
Chapter 2

Representations

In the last chapter we learned something about the structure of the groups
themselves, but we are really interested in how the symmetry groups act on
the eigenstates of a physical Hamiltonian. The set of states corresponding to
a given eigenvalue of degeneracy ℓ forms a vector space of dimension ℓ. The
result of applying the symmetry operation to any of these states gives a state
with the same energy eigenvalue, and thus a state in the same ℓ-dimensional
vector space. The symmetry acts linearly on the states,

S(α |ψ1〉 + β |ψ2〉) = αS(|ψ1〉) + βS(|ψ2〉),

so the operators are linear operators on a vector space, and may be considered
ℓ× ℓ matrices acting on this eigenspace.

Let {ei, i = 1, ..., ℓ} be an orthonormal basis of the vector space. If A ∈ G
is one of the symmetry operators, it will act on ei to give a linear combination
of the basis vectors,

Aei =
∑

j

ejTji(A).

Notice the order of the indices on T . If ψ =
∑
ψiei is an arbitrary vector in

the eigenspace, and if ψ′ =
∑
ψ′

iei = Aψ, then

ψ′ =
∑

ψ′
iei = A

∑

ψiei =
∑

ψiAei =
∑

ij

ψiTji(A)ej ,

or
ψ′

j =
∑

k

Tjk(A)ψk,

27
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by the linear independence of the ej’s. Note the order of the indices now.
Tij can be considered the matrix element Tij(A) = 〈ei|A |ej〉.

We can find the composition law for these matrices by noting that

ABei =
∑

k

ekTki(AB) = A(Bei) = A
(∑

j

ejTji(B)
)

=
∑

j

Tji(B)Aej

=
∑

j

Tji(B)
∑

k

Tkj(A)ek,

so Tki(AB) =
∑

j

Tkj(A)Tji(B),

or T (AB) = T (A)T (B),

where the multiplication is just ordinary matrix multiplication. Thus we
have a homomorphism from the group G onto a group of ℓ × ℓ nonsingular
matrices. This is called an ℓ-dimensional representation of the group G.

If no two elements of G are mapped into the same matrix, then the
homomorphism G→ T = {T (A)|A ∈ G} is an isomorphism, G ∼= T , and we
call the representation faithful. An example of an unfaithful representation
for any group is the homomorphism g ∈ G 7→ 1I, in which every element
is mapped into the identity matrix. This trivial representation is called the
identity representation of the group.

Note that for any representation

T (1I)T (A) = T (1IA) = T (A), so T (1I) = 1Iℓ×ℓ,

as T (A) is nonsingular. Also

T (A−1)T (A) = T (A−1A) = T (1I) = 1I, so T (A−1) = [T (A)]−1.

If R is an ℓ-dimensional representation ofG, and if S is a fixed nonsingular
ℓ× ℓ matrix, then

T (A) := S−1R(A)S for all A ∈ G,

is also clearly an ℓ-dimensional representations of G. Two representations
related by such a fixed similarity transformation are equivalent represen-

tations.
Consider an n-dimensional representation T of G on a vector space Ln.

Suppose we take a particular vector v and act on it with all the elements T (A)
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and then consider the vector space Lm spanned by these vectors, i.e. the
space of all linear combinations of {T (A)v|A ∈ G}. Surely Lm is contained
in Ln, but it might be the whole of Ln or it might be a proper subspace1,
of dimension m < n. Clearly Lm is closed under the action of the group, as
for any A ∈ G, the action of A on an arbitrary vector

∑
aBT (B)v in Ln is

A :
∑
aBT (B)v 7→

∑
aBT (A)T (B)v =

∑
aBT (AB)v, which is included in

the definition of Lm. If we choose a new basis for Ln such that the first m
basis vectors span the subspace Lm, we see that

T (A)ei =

m∑

j=1

ejTji(A) for i ≤ m

or Tji(A) = 0 for all i ≤ m, j > m,A ∈ G. So T has the form

T (A) =

(
D(1)(A) X(A)

0 D(2)(A)

)

(2.1)

with D(1) an m ×m matrix, D(2) an (n −m) × (n −m) matrix, and X an
m× (n−m) matrix.

If we check how two such matrices multiply we can easily show that
D(1)(AB) = D(1)(A)D(1)(B) and D(2)(AB) = D(2)(A)D(2)(B), so D(1) and
D(2) are m and n − m dimensional representations respectively, and our
original representation T is said to be a reducible representation. The
subspace Lm is called an invariant subspace. If there is no proper sub-
space of Ln which is closed under action by the group, we say that T is an
irreducible representation.

We expect symmetry transformations on our hilbert space to be unitary
transformations, preserving the norm of the states. Then because we asked
that ei be an orthonormal basis, the matrices T (A) will be unitary matrices,
and the representation is called a unitary representation. We will now
prove that any finite dimensional representation of a finite group is equivalent
to a unitary representation. This will also be true for infinite groups if we can
define finite invariant integration measures, but this we will consider later.

Consider a representation T of a finite group G. Define the matrix

H =
∑

A∈G

T (A)T †(A).

