
Chapter 17

Poincaré and Susy

17.1 Poincaré Invariance

A great advance in physics came when it was realized that it was better to
think about motion in empty space rather than starting with what happen
in the “real world” with gravity pulling things downwards, friction slowing
things down, etc. First, that the laws of physics should be the same at one
point as at another, i.e. that they are translation invariant, and also from
one day to another, i.e. that they are invariant under translations in time as
well. Also they are direction independent - space is isotropic. Another great
breakthrough was Galileo’s recognition that two reference systems in relative
motion at constant velocity have the same physics, so there is an underlying
galilean invariance under spatial and time translations, rotations, and boosts.
Thus we have a 10 parameter Lie group of symmetry transformations. Of
course Einstein corrected some details, finding that the boosts affected time
as well as space, in such a way as to leave invariant

(ds)2 = (d~x)2 − c2(dt)2

between any two events, and in particular (ds)2 = 0 for light in vacuum.
Thus physics is invariant under Poincaré transformations

xµ → x′µ = aµ
νx

ν + bµ,

where ηµρa
µ
νa

ρ
σ = ηνσ.

η =

(
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)

We expect states to be within a irreducible representation of the symme-
try group. One way of labeling the representation is according to the values
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of operators which commute with all the elements of the group. These are
called Casimir ooperators, and by Schur’s Lemma this must be a constant
value on all the states within an irreducible representation. For angular mo-
mentum, L2 = L2

x +L2
y +L2

z commutes with each of the Li, so is a fixed value
for each irreducible representation of the SO(3) rotation group, and in fact
for a spin ℓ representation it is ℓ(ℓ+ 1).

For the Poincaré group we have the momenta, which are the generators of
translations, Pµ, and the Lorentz generators Lµ

ν , which generate the Lorentz
transformations. eibµPµ is the group element which gives xµ → xµ + bµ, and
clearly these commute with each other, eib

µ
1
Pµeib

µ
2
Pµ : x → xµ + bµ1 + bµ2 , so

[Pµ, Pν ] = 0. But the Lorentz transformations, which are pseudo-rotations,
do not commute with each other, or with Pµ,

[
Lµ

ν , Pρ

]
= −iδµ

ρPν + iηνρη
µσPσ.

Things work a little more elegantly if we use ηµν to lower upstairs indices and
its inverse ηµν to raise downstairs indices. As 4×4 matrices ηµν and ηµν look
the same, but in this relativistic context we always contract an upper and
a lower index (and the summation convention only permits that), so they
are not interchangeable. Then we use ηµρ to lower the first index on Lρ

ν ,
Lµν := ηµρL

ρ
ν , which makes it antisymmetric, Lµν = −Lνµ, and then

[Lµν , Pρ] = −iηµρPν + iηνρPµ (17.1)

[Lµν , Lρσ] = −iηνρLµσ + iηνσLµρ + iηµρLνσ − iηµσLνρ (17.2)

which, along with

[Pµ, Pν ] = 0

constitute the Poincaré Lie algebra. Note that the subalgebra generated by
the Pµ’s is an invariant subalgebra and is Abelian, so the Poincaré group is
neither simple nor semisimple.

[Note: this is a rehash of p. 63, though there we used the opposite metric.]
As L is sort of a rotation, we might expect something like P 2 to be

invariant, and indeed we define

P 2 := ηµνPµPν

[
Lρσ, P

2
]

= ηµν {[Lρσ, Pµ]Pν + Pµ [Lρσ, Pν]}

= ηµν {(−iηρµPσ + iησµPρ)Pν − iηρνPµPσ + iησνPµPρ}

= −iδν
ρPσPν + iδν

σPρPν − iδµ
ρPµPσ + iδµ

σPµPρ

= −iPσPρ + iPρPσ − iPρPσ + iPσPρ = 0.
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So P 2 commutes with the whole algebra and is a Casimir invariant.
Note that neither the Lorentz subgroup, generated by just the Lµ

ν ’s,
nor the whole Poincaré group, is compact, and we would not expect the
unitary irreducible representations to be finite dimensional. For the Lorentz
group, however, we will be interested in finite-dimensional representations,
as described below, though we will need to adjust for their non-unitarity.

Consider the Pauli-Lubanski 4-vector

W µ =
1

2
ǫµνρσPνLρσ,

where ǫµνρσ is the totally antisymmetric tensor (Levi-Civita) with ǫ0123 = 1.
W has an interpretation as the spin, because in involves a (pseudo)rotation
Lρσ in a plane orthogonal to the 4-momentum Pν . Because of the ǫ the order
is irrelevant, W µ = 1

2
ǫµνρσLρσPν , and W µ commutes with the momentum

[W µ, Pτ ] =
1

2
ǫµνρσ [Lρσ, Pτ ]Pν = iηρτ ǫ

µνρσPσPν = 0.

