
Chapter 4

SU(2)

4.1 Representations of SU(2)

We will now work out in detail the properties of SU(2) and its representations.
We have already seen that the generators may be chosen to be

Li =
1

2
σi, with σi = the Pauli matrices.

Then c k
ij = ǫijk are the structure constants, and

βij = −ǫaibǫbja = 2δij .

Thus our generators are not quite canonically normalized, but are all nor-
malized equally, and β is positive definite. This is related to the fact, which
we have already seen, that the group is compact.

In writing down our generators, we have chosen, arbitrarily, one direction
to make diagonal. Any rotation can be, by similarity transformation with at
rotation, rotated into the z direction, so as we have a choice as to which of
the infinite number of equivalent representations to choose, we may choose
L3 to be diagonal.

If we had several generators which commuted with each other, we could
have chosen all of them to be diagonal. In general, we will take a maximal
set of commuting generators, called the Cartan subalgebra, and represent
them as diagonal.

For SU(2), no rotations about any other axis commute with L3, so the
Cartan subalgebra is one dimensional.
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We want to look for finite dimensional irreducible representations, and
we have chosen to make Γ(L3) diagonal. Consider a basis vector em with
L3em = mem, or Γm′m(L3) = mδm′ m, where so far we are not restricting m
other than to say it is real. However, we know that e4πiL3 = 1I, so e4πim = 1,
and m = n/2 for some integer n, for us to have a true representation of the
SU(2) group. But even without assuming this, we will find it anyway, from
requiring the representation to be finite dimensional.

From L1 and L2 we can form the two operators

L± =
L1 ± iL2√

2
.

These are not actually part of the Lie algebra, because that is defined over the
reals, but any representation of the algebra is automatically a representation
of the complexification, i.e. {

∑
vaLa}, va ∈ C.

L± are called raising and lowering operators respectively because

[L3, L±] =
1√
2

[L3, L1] ±
i√
2

[L3, L2] =
i√
2
L2 ±

1√
2
L1 = ±L±.

Thus if L3em = mem,

L3 (L±em) = (L±L3 ± L±) em = (m± 1)L±em,

so L±em is a new basis vector of the representation, unless it vanishes.
Applying L+ an arbitrary number of times generates an arbitrary number

of vectors unless at some point it gives 0. All of these vectors are linearly
independent, so we would generate an infinite-dimensional space unless there
exists some state ej ∝ Lp

+em with L3ej = jej on which L+ej = 0. ej is called
the highest weight state.

Let us form a normalized vector proportional to ej called1 |j, j〉, and write
the inner product in quantum mechanical form

〈j, j|j, j〉 = 1.

Now we generate a sequence of orthonormal states

|j,m〉 = Nj,mL
j−m
− |j, j〉 ,

1If there are several eigenvectors with eigenvalue m, add a label α to the states generated
by L+, so the highest weight ones will be |j, j, α〉, but the states with different α will turn
out to be in different irreducible representations, as shown below.
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where Nj,m is a real normalization constant not quite the same as Georgi’s.
The state |j,m〉 is an eigenstate of L3 with eigenvalue m,

L3 |j,m〉 = m |j,m〉
because each application of L− lowers the eigenvalue of L3 by one2.

The normalization factors can be found by observing that

|j,m〉 = L− |j,m+ 1〉 Nj,m

Nj,m+1
︸ ︷︷ ︸

N−1

m+1
in Georgi

or L− |j,m+ 1〉 = Nm+1 |j,m〉.
On the other hand,

L+ |j,m〉 = Nj,mL+L
k
− |j, j〉 with k = j −m

= Nj,m

(
k−1∑

r=0

Lk−1−r
− [L+, L−]Lr

− |j, j〉 + Lk
−L+ |j, j〉

)

.

But [L+, L−] = 1
2
[L1 + iL2, L1 − iL2] = i [L2, L1] = L3 and L3L

r
− |j, j〉 =

(j − r)Lr
− |j, j〉 as L− is the lowering operator. So as L+ |j, j〉 = 0,

L+ |j,m〉 = Nj,m

k−1∑

r=0

(j − r)Lk−1
− |j, j〉

=

[

kj − k(k − 1)

2

]

Nj,mL
k−1
− |j, j〉

= k

[

j − k − 1

2

]

Nj,mN
−1
j,m+1 |j,m+ 1〉

=
1

2
(j −m)(j +m+ 1)N−1

m+1 |j,m+ 1〉 .