1A subspace of a vector space is a subset closed under addition and scalar multiplication.
A proper subspace is a subspace which is not the whole space and not just the point
{0}.
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H is clearly hermitian so it can be diagonalized by a unitary U , Hd = U−1HU ,
(Hd)ij = diδij. So

di = (Hd)ii =
∑

A

∑

k

(
U−1T (A)

)

ik

(
T †(A)U

)

ki

=
∑

A

∑

k

∣
∣
(
T †(A)U

)

ki

∣
∣
2
> 0,

as U−1 = U † because U is unitary, and both T and U are nonsingular. Thus

we can define
(

H
1/2
d

)

ij
= d

1/2
i δij and V = UH

1/2
d will provide the similarity

transformation from T to an equivalent unitary representation Γ. Let

Γ(A) = V −1T (A)V = H
−1/2
d U−1T (A)UH

1/2
d .

Then

Γ(A)Γ†(A) = H
−1/2
d U−1T (A)UH

1/2
d H

1/2
d U−1

︸ ︷︷ ︸

H=
P

B T (B)T †(B)

T †(A)UH
−1/2
d

= H
−1/2
d U−1

∑

B

T (A)T (B)T †(B)T †(A)

︸ ︷︷ ︸

H

UH
−1/2
d

= H
−1/2
d HdH

−1/2
d = 1I,

where in the first line we used that Hd is hermitean and U is unitary, and in
the second that the underbraced sum is

∑

B T (AB)T †(AB) =
∑

B T (B)T †(B) =
H , where the first equality is due to the left invariance of sums over all the
elements in the group.

This is the first example we have seen, but far from the last, of the
usefulness of summing over all the elements of a group with equal weight.
For a Lie group, one with elements indexed by a continuous parameter, we
will need carefully to give meaning to a sum with equal weights over all
elements. We will need to define an invariant integration measure. We will
then find that for compact Lie groups, for which the total group volume in
finite, we can again find a similarity transformation, so that we will have
proven:

Theorem:Any finite dimensional representation of a finite group or of a

compact Lie group is equivalent to a unitary representation.
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If T was reducible, so is Γ, as there is still an invariant proper subspace.
The necessary change of basis to get Γ into the form of eq. 2.1 can be chosen
unitary, so the new form is also unitary. But then

Γ(A) =
(
Γ(A−1)

)†
=

(

D(1)†(A−1) 0

X†(A−1) D(2)†(A−1)

)

.

But we know that the lower left block of Γ is zero, so X = 0, and the
representation is block diagonal,

Γ(A) =

(
D(1) 0

0 D(2)

)

.

A representation which can be successively reduced in this manner to
a block diagonal form of two or more irreducible representations is said to
by fully reducible. We say that Γ is the direct sum of the irreducible
representations.

We will find physics examples after we prove

2.1 Schur’s First Lemma

Any matrix which commutes with all the matrices of an irreducible represen-

tation of a finite or compact Lie group must be a multiple of the identity.

We can assume we have made the similarity transformation so that our
representives Γ(A) are unitary. Whether or not the commuting M is a mul-
tiple of the identity will not be affected by this similarity transformation.
Then if [M,Γ(A)] = 0 for all A ∈ G,

Γ(A)M = MΓ(A), and also M †Γ†(A) = Γ†(A)M †.

We multiply the last equation by Γ(A) on the left and on the right, using
the fact that Γ(A) is unitary, we get

Γ(A)M † = M †Γ(A),

so M † also commutes with all Γ(A), and so do the hermitean matrices H+ =
M +M † and H− = i(M † −M). Now either of these hermitean matrices can
be diagonalized by a unitary matrix U , H = UDU−1, where Dij = diδij . But
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we can also transform our representation Γ by U , defining a new represention
Γ′(A) = U−1Γ(A)U , which is still irreducible and unitary, and [Γ′(A), D] =
U−1[Γ(A), H ]U = 0. Thus

(Γ′(A)D)ij = Γ′(A)ijdj = (DΓ′(A))ij = Γ′(A)ijdi ⇒ Γ′(A)ij(dj − di) = 0.

Now either all the di are equal, in which case D is a multiple of the identity,
or Γ′(A)ij = 0 for all A, except for i and j in the same block, that is for i
and j having the same d. But that would mean Γ′(A) is reducible, and so is
Γ(A), which contradicts the hypothesis. This argument works for both H+

and H−, and tells us that both must be multiples of the identity, as must be
M = H+ + iH−.

This lemma has a useful contrapositive: if a matrix M which is not
a multiple of the identity matrix commutes with all the representatives of
elements in the group, the representation must be reducible.

As an example of reducibility and the use of Schur’s Lemma, consider
the three dimensional rotation group. This is a continuous (infinite) group.
The elements may be parameterized by a 3-vector ~ω, and the group elements
written as

g(~ω) = ei~ω·~L,

where Lj are the angular momentum operators2. [As we shall define later,
these are generators of a Lie algebra, not generators of the group in the
sense we have used so far, e.g. in D4 = 〈C,mx〉.] As we know from quantum
mechanics, the Lj do not commute with each other, but L2 =

∑

j L
2
j does

commute with all the Lj, and therefore with all the group elements g ∈
SO(3).

Thus L2 acts as a constant value on any irreducible representation of the
rotation group. That is, all the states in an irreducible representation are
eigenstates of L2 with eigenvalue3 ℓ(ℓ+ 1), ℓ = 0, 1, 2, ....

Now consider a 3-D isotropic harmonic oscillator withH = ~p 2/2m+ 1
2
k~r 2.