W µ also “rotates”, or rather transforms under Lorentz transformation, as a
4-vector ought:

[Lµν ,Wρ] = −iηµρWν + iηνρWµ,

and its square is invariant,

[Lµν ,WρW
ρ] = 0.

Thus in an irreducible representation of the Poincaré algebra, even though it
is in general infinite dimensional, all the states will have the same value for
P 2 and W 2.

Consider a representation with P 2 < 0, so all Pµ are timelike vectors.

Call m2 = −P 2 = (P 0)2 − ~P 2. The commuting momentum generators may
be chosen diagonal, so the basis states each have a definite P µ. Assume1

P 0 > 0. Then any such P µ with P 2 = −m2 can be acted upon by a Lorentz
transformation to give P µ = (m, 0, 0, 0). On this state, W 0 vanishes and

1We have been a little glib about which Lorentz group we are considering. If we
are discussing the isochronous proper group, which is the connected component of the
less restricted group, it preserves the direction of time and the handedness of spatial
coordinate systems. It is only this connected subgroup which is known, so far, to be an
exact symmetry of physics. The sign of P 0 is then an invariant when P 2 < 0, timelike.
We restrict our attention to representations with P 0 > 0.
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W j = m
2
ǫjkℓLkℓ = mLj , where Lj is the usual rotation generator about the

j axis. So we see that ~W/m is a spin angular momentum, and W 2/m2 =
s(s+ 1) gives the intrinsic spin of the particle.

Note the irreducible representation has states with each value of ~P , so is
infinite dimensional. But for a given ~P there are only 2s+ 1 states.

For representations with P 2 = 0 or P 2 > 0, things are somewhat different.
Take a course in relativistic quantum field theory for more on the former,
and we won’t talk about the latter, tachyons.

Any representation of the Poincaré group is a representation of the Lorentz
group, and it will be useful to consider those, as we can find finite dimen-
sional ones. We sometimes like to be old fashioned and distinguish space
from time, so let’s define

Jℓ =
1

2
ǫℓjkLjk, Kj = L0j .

We can find their commutators from (17.2),

[Jj , Jk] = iǫjkℓJℓ, (17.3)

[Jj , Kk] = iǫjkℓKℓ, (17.4)

[Kj , Kk] = −iǫjkℓJℓ. (17.5)

Eqs. (17.3) and (17.4) are the usual commutation relations for the rotation

operator with any vector, [Jj, Vk] = iǫjkℓVℓ. So ~J and ~K rotate as vectors

ought to, under the action of the angular momentum generators ~J . Eq. (17.5)
is something else however, a somewhat surprising statement that Lorentz
boosts do not commute but rather their commutator is a generator of a
rotation.

The algebra of these six generators is simplified if we consider the complex
linear combinations Lj ± := 1

2
(Jj ± iKj), which satisfy the commutators

[Lj +, Lk +] =
i

4
ǫjkℓ (Jℓ + iKℓ + iKℓ + Jℓ) = iǫjkℓLℓ + ,

[Lj +, Lk−] =
i

4
ǫjkℓ (Jℓ − iKℓ + iKℓ − Jℓ) = 0,

[Lj −, Lk−] =
i

4
ǫjkℓ (Jℓ − iKℓ − iKℓ + Jℓ) = iǫjkℓLℓ− . (17.6)

Thus we have two sets of mutually commuting generators, so we can find the
possible representations of fields by asking how they transform under each
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of the two independant algebras, each of which has the commutation rela-
tions of ordinary rotations, SO(3) or SU(2). We know the finite dimensional
representations from our quantum mechanics course — they are labelled by
a total spin which is a half integer. So we will have two spins, s± for ~L±,
that will label a finite dimensional (2s++1)(2s−+1)) representation of the
Lorentz group, ψs+,s

−

. The two we will consider are ψ 1

2
,0 and ψ0, 1

2

. For ψ 1

2
,0,

1
2
( ~J + i ~K)ψ = 1

2
~σψ, 1

2
( ~J − i ~K)ψ = 0, so ~Jψ = 1

2
~σψ, ~Kψ = −i

2
~σψ. Notice

that for real Lorentz transformations, with the coefficients of ~J and ~K real,
the coefficients of ~σ will not be real, and this is not a unitary representa-
tion. The Lorentz group is not compact, as the rapidity can go to infinity,
so this should not be a surprise. That means that ψ†ψ will not be a scalar
under Lorentz boosts. What is a scalar is ψ†ψP0 +ψ†~σψ · ~P , where Pµ is the

momentum. Similarly for ψ0, 1
2

ψ†

0, 1
2

ψ0, 1
2

P0 − ψ†

0, 1
2

~σψ0, 1
2

· ~P is a scalar.