Now L+ = L†
−, so

〈j,m+ 1|L+ |j,m〉 = 〈j,m|L− |j,m+ 1〉∗

= =
1

2
(j −m)(j +m+ 1)N−1

m+1 = Nm+1

2The state |j, m, α〉 so generated will be proportional to the original em because
[L

−
, L+] = −L3 and em is an eigenstate of L3. Thus all the states generated have the

same α.
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or

Nm+1 =
1√
2

√

(j −m)(j +m+ 1)

Nm =
1√
2

√

(j −m+ 1)(j +m).

Now the set of states |j,m〉 m = j, j−1, j−2, . . . must terminate somewhere
if the representation is to be finite dimensional, so for some m < j, Nm =0,
so j +m = 0, or m = −j. But j −m is an integer, so 2j is an integer, and
hence 2m is an integer as well.

We have formed a representation with orthonormal basis {|j,m〉 , m =
j, j − 1, j − 2, · · · ,−j}, which is 2j + 1 dimensional, with 2j an integer. We
found the representation of L3 and L±, from which L1 and L2 follow3.

There is exactly one irreducible representation of SU(2) for each dimen-
sion and for each j = 0, 1

2
, 1, 3

2
, . . .. Each representation has just one eigen-

state of L3 with each eigenvalue m ∈ [−j,−j + 1, . . . , j]. The representation
is given by

L3 |j,m〉 = m |j,m〉

L+ |j,m〉 =
1√
2

√

(j −m)(j +m+ 1) |j,m+1〉

L− |j,m〉 =
1√
2

√

(j +m)(j −m+ 1) |j,m−1〉

the representation of the group elements is, of course, given by the exponen-
tial of the representation of the generators. The 2j + 1 dimensional repre-
sentation is usually denoted

Dj
m1,m2

(g)

The j = 1
2

representation is just the group elements themselves. Therefore
it is called the defining representation.

3Notice that if we started with 2 orthogonal states em,α and em,β, all the states we
generated from em,α would be orthogonal to all those from em,β, and the first set by itself
would be an irreducible representation.
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4.2 Reduction of Direct Products

If Γ1 and Γ2 are two representations of a Lie group, and Γ is their direct
product, then

Γ(ix),(jy)(g) = Γ1
ij(g)Γ

2
xy(g).

Recalling that4 Γ(La) = −i d
dva

Γ(g(va))
∣
∣
∣

v=0

g=1

,

Γ(ix),(jy)(L) = Γ1
ij(L)Γ2

xy(1I) + Γ1
ij(1I)Γ

2
xy(L) = δxyΓ

1
ij(L) + δijΓ

2
xy(L).

Now for SU(2), consider the direct product states with bases

|j1, j2;m1, m2〉 = |j1, m1〉 ⊗ |j2, m2〉 .

This representation can in principle be decomposed into a set of irreducible
representations |j,m〉. To see which, we count the dimensionality of the
eigenspaces of L3,

L3 |j1, j2;m1, m2〉 = (L3 |j1, m1〉) ⊗ |j2, m2〉 + |j1, m1〉 ⊗ (L3 |j2, m2〉)
= (m1 +m2) |j1, m1; j2, m2〉 .

Fortunately our states are already eigenstates of L3. The largest eigenvalue
is j1 + j2, which can occur in only one way. So the representation j = j1 + j2
occurs exactly once in the direct product. This representation accounts for
one of the basis vectors for each m (= eigenvalue of L3) with |m| ≤ j1 + j2.

Now consider m = m1 +m2 = j1 + j2 − 1. There are two ways to build
it up, with m1 = j1 − 1, m2 = j2, or with m1 = j1, m2 = j2 − 1, as long as
each j is at least 1

2
. The next higher m, m = j1 + j2 − 2, can be built three

different ways. The growth stops with m = j1 +j2−k, which can be written
in k + 1 ways, with m1 = j1 − r,m2 = j2 − k + r, r = 0, . . . , k. What stops
it is that we must require m1 ≥ −j1, and m2 ≥ −j2, so k ≤ 2 min(j1, j2).
After that, the m corresponding to the smaller j (say jmin = k/2)) takes on
all 2jmin + 1 values, until we get to m < −|jmax − jmin|, where the possible
values of m for the smaller j are limited.

