
Chapter 12

Tensor Products of Irreducible
Representations

Consider two representations with Young Graphs η1 and η2, corresponding
to tensors of rank k1 and k2. The tensor product is a tensor of rank k1 + k2,
and must be decomposed into irreducible representations corresponding to
Young Graphs of Sk1+k2

. Which ones? I will give only the magic rule, and
simultaneously we will do as an example × .

1) Take the second graph and place 1’s in the first row of boxes, 2’s in the
second row, etc.: 1 1

2
.

2) Take the boxes of the top row of the second
graph and add them to the first graph in all
possible ways resulting in Young graphs. No
two boxes may go in the same column.

1 1 1
1 1 1

Successively add the boxes from the lower rows, one row at a time, working
down. The configurations are constrained, however, by

(a) After adding each row, the graph must be a Young graph.

(b) No two boxes in a column can have the same number.

(c) Reading right-to-left and top-to-bottom (Hebrew fashion), at any point
there must be no more j + 1’s encountered than j’s.
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In SU(3), 6 × 8 = 3 + 6 + 15 + 24.
A very important example in SU(3) is octet ⊗ octet:
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Recall that at most N boxes can be in a column, and a column of N boxes
can be dropped, so for SU(3),

⊗ = ⊕ ⊕ ⊕ 1 ⊕ ⊕ ,

or 8 ⊗ 8 = 27 ⊕ 10 ⊕ 8 ⊕ 1 ⊕ 10 ⊕ 8.

Notice that the octet appears twice in the product of two octets, as each
different labelling counts. This complicates the Clebsch-Gordonry. For ex-
ample, the last time we considered πN scattering, we noted that the S matrix
was SU(2) invariant, so we could insert a set of intermediate projections onto
states of total isospin T , with amplitudes a1/2 and a3/2. But now let us gener-
alize to the scattering of any baryon B in the same SU(3) multiple (the octet)
as the proton (which means p or n or Λ or Σ± or Σ0 or Ξ0 or Ξ−) scattering
off any meson M in the meson octet: K, K̄, π, η. To the extent that we can
ignore the breaking of SU(3) symmetry, we can combine initial two-particle
states into states |η, T3, Y 〉 for η = 27, 10, 10, 1, and 8, but for the 8, there
are two ways to combine B’s and M ’s into each state of the intermediate
octet. These are called 8s and 8a. The final state can be similarly combined.
Because the scattering matrix S is approximated by being SU(3) invariant,
the initial and final states must be in the same SU(3) multiplet. Thus there
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is an analog of the Wigner-Eckhart theorem which says the scattering am-
plitude is determined in terms of reduced amplitudes for the 27, for the 10,
the 10, and the 1, together with four amplitudes 8ss, 8sa, 8as, and 8aa which
describe the four possibilities to combine initial states into a given state in
the octet and then let it decompose into the final states.

The classic paper on Clebsch-Gordon coefficients for SU(3) is J. J. DeSwart,
Rev. Mod. Phys. 35 (1963) 916. We will not go into this subject.

We have described the representations of SU(N) in terms of tensors made
of quarks. What are the representations made from antiquarks? More gen-
erally, given a representation η, what is its conjugate representation η∗? The
answer is found from the requirement that Γη × Γη∗

contains the identity
representation. As we can loose boxes only by discarding columns of length
N , we take our original graph η (say ), and extend it to a rectangle of

height N ,
(

XXXX

X + + +

+ + + +
for SU(3)

)

, discard the original and rotate the rest by 180◦,

to get η∗
(

for SU(3)
)

. Note that the η∗ corresponding to each repre-
sentation depends on N . For SU(2), each representation is equivalent to its
own conjugate, but this is not true for SU(N) for N > 2. From this method,
we see that for SU(3) is the conjugate of the quark , so is the antiquark
representation. We also see that an initial column of N boxes doesn’t affect
η∗, so it also doesn’t affect η.

Consider a state of three quarks. Under color, the quarks are an SU(3)
triplet. Let us consider only the “light flavors” u, d, and s, so they are also
an SU(3) triplet under flavor. Finally they are spin 1

2
fermions, so they are

an SU(2) doublet in spin.

In the lowest bound state, the quarks all have the same spatial depen-
dence, in the s state, ℓ = 0. The total wave function is therefore only
dependent on color, flavor, and spin. Fermi statistics requires that overall,
the wave function must be antisymmetric. Under flavor, we could have a

decuplet , an octet , or a singlet . The same would be true for color,

except that by “color confinement” only singlets under color can escape as

particles. Thus is the only acceptible color representation, and is totally

antisymmetric. Finally, for SU(2), doesn’t exist, so there are only the

J = 3/2 and the J = 1

2
possibilities. This must be combined with the

flavor representation to give total symmetry (as the color already provides
the antisymmetry). From Homework #3 problem 3, ⊗ contains ,

136. Last Latexed: April 25, 2017 at 9:45 Joel A. Shapiro

but ⊗ and ⊗ do not. Of course the totally symmetric spin

combination and the totally symmetric SU(3) combination have a totally
symmetric composite. Thus the quarks can form a decuplet of spin 3/2 par-
ticles or an octet of spin 1/2, but nothing else. That this agrees with the
lowest mass baryons was the basis of the quark model and the origin of the
idea of color SU(3). Without color, we would need flavor ⊗ spin to be anti-
symmetric. This would give an 8 of J = 1/2 but a singlet of J = 3/2, which
is phenomenologically disasterous.
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The decuplet of spin 3/2 baryons. All ex-
cept the Ω− were known when SU(3) (fla-
vor) was proposed, and it predicted the
existence (and approximate mass) of the
Ω−, a strong argument for the “eightfold
way” assignment of flavor.

I will not consider O(N) and its connection to Clifford algebras and the
Dirac equation. The classic reference is
K. M. Case, Phys. Rev. 97 (1955) 810.