The motion in the three cartesian coordinates decouple, so the state of the

2We are taking ~ = 1 here if we wish to associate Lj with the quantum mechanical
operator −i~

∑

kq ǫjkqrk∂q.
3Systems with fermions can lie in ray representation rather than a true representation

of SO(3). Then the value of ℓ can be half an odd integer. This possibility arises because
the phase of the wavefunction is unphysical, and it is not required that every rotation
which leaves space unchanged, such as rotation by 2π, leave the wavefunction unchanged,
but only that it leaves |ψ2| unchaged. This will be discussed later, when we discuss the
simple-connectedness of Lie groups.
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system can be described by the product of states of one dimensional har-
monic oscillators, specified by the excitation levels nj , j = 1, 2, 3. Thus
the energy is given by E = ~ω(

∑

j nj + 3/2). The ground state (0, 0, 0)
is nondegenerate, while the first excited state is triply degenerate, with oc-
cupation numbers (1, 0, 0), (0, 1, 0), and (0, 0, 1). These form an ℓ = 1 irre-
ducible representation of the rotation group. The third level has six states
|(2, 0, 0)〉 , |(0, 2, 0))〉 , |(0, 0, 2)〉 , |(1, 1, 0)〉 , |(1, 0, 1)〉 and |(0, 1, 1)〉. This can-
not be an irreducible representation. In terms of the raising and lowering op-
erators a†j and aj for each direction, the number operator N = nx +ny +nz =
∑

j a
†
jaj and the angular momentum generators are Li = −i

∑

jk ǫijka
†
jak, so

L2 = −
∑

i

∑

jk

ǫijka
†
jak

∑

ℓm

ǫiℓma
†
ℓam = −

∑

jk

a†jaka
†
jak +

∑

jk

a†jaka
†
kaj

=
∑

jk

(

−a†j(a
†
jak + δjk)ak + a†j(a

†
kak + 1)aj

)

= −
(∑

j

a†j
2
)(∑

k

a2
k

)

−N +
∑

j

a†j(N + 3)aj

= −
(∑

j

a†j
2
)(∑

k

a2
k

)

+ 2N +
∑

j

a†j Naj
︸︷︷︸

aj(N−1)

= −
(∑

j

a†j
2
)(∑

k

a2
k

)

+N2 +N .

Now N = nx + ny + nz is 2 on all the six states under discussion. In the
last expression, the first term vanishes on the |(1, 1, 0)〉 state and its cousins,
and gives −2(|(2, 0, 0)〉 + |(0, 2, 0)〉 + |(0, 0, 2)〉) when acting on any of the
states |(2, 0, 0)〉, |(0, 2, 0)〉, or |(0, 0, 2)〉. Thus on the state proportional to
(|(2, 0, 0)〉 + |(0, 2, 0)〉 + |(0, 0, 2)〉) it acts as −6, cancelling the N2 +N con-
tribution, while on the two states orthogonal to this it gives zero. So we
see that L2 is not a constant on the space of twice-excited states, but divides
it into two subspaces, a singlet with L2 = 0 and a five dimensional space
with L2 = 6. That is, the second excited state of the isotropic oscillator is
decomposed into an ℓ = 0 irreducible representation and an ℓ = 2 irreducible
representation of the rotation group.

It is also a very interesting idea to apply this kind of consideration to the
energy eigenstates of the nonrelativistic hydrogen atom.
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2.2 Schur’s Second Lemma

If Γi and Γj are irreducible unitary representations of G, of dimensions ℓi
and ℓj respectively, and if

Γi(A)M = MΓj(A) for all A ∈ G,

then either M = 0 or Γi ∼= Γj and M is nonsingular.

Proof: Take hermitian conjugate:

M †Γi†(A) = Γj†(A)M † . right multiply by M, use Γj†(A) = Γj(A−1)

M † Γi(A−1)M
︸ ︷︷ ︸

MΓj(A−1)

= Γj(A−1)M †M for all A−1 ∈ G, so

M †M = λ1I

by Schur’s first lemma, and the fact that Γj is irreducible. If λ = 0,
TrM †M = 0 =

∑

ij(M
†)ijMji =

∑

ij |Mji|
2, so M = 0. If ℓi = ℓj and

λ 6= 0, M is nonsingular, and provides the similarity transformation that
proves Γi ∼= Γj. If ℓi 6= ℓj and λ 6= 0, then ℓi > ℓj, because M † cannot be an
onto map from a smaller space to a larger one. But we could have done our
argument slightly differently, premultiplying byM instead of postmultiplying

MM †Γi(A−1) = MΓj(A−1)M † = Γi(A−1)MM †

for all A−1 ∈ G, so we also have MM † = λ′1I. Then either λ′ = 0 (and as
MM †M = Mλ = λ′M , so is λ), or MM † has an image which is all of the
i-dimensional space, which implies the j-dimensional space on which M acts
is at least of dimension i, in contradiction with what we showed first.

2.3 The Great Orthogonality Theorem

Let Γi and Γj be irreducible unitary representations of a group G, of finite
dimensions ℓi and ℓj respectively. Let X be a fixed ℓi × ℓj matrix, and

M =
∑

A∈G

Γi(A)XΓj(A−1).

[IfG is a continuous group with an invariant measure,
∫
dµ f(BA) =

∫
dµ f(A)

for any B and f , replace the
∑

A∈G by
∫
dµ and the rest of this argument

will go through OK.]
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Then for any B,

Γi(B)M =
∑

A

Γi(B)Γi(A)XΓj(A−1)Γj(B−1)Γj(B)

=
∑

A

Γi(BA)XΓj((BA)−1)Γj(B)

= MΓj(B).

