . −2

A†ij
. . .

. . . −2


(32)

and

ψ =



c1

...

cN

c̄1

...

c̄N


(33)
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It follows that

T = (−1)N
√

det[−Λ] =
√

det[Λ], (34)

where we have been loose with the minus signs. To prove this, by the way, one

can evaluate T 2, and show that it can be rewritten as a conventional complex

Grassmanian integral with matrix Λ. I note by way of correction, that since Λ

is not a skew symmetric matrix, the square root of the determinant is not the

Pfaffian of Λ. However, one can carry out a unitary transformation from the ψ to

a column of real Grassmans (Majoranas), and in this basis a Pfaffian expression

can be found, which if A = α + iβ where α and β are real, skew symmetric

matrices,

T = pf

 iβ 2i− iα

−2i− iα −iβ

 . (35)

which removes the sloppy ambiguity of minus signs in the square root of (34).

(b) For the case where A =

 0 a

−a 0

, it follows that

Λ =


2 a

2 −a

ā −2

−ā −2

 , (36)

so that detΛ = (4+|a|2)2 and T = (4+|a|2). You may also verify that if a = α+iβ

pf


iβ 2i −iα

−iβ iα 2i

−2i −iα −iβ

iα −2i iβ

 = 4 + |a|2.

Let us check this directly. The states of the Hilbert space in an occupation

number basis are |n1, n2〉 (ni = 0, 1). Now M = eac
†
1c
†
2 = (1 + ac†1c

†
2), where,

because we are dealing with fermions, the exponential truncates to linear order.

This means that

Tr[MM†] = Tr[(1 + ac†1c
†
2)(1 + āc2c1)] = Tr[1] + |a|2Tr[c†1c

†
2c2c1] = 4 + |a|2, (37)
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where the cross terms vanish, as they do not conserve particle number, and we

have set Tr[1] = 4, the dimension of the Fock space. This directly confirms that

our equation works for the case N = 2.
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