4I have added the −i to get physicist’s generators.
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Example:

j1 = 5/2

j2 = 1

Thus the dimension-
ality of the m sub-
space is min(j1 +j2−
|m| + 1, 2jmin + 1).

m ways m = m1 +m2 number
7/2 5/2 + 1 1
5/2 5/2 + 0; 3/2+1 2
3/2 5/2 + (−1); 3/2+0; 1/2+1 3
1/2 3/2 + (−1); 1/2+0; −1/2+1 3
−1/2 1/2 + (−1); −1/2+0; −3/2+1 3
−3/2 −1/2 + (−1); −3/2+0; −5/2+1 3
−5/2 −3/2 + (−1); −5/2+0 2
−7/2 −5/2 + (−1) 1

Each decrease of m gives a new state, which is the highest state of a new
representation, up to the point where

j1 + j2 −m+ 1 = 2jmin + 1,

or |m| = jmax − jmin = |j1 − j2|. Thus

Γj1 ⊗ Γj2 ∼=
j1+j2⊕

j=|j1−j2|

Γj.

This statement is an equivalence, so there must be a unitary matrix U which
connects the direct product to the direct sum. This matrix has a right index
which is a pair (m1, m2) and a left index which must specify which irreducible
representation in the sum is referenced, and which m for that representation.
Because each j in the sum appears only once, we can use j to index the
representation. Thus the left index is (j,m). Of course the whole matrix
depends on j1 and j2. It is generally written5

(j1, j2, j,m| j1, j2, m1, m2)

with hermitean conjugate (j1, j2, m1, m2| j1, j2, j,m) and with

|j,m〉 =
∑

m1,m2

|j1, j2, m1, m2〉 (j1, j2, m1, m2| j1, j2, j,m) .

Both basis states are normalized, so (j1, j2, m1, m2| j1, j2, j,m) is a uni-
tary matrix. That does not completely define it, of course, because each of

5Notice that when numbers are inserted, it is ambiguous whether the third index is the
total j or the first m.
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the invariant subspaces could be multiplied by an arbitrary phase |j,m〉 →
eiφj |j,m〉. For each j, we choose reality and the sign convention by making
this overlap for m = j and m1 = j1 be real and positive:

SC: (j1, j2, j,m = j| j1, j2, m1 = j1, m2 = j − j1) > 0.

A detailed example:
Consider the direct product of j1 = 1 and j2 = 1

2
, as occurs if we ask

about the total angular momentum of an electron (spin 1
2
) in a p orbital

(orbital angular momentum 1, in units of ~).

|j1 = 1, m1 = 1〉 ⊗
∣
∣
∣
∣
j2 =

1

2
, m2 =

1

2

〉

=

∣
∣
∣
∣

3

2
,
3

2

〉

,

so, abbreviating (j1, j2, m1, m2| j1, j2, j,m) as (j1, j2, m1, m2| j,m), we have
(
1, 1

2
, 1, 1

2

∣
∣ 3

2
, 3

2

)
= 1. Applying the lowering operator

L−

∣
∣
∣
∣

3

2
,
3

2

〉

= (L− |1, 1〉) ⊗
∣
∣
∣
∣

1

2
,
1

2

〉

+ |1, 1〉 ⊗
(

L−

∣
∣
∣
∣

1

2
,
1

2

〉)

= =
√

1

2
· 3 · 1

∣
∣
∣
∣

3

2
,
1

2

〉

=

√

1

2
· 2 · 1

∣
∣
∣
∣
1, 0,

1

2
,
1

2

〉

+

√

1

2
· 1 · 1

∣
∣
∣
∣
1, 1,

1

2
,−1

2

〉

or

∣
∣
∣
∣

3

2
,
1

2

〉

=

√

2

3

∣
∣
∣
∣
1, 0,

1

2
,
1

2

〉

+

√

1

3

∣
∣
∣
∣
1, 1,

1

2
,−1

2

〉

so
(
1, 1

2
, 0, 1

2

∣
∣ 3

2
, 1

2

)
=
√

2
3
;
(
1, 1

2
, 1,−1

2

∣
∣ 3

2
, 1

2

)
=
√

1
3
.