We have found two irreducible representations of the Lorentz algebra,
which means two irreducible representations of the connected component of
the Lorentz group, also known as the proper orthochronous Lorentz group,
which does not include parity or time-reversal. Under parity, ~J is unchanged
but ~K changes sign, so s+ ↔ s−, and to have a representation of the group
including parity, we need the direct sum of ψ 1

2
,0 and ψ0, 1

2

, which is a four-
dimensional representation

ψ =

(

ψ0, 1
2

ψ 1

2
,0

)

. Define fixed matrices γj =

(
02×2 σj

−σj 02×2

)

, γ0 =

(
02×2 1I2×2

1I2×2 02×2

)

.

Then it turns out the free Dirac equation is

(iγµ∂µ −m)ψ = 0

and the Lagrangian density is

L = ψ̄(iγµ∂µ −m)ψ.

where ψ̄ := ψ†γ0.
The representations ψ 1

2
,0 and ψ0, 1

2

are known as Weyl spinors and the sum
a Dirac spinor. Because the hermitian conjugate reverses the handedness, the
hermitian lagrangian needs to have both right and left handed pieces. For the
Dirac theory these are independent, but if we identify one with the hermitian
conjugate of the other, we have a Majorana spinor. The Dirac spinor has 4
complex numbers, or 8 real ones, but the Majorana spinor has only 4 real
numbers.
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17.2 Supersymmetry

In the early days of flavor SU(3), it was noticed that the quarks could be

considered as a sextuplet with three flavors and two
spin states. If one imagined that the SU(2) rota-
tional group on spin and the SU(3) flavor were parts
of a unifying SU(6) acting on these six quark states,
one naturally finds for three quarks the a
6·7·8

6
= 56 dimensional representation which breaks

into a 10 of SU(3) with spin 3/2 (40 states) and a
flavor octet of spin 1/2, 16 states. These are pre-

cisely the low lying baryons. For appropriate

for quark-antiquark mesons, one gets a 35 repre-
sentation consisting of

• a flavor octet with zero spin, which matches
the three pi mesons, the 2 kaons and their two
antiparticles, and a singlet called η. 8 states.

• a flavor octet with spin 1, matching the three
ρ mesons, the four K∗ and K̄∗’s, and the neu-
tral ω particle. 24 states.

• a flavor single spin 1 called the φ particle. 3
states.

This is an excellent match for the observed low ly-
ing mesons. In addition, SU(6) explained dipole
moments of the baryons quite well.

The problem came from the theoretical argu-
ment that the rotation group is not an isolated sym-
metry which was free to unite with flavor, leaving
behind the rest of the Poincaré group. All attempts
to pull in the full group into a united whole led to
inconsistencies, culminating in the
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Coleman-Mandula Theorem:

The most general Lie algebra of symmetry generators which acts on par-
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ticle states and has only finitely many particles of a given mass, and has a
scattering matrix S 6= 1, consists of the Poincaré group, Pµ, Lµν , in direct
product with an internal symmetry group with scalar charges Zℓ.

Thus SU(6) was dead! There is no Lie algebra which can combine internal
symmetry and Poincaré symmetry in a nontrivial manner.

If that were the end of the story, I probably wouldn’t be talking about it.
But in fact independent developments took place in the late ’60’s, on a the-
ory of elementary particles then called Dual Resonance Models, now known
as string theory. In this theory, a new kind of infinitesimal symmetry gener-
ator was found, which mixed bosons and fermions! This was generalized to
ordinary four dimensional field theory by J. Wess and B. Zumino, e.g. Nucl.