Thus by Schur’s second lemma, if Γi is not equivalent to Γj, M = 0 for any
X. In particular, take any b ≤ ℓi and d ≤ ℓj, and let Xef := δebδfd. Then

Mac =
∑

A∈G

Γi
ab(A)Γj

dc(A
−1) must vanish

so 0 =
∑

A∈G

Γi
ab(A)Γj∗

cd(A) (for Γi 6∼= Γj), (2.2)

as Γj is a unitary representation.
On the other hand, if Γi and Γj are the same representation, then Schur’s

first lemma tells us Mac = cδac. Tracing,

c ℓi =
∑

A∈G

∑

a

Γi
ab(A)Γi

da(A
−1) =

∑

A∈G

Γi
db(1I) = gδbd,

where g is the order of G, so c = gδbd/ℓi, and

∑

A∈G

Γi
ab(A)Γi∗

cd(A) =
g

ℓi
δacδbd. (2.3)

If we understand the index i to run over all inequivalent irreducible repre-
sentations, we can write both results (2.2) and (2.3) as

∑

A∈G

Γi
ab(A)Γj∗

cd(A) =
g

ℓi
δijδacδbd. (2.4)

This is known as the great orthogonality theorem.
[Note: for the continuum version, if

∫
dµ 1 = V ,

∫

dµΓi
ab(A)Γj∗

cd(A) =
V

ℓi
δijδacδbd.]
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In what sense is this orthogonality? Think of the space of all complex-
valued functions of the group elements. Define a norm on this space of
functions by (f, h) =

∑

A∈G f
∗(A) h(A), or for a compact Lie group, (f, h) =

∫
dµf ∗(A(µ)) h(A(µ)). Then the great orthogonality theorem tells us that

√

ℓi
g

Γi
ab(A)

form an orthonormal set of vectors in the vector space of all functions on the
group.

If the group G = {A1, ...Ag} has a finite number of elements, one or-
thonormal basis for functions on G is the set eα of functions eα(Aβ) = δαβ,
for α and β = 1, ..., g. This set clearly spans the space of all functions, as for
any ψ,

ψ =
∑

α

ψ(Aα)eα, that is ψ(B) =
∑

α

ψ(Aα)eα(B)

and is linearly independent. Thus the space of functions LG on G is g-
dimensional. The orthonormal set we got from the great orthogonality the-
orem has dimension

∑

i ℓ
2
i , so it must be true that

∑

i ℓ
2
i ≤ g. We will soon

show it is an equality.
In general, if we have a set of functions ψj(A) on the group, we can define

the operation of the group on these functions by

(Bψj) (A) := ψj(AB).

The order is important, in order to preserve the group multiplication law,
(CB)ψ = C(Bψ). To show this let both functions act on A.

((CB)ψ)(A) = ψ(ACB), (C(Bψ))(A) = (Bψ)(AC) = ψ(ACB) good!.

If you had tried to define (Bψ)(A) := ψ(BA), (wrong!), you would not find
(CB)ψ = C(Bψ).

Now the function Bψ is a function of the group elements. Although it is
not the function ψ, it is certainly in the space of all functions on the group.
Thus the space LG of all functions on the group provides a representation of
the group, g dimensional. Let us use the basis eα. Then the function Beα

can be expanded with coefficients we call Γreg
βα(B) of the basis vectors eβ,

Beα =
∑

β Γreg
βα(B)eβ. Acting on Aγ , we have

Beα(Aγ) =
∑

β

Γreg
βα(B) eβ(Aγ)

︸ ︷︷ ︸

δβγ

= eα(AγB) = δAγB, Aα
.
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So we see
Γreg

γα (B) = δAγB, Aα
.

This representation is called the regular representation of the group.
Included in this space of all functions on G is a set of functions

ψb(A) = Γi
ab(A),

where i is any of the irreducible representations of G and a is a fixed index
a ∈ [1, ℓi]. This set of ℓi functions transform by

(Bψb)(A) = ψb(AB) = Γi
ab(AB) =

∑

c

Γi
ac(A)Γi

cb(B) =
∑

c

ψc(A)Γi
cb(B),

so Bψb =
∑

c ψcΓ
i
cb(B), and this set transforms like the ith irreducible repre-

sentation.
Actually we see that we have ℓi such sets of functions, one set for each

a, and they are guaranteed linearly independent by the Great Orthogonality
Theorem. Thus we see that each irreducible representation Γi appears at
least ℓi times in the reduction of the regular representation. This again tells
us that

∑

i ℓ
2
i ≤ g. Very soon, we shall see that it appears exactly ℓi times

and
∑

i ℓ
2
i = g.