The state
∣
∣1
2
, 1

2

〉
is orthogonal to

∣
∣3
2
, 1

2

〉
but also must be made of the 2

m1 +m2 = 1
2

states, so

∣
∣
∣
∣

1

2
,
1

2

〉

= α

∣
∣
∣
∣
1,

1

2
, 0,

1

2

〉

+ β

∣
∣
∣
∣
1,

1

2
, 1,−1

2

〉

.

Orthogonality tells us
√

2/3 α +
√

1/3 β = 0 and normalization that α2 +
β2 = 1. The sign convention SC says β > 0, so

β =

√

2

3
=

〈
1

2
,
1

2

∣
∣
∣
∣

∣
∣
∣
∣
1,

1

2
, 1,−1

2

〉

α = −
√

1

3
=

〈
1

2
,
1

2

∣
∣
∣
∣

∣
∣
∣
∣
1,

1

2
, 0,

1

2

〉
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Applying L− further to the states
∣
∣3
2
, m
〉

and
∣
∣1
2
, m
〉

specifies the remaining
coefficients without additional sign conventions.

Exercise: work out
〈
1, 1

2
, j,m

∣
∣
∣
∣1, 1

2
, m1, m2

〉
for all nonzero elements.

These orthogonal matrices are called the Vector coupling coefficients.
They are more usually called, by physicists and incorrectly, Clebsch-Gordon
coefficients.

The decomposition of the direct product of irreducible representations
of a compact group can, of course, always be done, in a fashion analogous
to this, as we shall see later. There are, however, special features of SU(2)
related to

1. Each representation j appears at most once in j1⊗j2, and all represen-
tations of a given dimension are equivalent. This is not true for SU(3),
for example.

2. Because there is only one representation for each dimension, each rep-
resentation is self-conjugate, Γj ∗ ∼= Γj . As a consequence, it is possible
to treat j1 ⊗ j2 → j3 in a symmetric fashion, defining the Wigner
coefficient (

j1 j2 j3
m1 m2 m3

)

.

There is a great machinery for dealing with SU(2) representations, with
such objects as 6-j and 9-j symbols, etc.. These are used in considering
the overlaps of differing choices in how to combine the many angular
momenta of components in an atom or in an atomic nucleus. References
are Edmunds, Rose, and also Yutsis6. To see how crazy one can get,
see J. Shapiro, Comp. Phys. Comm. 1, (69) 207.

3. Starting with the defining representation, j = 1
2
, one can generate

an arbitrary representation of spin j by taking the totally symmetric
piece of the direct product of 2j defining representations 1

2
⊗ 1

2
⊗ . . .⊗ 1

2
.

Writing
∣
∣ 1
2
, 1

2

〉
as ↑ and

∣
∣1
2
,−1

2

〉
as ↓, one can write such an expression,

as, for example

|2, 1〉 =
1

2
(↑↑↑↓ + ↑↑↓↑ + ↑↓↑↑ + ↓↑↑↑) .

6A. P. Yutsis, I. B. Levinson and V. V. Vanagas, “The Theory of Angular Momentum”
(Oldbourn Press, London, 1962).
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4.3 Representations of Finite Rotations

Consider the action of a finite rotation on an irreducible representation

eiνL |j,m, α〉 =
∑

m′

Dj
m′,m

(
eiνL

)
|j,m′, α〉 ,

where α is some index describing all the other features of the states, not
having to do with rotations, e.g. the principle quantum number.

Then 〈j,m′, α| eiνL |j,m, α〉 = Dj
m′,m(g), where g = eiνL.