Any function on the group is a linear combination of the eα which pro-
vide the basis of the regular representation. In particular, the function
fB : G → C given by fB(A) = δA,B is just the (1I, B) element in the regular
representation Γreg as we have defined it. But the regular representation is
reducible, so it is equivalent to a direct sum of irreducible representations:

Γreg = S−1
(
⊕

i,ni
Γi
)

S, where
(
⊕

i,ni
Γi
)

is essentially a block diagonal

matrix with ni blocks for each irreducible representation Γi, each block an
ℓi × ℓi matrix function on the group. This direct sum matrix thus has two
compound indices, each one a combination of i giving the irreducible repre-
sentation, n = 1, . . . , ni telling which one of the ni copies, and a or b giving
which basis vector within that representation. Thus S = S(i,n,b),β and

Γreg
αβ =

∑

i,n,a,b

(
S−1

)

α,(i,n,a)
Γi

abS(i,n,b),β,

and if we define ai
ab(B) =

∑

n (S−1)1I,(i,n,a) S(i,n,b),B we have

∑

iab

a
(i)
ab (B)Γi

ab(A) = Γreg
1I,B(A) = δA,B. (2.5)
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Multiply this by Γj∗
cd(A) and sum over A ∈ G,

Γj∗
cd(B) =

∑

iab

a
(i)
ab (B)

∑

A

Γi
ab(A)Γj∗

cd(A)

︸ ︷︷ ︸

g

ℓi
δijδacδbd

=
g

ℓj
a

(j)
cd (B),

using the Great Orthogonality Theorem. When we insert this back into (2.5),
we have

δAB =
∑

iab

ℓi
g

Γi
ab(A)Γi∗

ab(B), (2.6)

which is sort of orthonormality of the g vectors Γ(A) (A is an index here)
in the

∑
ℓ2i dimensional space indexed by (i, a, b). In particular, g vectors

in a
∑

i ℓ
2
i dimensional space can be independent, which they are, only if

g ≤
∑

i ℓ
2
i . Perhaps it would be clearer to say this: Using (2.6), any function

on G

f(A) =
∑

B

δABf(B) =
∑

iab

(
ℓi
g

Γi∗
ab(B)Γi

ab(A)

)

f(B)

=
∑

iab

(
ℓi
g

Γi∗
ab(B)f(B)

)

Γi
ab(A),

is a linear combination of the
∑
ℓ2i functions Γi

ab(A), so these are a complete
set of functions on G, and that space is g-dimensional. So again g ≤

∑

i ℓ
2
i .

But we have already shown g ≥
∑

i ℓ
2
i , so we have an important statement

about the full set of irreducible representations and their dimensions:

g =
∑

i

ℓ2i . (2.7)

2.4 Characters

We have seen that two representations are considered equivalent if they are
related by a similiarity transformation Γ(1)(A) = UΓ(2)(A)U−1 for all A ∈ G.

To characterize a representation we are not interested in all the equivalent
forms, so we would like something invariant under similiarity.
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This is done by defining the character of a representation Γ to be a
function χ : G→ C on the group given by

χ(A) = Tr Γ(A).

Note χ is a complex-valued function on the group, not a matrix-valued func-
tion as Γ is. Also note it is obviously unaffected by similiarity transforma-
tions. But this has an important consequence on the function χ — namely,
if A and B are conjugate group elements, i.e. A = C−1BC for some C ∈ G,
then

χ(A) = Tr Γ(A) = Tr Γ(C−1BC) = Tr
(
Γ−1(C)Γ(B)Γ(C)

)
= Tr Γ(B)

= χ(B).

Thus the character is actually only a function on the conjugacy classes of the
group.

Now the great orthogonality theorem (2.4)

∑

A∈G

Γi
ab(A)Γj∗

cd(A) =
g

ℓi
δijδacδbd

can be traced in ab and in cd, to give

∑

A∈G

χi(A)χj∗(A) =
g

ℓi
δij
∑

ac

δacδac

︸ ︷︷ ︸

ℓi

= gδij.

Thus two different representations have different characters—in fact they
form a set of linearly independent functions on the conjugacy classes of the
group. Thus the number of inequivalent irreducible representations of G
must be ≤ the dimension of the space4 of complex functions on the classes
of G, which is just the number of classes of G.

Suppose we have a representation which might be reducible. Then Γ =
⊕

i aiΓ
i, which means

Γi1
⊕

Γi1
⊕

...
⊕

Γi1

︸ ︷︷ ︸

ai1
times

⊕

Γi2 ...

4Over the field of complex numbers
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That is, we know in principle that Γ is reducible to a direct sum of irreducible
representations, but we haven’t done it. Now we will see how to extract the
ai’s.

The representation Γ has a character χ, so for each possible irreducible
representation Γj which might be included in the direct sum, we can form

∑

A∈G

χj∗(A)χ(A) =
∑

i

ai

∑

A∈G

χj∗(A)χi(A) =
∑

i

aigδij = gaj, (2.8)

so

aj =
1

g

∑

A∈G

χj∗(A)χ(A). (2.9)

If Γ is in fact irreducible, one a will come out one and the others zero. For
the one j which gives aj = 1, χj = χ, so

∑

A∈G

χ∗(A)χ(A) = g if χ is irreducible.

In fact, this is an “if and only if” statement, for

∑

A∈G

χ∗(A)χ(A) =
∑

ij

aiaj

∑

A∈G

χi∗(A)χj(A) = g
∑

ij

aiajδij = g
∑

a2
i .

If this is g, exactly one ai is one and the others must be zero.
Let us return to the regular representation, which is a g × g matrix rep-

resentation
Γreg

αβ (B) = δAαB, Aβ
.

The diagonal elements are Γreg
αα(B) = δAαB, Aα

= δB,1I, so

χreg(1I) =

g
∑

α=1

(1I)αα = g, χreg(B) = 0 for B 6= 1I.