Now a direct product state |j1, m1, α1〉⊗ |j2, m2, α2〉 can be decomposed into
irreducible representations
= |j1, j2, j,m, α1, α2〉 〈j1, j2, j,m||j1, j2, m1, m2〉

so 〈j1, m′
1, α1| ⊗ 〈j2, m′

2, α2| eiνL |j1, m1, α1〉 ⊗ |j2, m2, α2〉
= Dj1

m′

1
,m1

(g)Dj2
m′

2
,m2

(g) (4.1)

=
∑

j,m,m′

〈j1, j2, m′
1, m

′
2||j1, j2, j,m〉Dj

m′,m(g)〈j1, j2, j,m||j1, j2, m1, m2〉

We have not yet shown that there exists an invariant integration measure on
the group, and hence that we can prove a great orthogonality theorem. We
shall do so later, but for now let us assume it

∫

dgDj1 ∗
m′

1
,m1

(g)Dj2
m′

2
,m2

(g) = Nj1δj1,j2δm1,m2
δm′

1
,m′

2
. (4.2)

To get the normalization correct, normalize
∫
dg 1 = 1. Now D is a unitary

matrix, so
∑

m

Dj ∗
m,µ(g)Dj

m,ν(g) = δµν ,

so integrating the left hand side gives

δµν = Njδµν

∑

m

δm,m

︸ ︷︷ ︸

2j+1

so Nj =
1

2j + 1
. [Compare this to

g

li
for the finite group representations.]
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Applying this to (4.1)
∫

dgDj3 ∗
m′

3
,m3

(g)Dj1
m′

1
,m1

(g)Dj2
m′

2
,m2

(g)

=
∑

j,m,m′

〈j1, j2, m′
1, m

′
2||j1, j2, j,m′〉〈j1, j2, j,m||j1, j2, m1, m2〉

δj,j3δm,m3
δm′,m′

3

2j + 1

=
1

2j + 1
〈j1, j2, m′

1, m
′
2||j1, j2, j3, m′

3〉〈j1, j2, j3, m3||j1, j2, m1, m2〉 (4.3)

In atomic or nuclear physics, one very often wants to calculate the ampli-
tude for emission of a photon from some excited state. The photon emission

operator is proportional to ei~k·~r, where ~k is the momentum of the emitted
photon and ~r is the position operator acting on the constituents. In fact, for
nonrelativistic particles it is exactly

〈ψf | ei~k·~r |ψi〉
which determines the transition amplitude. Generally the transition energy
corresponds to a photon momentum which is much less than the inverse size
of the system, so |~k · ~r | ≪ 1 whereever ~r has a significant matrix element.
So we can expand in a multipole expansion

ei~k·~r = 4π
∑

ℓ,m

iℓY m ∗
ℓ (k̂)Y m

ℓ (r̂)jℓ(|k||r|).

As the jℓ(kr) ∝ (kr)ℓ for small kr, we can expect this expansion, plugged
into our matrix element, to give a series of rapidly converging terms. The
spherical harmonics Y m

ℓ , for a given ℓ, are a set of functions which transform
under the spin ℓ representation of SU(2).

Consider a rotation of the particles ~r and their spins, but not the photon.
The states ψi and ψf are eigenstates of a spherically symmetric Hamiltonian
so they have definite total angular momentum ji and jf , and z components
mi and mf , along with other quantum numbers αi and αf . So with |ψi〉 =
|ji, mi, αi〉, if we consider a rotation eiνL, we have

|ji, mi, αi〉 → eiνL |ji, mi, αi〉 =
∑

m′

i

|ji, m′
i, αi〉Dji

m′

i,mi

(
eiνL

)

〈jf , mf , αf | → 〈jf , mf , αf | e−iνL =
∑

m′

f

Djf ∗

m′

f
,mf

(
eiνL

) 〈
jf , m

′
f , αf

∣
∣

eiνLYℓm(r̂)e−iνL = Dℓ
m′,m

(
eiνL

)
Yℓm′(r̂).
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All taken together makes for no change, so

〈jf , mf , αf | Yℓm(r̂) |ji, mi, αi〉
=

∑

m′ m′

i m′

f

Djf ∗

m′

f
,mf

Dℓ
m′,mDji

m′

i,mi

〈
jf , m

′
f , αf

∣
∣Yℓm′ |ji, m′

i, αi〉

for all ν. Integrating over the invariant measure of the group,

〈jf , mf , αf | Yℓm(r̂) |ji, mi, αi〉 = 〈ℓjijfmf ||ℓjimmi〉 〈jfαf ||Y ||jiαi〉 ,

where

〈jfαf ||Y ||jiαi〉 :=
1

2jf + 1

∑

m′ m′

i m′

f

〈ℓjim′m′
i|
∣
∣ℓjijfm

′
f

〉 〈
jf , m

′
f , αf

∣
∣Yℓm′ |ji, m′

i, αi〉 .