For each irreducible representation Γi of G, χi(1I) = ℓi, so the number of
times that representation occurs in the regular representation is

ai =
1

g

∑

A

χi(A)χreg(A) =
1

g
χi(1I)χreg(1I) = ℓi,

as we already realized from establishing that our original inequality g ≥
∑
ℓ2i

was in fact saturated, g =
∑
ℓ2i . This equality now reflects just that the
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dimension of the regular representation is the sum of the dimensions of its
irreducible components:

dim Γreg = g =
∑

i

ai dim Γi =
∑

i

ℓ2i .

The characters also form a basis for functions on the conjugacy classes.
Let {Ck} be the conjugacy classes5 of G, and

f : {Ck} → C

be an arbitrary function on the classes. Then f̃ : G→ C defined by f̃(A) =
f(C(A)), where C(A) is the conjugacy class containing A, is a map from the
group into the complex numbers. As any such function is a linear combination
of the Γi

ab’s, f̃(A) =
∑

iab c
i
baΓ

i
ab(A) for some set of coefficients ciba. Because6

f̃(B−1AB) = f̃(A), we have

∑

iab

cibaΓ
i
ab(A) =

∑

iab

cibaΓ
i
ab(B

−1AB) =
∑

iabrs

cibaΓ
i
ar(B

−1)Γi
rs(A)Γi

sb(B).

But the Γi
ab are a set of linearly independent functions, so

cisr =
∑

ab

cibaΓ
i
ar(B

−1)Γi
sb(B),

for any B, or in matrix form

ci = Γi(B)ciΓi(B−1), or ciΓi(B) = Γi(B)ci.

But then Schur’s first lemma tells us ci ∝ 1I, or ciba = kiδab, and

f̃(A) =
∑

i

ki
∑

a

Γi
aa(A) =

∑

i

kiχi(A),

or f =
∑

i k
iχi is a linear combination of the characters, and consequently the

number of irreducible representations is the same as the number of conjugacy
classes.

5Here I am using k as an index that runs over the conjugacy classes, not the rep-
resentations. We shall show that there are the same number of classes and irreducible
representations, but there is no natural isomorphism between classes and irreducible rep-
resentations.

6By the cyclic invariance of a trace, Tr(MN) = Tr(NM) with N = B and M = B−1A.
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The equation (2.8) can be thought of as an orthogonality statement for
the characters. As the character of each element in a conjugacy class is the
same, if we define ηC to be the number of elements in the class C, we have

∑

k

ηCk
χi(Ck)χ

j∗(Ck) = gδij.

The fact that any function on classes can be expressed as a linear combination
of characters enables us to write

δkk′ =
∑

i

ai(Ck′)χi(Ck)

Multiply by ηCk
χj∗(Ck) and sum over k,

ηCk′
χj∗(Ck′) =

∑

i

ai(Ck′)
∑

k

ηCk
χi(Ck)χ

j∗(Ck) = gaj(Ck′),

so aj(Ck′) =
ηCk′

g
χj∗(Ck′), and

δkk′ =
∑

i

ηCk′

g
χi∗(Ck′)χi(Ck).

This tells us √
ηC
g
χi(C)

is a complete orthonormal basis on the set of conjugacy classes.

2.5 Examples

Now we will use these results to find the irreducible representations, first
finding their characters, of the group D4.

D4 has 5 classes and 8 elements. Thus
∑5

1 ℓ
2
i = 8, with each ℓi a positive

integer. Except for ordering, the only solution is ℓ1 = ℓ2 = ℓ3 = ℓ4 = 1, ℓ5 =
2, so there are four one-dimensional representations and one two-dimensional
one.

Let us make a table. We take the first representation to be the identity
representation, A 7→ 1 for all A.
(a) So χ1(C) = 1 for all C.
(b) For all five representations, χi({1I)}) = ℓi.
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χ

Class
ηk❅

❅
{1I}

1

{C,C3}

2

{C2}

1

{mx, my}

2

{σ+, σ−}

2

χ1 1a 1a 1a 1a 1a

χ2 1b −1d 1c −1d 1d

χ3 1b −1d 1c 1d −1d

χ4 1b 1d 1c −1d −1d

χ5 2b 0 −2 0 0

(c) The one dimensional representations are the same as their characters,
so χ is a unitary 1× 1 matrix eiφ. As (C2)2 = m2

x = σ2
+ = 1, and C3 = (C)3,

we have

(χi({C
2}))

2
= (χi({mx, my}))

2 = (χi({σ+, σ−}))
2 = 1

(χi({C}))
3 = (χi({C3})) = (χi({C}))

}

for i = 1, ..., 4

so the characters of C2, mx and σ± are ±1 and χi(C) = ±1 or 0, with
0 only possible for χ5. But recall

∑

k χ1(Ck)χj(Ck) = 0 for j = 2, 3, 4, so
1 + χj(C

2) + 2(±1 ± 1 ± 1) = 0, which is impossible for χi(C
2) = −1. So

χ2(C
2) = χ3(C

2) = χ4(C
2) = 1.

(d) Then, again for j = 2, 3, 4, as 2 + 2 [χj(C) + χj(mx) + χj(σ±)] = 0, we
must have two of them −1 and one +1. We need three solutions and there
are only three, so except for the order in naming χj , j = 2, 3, 4, the first four
lines are determined.

The last row must be orthogonal, with weights ηk, to each of the rows
above, four linear conditions on the four unknowns, and is determined easily.
In particular, orthogonality to

∑4
1 χj gives χ5(C

2), and then to χ1 + χj for
j = 2, 3, 4 gives the rest.

To find the representations, instead of just the characters, is in this case
fairly simple. The one dimensional ones are just the characters. Γ(5)(C2) is

unitary with trace −2, so it can only be

(
−1 0
0 −1

)

. Γ(5)(mx) is traceless,

unitary, and has square 1. Any 2 × 2 matrix can be written as a +~b · ~σ in
terms of the Pauli matrices7, and tracelessness gives a = 0, that the square
= 1 gives |~b| = 1. The different directions are all equivalent, all similar to

7 σx =

(
0 1
1 0

)

, σy =

(
0 −i
i 0

)

, σz =

(
1 0
0 −1

)

.
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σz, and we are only interested in finding the representation up to similar-
ity, so we take Γ(5)(mx) = σz. Γ(5)(my) = Γ(5)(mx)Γ

(5)(C2) = −σz . Now
Γ(5)(mxCmx) = Γ(5)(C3) = Γ(5)(C2)Γ(5)(C) = −Γ(5)(C), so Γ(5)(mx) = σz

anticommutes with Γ(5)(C). Thus Γ(5)(C) = aσx + bσy, with a2 + b2 = −1
because Γ(5)(C2) = −1I, and (a∗σx + b∗σy)(aσx + bσy) = 1I as it needs to
be unitary. This implies |a|2 + |b|2 = 1 and a∗b real. Then we can take
a = i cos θ, b = i sin θ. Using a similarity transformation with eiθσz permits
us to choose θ = −π/2, Γ(5)(C) = −iσy. As mx and C generate the group,
we need only multiply to find

A 1I C C2 C3 mx my σ+ σ−

Γ5(A) 1I −iσy −1I iσy σz −σz σx −σx

Note that this forms a group of 2× 2 matrices, but it is not the group found
in the first homework problem of assignment 1, because the σx and σz terms
have real coefficients here.

In general finding the characters and representations may be more in-
volved. The book by Joshi describes a tool based on products of classes, but
I will leave that up to you, should you ever need it.

We originally motivated representations by considering spaces of solutions
of the Schrödinger equation, and the group D4 by considering an electron in
a periodic square lattice with a single impurity. What have we learned that
might help us in solving this problem? Recall that for a one dimensional
problem, parity reduced the problem from finding a general function of one
variable to finding either a symmetric or an antisymmetric function of one
variable. On the other hand, a problem with spherical symmetry has a much
greater reduction, from a function of three variables to a function of r only.

For the D4 symmetry we have only a very finite group, so we can’t expect
to reduce the space of functions ψ(x, y) on which we start to ones of a single
variable. But the energy eigenstates must transform as a representation of
the group, which can be broken into irreducible representations. The wave
functions ψ(x, y) then need to have appropriate behavior under x → −x
(my), under y → −y (mx), and under x↔ y (σ+).

If the symmetry group were only the symmetries of a rectangle, 〈mx, my〉 ∼=
Z2 × Z2, we would just learn in each cartesian coordinate what we learned
in the one dimensional case with parity: ψ could be broken into functions
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either even or odd in each of the two variables x and y, according to the
representations Γ(mx) and Γ(my). Here we know more, however.

Consider first the identity representation. A wave function in this repre-
sentation is unchanged under change in sign of x or of y, so it is a function
of x2 and y2, but it is also unchanged under interchange of x and y, so it is
a symmetric function of them,

ψ(x, y) = S(x2, y2) = S(y2, x2) for the identity representation.

The other one dimensional representations are also easily expressed in terms
of an arbitrary such S:

Γ(mx) Γ(m
y
) Γ(σ+) f(x, y)

Γ1 1 1 1 S(x2, y2)
Γ2 −1 −1 1 xyS(x2, y2)
Γ3 1 1 −1 (x2 − y2)S(x2, y2)
Γ4 −1 −1 −1 xy(x2 − y2)S(x2, y2)

The fifth representation involves two functions, ψ1 and ψ2, which trans-
form by

Γ(my) =

(
−1 0
0 1

)

under x↔ −x, so

{
ψ1(x, y) = xg(x2, y)

ψ2(x, y) = h(x2, y)

Γ(mx) =

(
1 0
0 −1

)

under y ↔ −y, so

{
ψ1(x, y) = xg′(x2, y2)

ψ2(x, y) = yh′(x2, y2)

Finally, we know it transforms as

Γ(σ+) =

(
0 1
1 0

)

under x↔ y, so g′(x2, y2) = h′(y2, x2),

or

ψ1(x, y) = xk(x2, y2)

ψ2(x, y) = yk(y2, x2)

The group theory is not able to tell us anything about the function
S(x2, y2) except that it is symmetric, or anything about k. For more you
need to actually consider the Hamiltonian itself.
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2.6 Point, Space, and Crystallographic Groups

The example we just discussed, D4, is an example of a crystallographic point
group. There is much interest in condensed matter physics in crystals, which
are periodic lattices invariant under translations by

~T = n1~a1 + n2~a2 + n3~a3, nj ∈ Z.

where the ~aj are three primitive translation vectors which give the edges of
a unit cell, and the crystal is unchanged by translating an integer number of
unit cells in any direction. By itself, this symmetry is enough to force the
wave functions to be given in terms of Block waves.