This statement is called the Wigner-Eckhart theorem. It is a nice di-
vision of the matrix elements into a piece which is pure group theory, the
Clebsch-Gordon coefficient, and a piece which is more nearly pure physics,
〈jfαf ||Y ||jiαi〉. It is generally written for a set of operators Oℓ

m which trans-
form like Y ℓ

m, for which it is written

〈jf , mf , αf | Oℓ
m |ji, mi, αi〉 = 〈ℓjijfmf ||ℓjimmi〉 〈jfαf ||Oℓ||jiαi〉 ,

The last factor is called the reduced matrix element.

4.3.1 Isospin

In elementary particle physics the number of particles is not conserved due
to the possibility of pair creation. For that reason one cannot work with
N particle wave functions, but rather with a Hilbert space which contains
subspaces having differing numbers of particles. The various subspaces can
be built up from the “vacuum” state |0〉 by applying operators which create
particles in a certain state. Let P †

α be the operators which creates a proton
with properties specified by α (which includes momentum and spin value).
Then P †

α |0〉 is a single proton state, while P †
αP

†
β |0〉 is a state which has two

protons, one with properties α and one with β. This corresponds to the same
physical state as P †

βP
†
α |0〉 though there could be an arbitary phase difference.

Because they are fermions, states are “antisymmetric under interchange”,
which we insure by taking P †

αP
†
β = −P †

βP
†
α. This automatically gives (P †

α)2 =
0, or the Pauli exclusion principle.
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The hermitean conjugate operator Pα annihilates a proton in the state α,
if it exists, or else it annihilates the state. The algebra of the P ’s is

{Pα, Pβ} =
{

P †
α, P

†
β

}

= 0,
{

Pα, P
†
β

}

= δαβ.

A similar set of operators exist to create neutrons, N †
α, or electrons E†

α.
A state consisting on one proton and one neutron can be described by

P †
αN

†
β |0〉 or by N †

βP
†
α |0〉. These can differ by a phase, which is really a

matter of convenience. We choose anticommuting operators
{

P †
α, N

†
β

}

= 0

for all different fermion fields. Representing different particles, the P and
N operators must have trivial commutation relations, and as the creation
operators have been chosen to anticommute, we also need

{
P †

α, Nβ

}
= 0.

Now consider the operator
∑

α

P †
αNα.

It looks around for a neutron to annihilate and, when it finds one, replaces
it with a proton of the same momentum and spin. This is not a “physical”
operator in the sense that there is no way one can do just this, but it is a
mathematical object with an interesting consequence.

Before we consider this further, note that
∑

α P
†
αPα looks around for

protons it can annihilate, does so but then recreates it and adds a notch to
its belt, so in the end it does nothing but count the number of protons in the
state.

In nuclear physics, the bulk of the Hamiltonian is the “strong” or nuclear
interactions, which seem to treat the protons and neutrons as equivalent. Of
course protons and neutrons have different charges, so the electromagnetic
(and electroweak) interactions do distinguish between them. Let us write the
hamiltonian as HS + HEW and write the fact that HS does not distinguish
between protons and neutrons by

[

HS,
∑

α

P †
αNα

]

= 0.

This is because it doesn’t matter if you first replace a neutron by a proton
and then let HS act, or let HS act first and then do the replacement, as
HS acts the same way on both particles. The hermetian conjugate gives
[
HS,

∑
N †

αPα

]
= 0.
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Let’s forget HEW for now, and consider

T+ =
1√
2

∑

α

P †
αNα

T− =
1√
2

∑

α

N †
αPα

so
[
H, T+

]
=
[
H, T−

]
= 0

Let

T3 =
[
T+, T−

]
=

1

2

∑

αβ

[

P †
αNα, N

†
βPβ

]

=
1

2

∑

αβ

(

P †
αNαN

†
βPβ −N †

βPβP
†
αNα

)

=
1

2

∑

αβ

(

P †
α

{

Nα, N
†
β

}

Pβ −
{

P †
α, N

†
β

}

NαPβ +N †
βP

†
α {Nα, Pβ}

−N †
β

{
P †

α, Pβ

}
Nα

)

=
1

2

∑

αβ

(

P †
αδαβPβ − 0 + 0 −N †

βδαβNβ

)

=
1

2

∑

α

(
P †

αPα −N †
αNα

)
.

We see that 2T3 counts the number of protons minus the number of neutrons.

As

[H, T3] =
[
H,
[
T+, T−

]]
= −

[
T+,

[
T−, H

]]
−
[
T−,

[
H, T+

]]

by the Jacobi identity, and as both terms vanish because [H, T±] = 0, we
have [H, T3] = 0. One can also show, as for angular momentum, that
[T3, T

±] = ±T±, so the T ’s ( or more precisely T3, T1 = (T+ + T−) /
√

2,
and T2 = (T+ − T−) /

√
2 i) are the generators of an SU(2) symmetry group

under which the strong interaction hamiltonian is invariant. Note that T+

increases the charge by 1|e|, so a multiplet consists of a sequence of charges
differing by e.

To the extent that HEW can be ignored, states should form multiplets
(irreducible representations) of this isotopic spin symmetry. For example:
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(p, n) T =
1

2

deuteron T = 0

H3, He3 T =
1

2

C14, N14 ∗, O14 T = 1

The latter triple includes two unstable isotopes, C14 and O14, and an excited
state of N14, all with spin 0. The ground state of N14 is a T = 0, J = 1 state.

Although isospin was introduced in nuclear physics, it is applicable in ele-
mentary particle physics as well. In high energy interactions many particles,
mostly unstable, are observed. One set of three pseudoscalar particles, the
pions, π+, π0, π−, form a T = 1 triplet, the lightest hadrons. π± are unstable
particles living for about 26 nanoseconds, but this is long enough to make a
beam. π0 lives only 10−16 s, so no beam is possible, and π0’s can be detected
only from their decay into two photons. This very different behavior is due
to the electromagnetic interactions, which violate isospin symmetry.

Now if we consider scattering of π mesons off nucleons (i.e. protons or
neutrons), the conservation of isospin will relate different amplitudes. The
simplest application is the resonant state produced in π+p scattering, called
the ∆++, at a mass of 1232 MeV. It must be a T = 3/2 state because it is
π+ ⊗ p or |1, 1〉 ⊗

∣
∣1
2
, 1

2

〉
= |3/2, 3/2〉. This must be part of an irreducible

representation of the (unphysical) rotations in isospace, with partners
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Name Q rep

∆++ 2e
∣
∣3
2
, 3

2

〉

∆+ e
∣
∣3
2
, 1

2

〉

∆0 0
∣
∣ 3
2
,−1

2

〉

∆− −e
∣
∣ 3
2
,−3

2

〉

So observing the ∆++ reso-
nance implies the existence
of these three other parti-
cles, all of which are ob-
served, though shortlived,
particles.
When the ∆++ decays, it
must always produce a p and
a π+, as there is no other
choice. On the other hand,
the decay of the ∆+ can
give pπ0 or nπ+. The decay
amplitudes are given by the
Wigner-Eckhart theorem:

From Gasiorowicz
Elementary Particle Physics

〈π0p||∆+〉
〈π+n||∆+〉 =

〈
1, 1

2
, 0, 1

2

∣
∣|3/2, 1/2〉

〈
1, 1

2
, 1,−1

2

∣
∣|3/2, 1/2〉 =

√

2/3
√

1/3
=

√
2.

The decay probability is proportional to the amplitude squared, so

∆+ → π0p 2/3 of the time

∆+ → π+n 1/3 of the time.