But there may also be symmetries which leave one point invariant, con-
sisting of rotations and reflections. The symmetries of this kind which are
also compatible with the lattice are called crystallographic groups. These
are a subset of the point groups, groups of rotations and reflections which
leave one point invariant.

The combination of a crystallographic group with the translation group
is called a space group.

In three dimensions there are only 32 possible crystallographic groups.
Point groups such as C5, rotations though 72◦ about a given axis, or the
symmetries of an icosahedron, are incompatible with extension to an infinite
lattice, though the latter might be quite useful in discussing excited states
of a buckyball.

I am not going to say more about these groups, but they do have many
applications in physics.

The book by Tinkham discusses these in detail.

2.7 Direct Products of Representations

Often a group acts separately on factorizable pieces of the wave function.
For example, if we wish to consider the states of two electrons in our lat-
tice, the total wave function ψ(x1, y1, x2, y2) could be written as a sum of
products

∑

i aiφi(x1, y1)ρi(x2, y2). φi and ρi can be separately decomposed
into irreducible representations of the group, and the group acts on ψ by the
direct product, because it acts together on both ~r1 and ~r2. The vector space
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upon which the group is acting here is the tensor product of the space of all
functions of ~r1 = (x1, y1) with the space of all functions of ~r2.

Perhaps it would be better to consider first a finite-dimensional example.
The electron of a hydrogen atom in an ℓ = 1 state is in a three-dimensional
space with basis vectors |m〉 , m = −1, 0, 1. The rotation group acts on this
space in a three-dimensional representation to be further discussed later. At
the same time, the electron has a spin degree of freedom in a two-dimensional
space with basis {|↑〉 , |↓〉}, or |s〉 , s = ±1

2
. A full description of the state

of the electron lies in a six-dimensional space whose basis is most naturally
written as {|m, s〉} or

|−1, ↑〉 , |−1, ↓〉 , |0, ↑〉 , |0, ↓〉 , |1, ↑〉 , |1, ↓〉 ,

though of course we could still index these basis vectors as e1, ..., e6. Now
some operators, such as the orbital angular momentum ~L, may act only on
part of the composite index, 〈m′, s′|L |m, s〉 = Lm′mδs′s, while others might
only act on the spin, 〈m′, s′|S |m, s〉 = Ss′sδm′m, but in general an operator O,

e.g. ~L · ~S, is a 6×6 matrix O(m′s′),(ms) = 〈m′, s′| O |m, s〉. The six dimensional
space on which it acts is the tensor product of the three dimensional space
of orbital angular momentum states and the two dimensional space of spin.

Under a rotation8 A, the state of the electron will be acted on by a six
dimensional representation

Γm′s′,ms(A) = Γℓ=1
m′m(A)Γ

s= 1

2

s′s (A),

which is the direct product,

Γ(A) = Γℓ=1(A)
⊗

Γs= 1

2 (A).

More generally we will consider the product of two irreducible representations
of any group,

Γ(A) = Γi(A)
⊗

Γj(A).

This is clearly a representation, because the matrix sum over the tensor
product index is just an independent sum over the indices of each subspace.

8I am being sloppy here. The fermion wave function is not, strictly speaking, trans-
forming under the rotation group, because under a rotation by 2π it is not invariant but
changes sign. So what we are really dealing with here are representations of the “covering
group” of the rotation group, which is SU(2) rather than SO(3). This will be discussed
later, page ∼60.
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If r, s, t are indices in the ℓi dimensional space on which Γi acts and a, b, c
indices for the ℓj dimensional space on which Γj acts,

Γra,sb(AB) = Γi
rs(AB)Γj

ab(AB) =
∑

t

Γi
rt(A)Γi

ts(B)
∑

c

Γj
ac(A)Γj

cb(B)

=
∑

tc

Γi
rt(A)Γj

ac(A)Γi
ts(B)Γj

cb(B) =
∑

tc

Γra,tc(A)Γtc,sb(B)

= (Γ(A)Γ(B))ra,sb .

The character of the product representation is simple:

χ(A) = Tr Γ(A) =
∑

ra

Γ(A)ra,ra =

(
∑

r

Γi
rr(A)

)(
∑

a

Γj
aa(A)

)

= χi(A)χj(A).

Now the product of two irreducible representations need not be irre-
ducible, but it must be equivalent to a direct sum of irreducible representa-
tions. For example, for the case of the electron with orbital angular momen-
tum 1 and also spin, the full rotation group has representations labelled by j,
and our six dimensional space is a sum of a j = 1

2
and a j = 3

2
representation,

Γℓ=1
⊗

Γs= 1

2 ∼= Γj= 1

2

⊕

Γj= 3

2 .

More generally,

Γi(A)
⊗

Γj(A) ∼=
⊕

k

aij
k Γk(A),

where each representation may appear aij
k times in this sum, called the

Clebsch-Gordon series. The non-negative integers aij
k are called Clebsch-

Gordon coefficients by mathematicians but not by physicists, who mean
something else, which we will discuss later, by that term.

From the formula (2.9) for the number of times a given irreducible rep-
resentation occurs in an arbitrary one, the coeffients are easily calculated:

aij
k =

1

g

∑

A∈G

χi(A)χj(A)χk∗(A).

We reserve our discussion of the physics of this decomposition until after
we have learned to construct irreducible representations of infinite groups.