The ∆ resonance is the most prominent feature of low energy πN
scattering, and this prediction is the simplest. But the whole scattering
amplitude can be analyzed as well. For example, the amplitude for π+n →
π0p, at a certain angle and with given polarization, is given by

〈
π0p final

∣
∣S
∣
∣π+n init

〉

where the S or scattering matrix is isospin invariant. This amplitude will be
related to others, say π+p→ π+p, π−p→ π−p, etc. If we write p = N, 1

2
and



82. Last Latexed: April 25, 2017 at 9:45 Joel A. Shapiro

n = N,−1
2

we can think of the above as

〈

π,N, 0,
1

2

∣
∣
∣
∣
S

∣
∣
∣
∣
π,N, 1,

−1

2

〉

.

Inserting a complete set of isospin states, which can only have T = 1
2

or
T = 3/2, we have

〈

πN0
1

2

∣
∣
∣
∣

∣
∣
∣
∣
πN

3

2

1

2

〉〈

πN
3

2

1

2

∣
∣
∣
∣
S

∣
∣
∣
∣
πN

3

2

1

2

〉〈

πN
3

2

1

2

∣
∣
∣
∣

∣
∣
∣
∣
πN1

−1

2

〉

+

〈

πN0
1

2

∣
∣
∣
∣

∣
∣
∣
∣
πN

1

2

1

2

〉〈

πN
1

2

1

2

∣
∣
∣
∣
S

∣
∣
∣
∣
πN

1

2

1

2

〉〈

πN
1

2

1

2

∣
∣
∣
∣

∣
∣
∣
∣
πN1

−1

2

〉

=
∑

j= 1

2
, 3
2

〈

1
1

2
j
1

2

∣
∣
∣
∣

∣
∣
∣
∣
1
1

2
0
1

2

〉〈

1
1

2
j
1

2

∣
∣
∣
∣

∣
∣
∣
∣
1
1

2
1
−1

2

〉

aj =

√
2

3
a3/2 −

√
2

3
a1/2

where the aj =
〈
πNj 1

2

∣
∣S
∣
∣πNj 1

2

〉
are independent of m. Is this progress?

We have replaced our scattering amplitude by a combination of two unde-
termined parameters, but we also have the other measureable amplitudes

π+p→ π+p = a3/2

π−p→ π−p =
1

3
a3/2 +

2

3
a1/2

π+n→ π+n =
1

3
a3/2 +

2

3
a1/2

π−n→ π−n = a3/2

π−p→ π0n =

√
2

3
a3/2 −

√
2

3
a1/2

So these five measurable cross sections should all be described by two scat-
tering amplitudes. Also determined are the undoable reactions

π0p → π0p

π0p → π+n

π0n → π−p

π0n → π0n

so it definitely is progress, has been tested, and agrees well with experiment.



618: Last Latexed: April 25, 2017 at 9:45 83

If we examine the conserved quantum
numbers of the particles we have discussed
so far, we see Q = 1

2
B+T3, where B is the

baryon number, one for nucleons and zero
for pions.

All of the particles we’ve considered so
far are now considered to be made of two
kinds of quarks, u and d, and their antipar-

Name T3 Q Baryon
number

n −1/2 0 1
p 1/2 1 1
π+ 1 1 0
π0 0 0 0
π− −1 −1 0

ticles ū and d̄. u and d form an isospin 1/2 mul-
tiplet and thus have T3 = ±1

2
.

A ∆++ is made of three u quarks, so they
have Q = 2/3 and B = 1/3. A proton is

T3 Q B
u 1/2 2/3 1/3
d −1/2 −1/3 1/3

uud and a neutron udd. As the u and d quarks satisfy the Q = B/2+T3 rela-
tion, so will anything made up of them, as Q, T3 and B are all arithmetically
additive quantum numbers.

But not everything is made of u and d. Physics learned about strangeness
in 1953 and proposed the strange quark at the same time as u and d. The
strange quark has no isospin, Q = −1/3 and B = 1/3. The isospin symmetry
which rotated protons into neutrons, rotating u’s into d’s, can be extended
to a bigger approximate symmetry group SU(3) by considering rotations into
the strange (s) quark direction as well as the u and d directions

But before we launch into a big discussion of SU(3), we should note that
the charmed quark was discovered in 1974 and the bottom quark in 1977.
Finally the sixth quark, the top, was discovered at Fermilab in 1994. So it
is time to consided groups more generally, so we can do all possibilities at
once.