Phys. B70 (1974) 39.
Consider a Majorana fermion2 ψ and two scalar fields A and B. Let α be a

Majorana spinor which is not a field operator but almost a c-number, except
that instead of commuting with everything, its components anticommute
with themselves and other fermionic objects. Then under an infinitesimal
transformation

δA = iᾱψ,

δB = iᾱγ5ψ,

δψ = ∂µ (A− γ5B) γµα,

the Lagrangian

L = −
1

2
(∂µA) (∂µA) −

1

2
(∂µB) (∂µB) −

1

2
iψ̄γµ∂µψ

is unchanged, that is, δL ∼ 0. Actually, it is not zero but a total derivative,
but that is the same thing, because a total derivative in the Lagrangian
density does not affect the equations of motion classically, and produces only
a phase in the Feynman path integral quantum mechanically. This lagrangian
density is the standard form for noninteracting massless scalars and a spinor

2In representations of the proper Poincaré group, there are two massive spin 1

2
rep-

resentations, one left-handed and one right-handed, which are, of course, related to each
other by Parity. A Dirac fermion is the direct sum of these two representations, which
are independent degrees of freedom of the field. For a Majorana fermion these are con-
strained: the right-handed piece is the hermitean conjugate of the left handed piece, and
not independent. In Dirac language ψ = C(ψ̄)T where C is the charge-conjugation matrix,
and ψ̄ = ψ†γ0.
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field. One could also add masses and interactions to L and still maintain the
symmetry.

Now here is clearly a symmetry which enlarges the Poincaré group. The
αa (a a Dirac index) are parameters which must be associated with some
operators Qa which do the infinitesimal transformations, in the same way
the Lie algebra generators do. The Grassmann (anticommuting) nature of
the α’s implies that the algebra of the Q’s involves anticommutators rather
than commutators. The anticommutators, being bilinears, must be ordinary
symmetries of the Lagrangian. That is, they must form a Lie algebra. This
means

{Qa, Qb} = Aµ
abPµ +Bµν

ab Lµν + Cj
abZj

where Zj are the generators of some internal symmetry Lie algebra, in accord
with the Coleman-Mandula theorem.

The Q’s must transform under the Lorentz group like spinors, and must be
Majorana, Q = CQ̄T , where C is the charge conjugation3 matrix C−1γµC =
−γT

µ , and T means transpose (in the Dirac spinor space). So the index a can
contain an internal index j as well as its Dirac index a. Then it turns out
the only allowed possibility for massive particles is

{Qja, Qkb} = −(γµC)abPµδjk + CabZjk. (17.7)

The reference is R. Haag, J. T.  Lopuszanski and M. Sohnius Nucl. Phys.

B88 (1975) 257.

This may be added to an internal symmetry algebra with generators Bm.
The Q’s are in some representation Γ(Bm) of the internal symmetry algebra.
The Zjk need to commute with all the generators of these internal symmetries
Bm, and also with all the other generators. They are called central charges,
and therefore, if they exist, generate an invariant Abelian subalgebra. The

3Majorana is always a condition relating Q and Q̄, but what the condition is depends
on the representation chosen for the γµ’s. C is then defined suitably.
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full superalgebra then has the relations (17.7) and

[Bm, Bn] = ic p
mn Bp

[Lµν , Lρσ] = −iηνρLµσ + iηνσLµρ + iηµρLνσ − iηµσLνρ

[Lµν , Pρ] = −iηµρPν + iηνρPµ

[Pµ, Pν] = 0

[Lµν , Bm] = [Pµ, Bm] = 0 (17.8)

[Bm, Qja] = −Γjk(Bm)Qka

[Lµν , Qja] =
1

2
(σµν)

ab
Qjb

[Pµ, Qja] = 0

[Zjk, Bm] = 0 = [Zjk, Zrs] = [Zjk, Qja] = [Zjk, Pµ] = [Zjk, Lµν ]

where Γ is a hermetean N dimensional representation of the group generated
by the B’s, and σµν = i

2
[γµ, γν ] as usual in the Dirac algebra.

17.2.1 Superparticle Multiplets

Consider a single particle state. Its spin in the z direction is given by the
operator Jz = Lxy Thus

[Jz, Qja] =
1

2
(σxyQ)

ja
, where σxy =

(
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

)

.

This shows that the Q1a and Q3a are raising operators by 1
2

for Jz, while Q2a

and Q4a lower Jz by 1/2.
There are many different representations of the Dirac algebra in common

use. In our “Weyl” representation, Jz = 1
2

(
σ3 0
0 σ3

)

, γ0 =

(
0 1I
1I 0

)

,

γi =

(
0 σi

−σi 0

)

, C = σ02 =

(
−iσ2 0

0 iσ2

)

=

(
0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

)

.

As Q is Majorana,

Q = CγT
0 Q

† =

(
0 −iσ2

iσ2 0

)

Q† =

(
0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

)

Q†,
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or Q1 = −Q†
4, Q2 = Q†

3.

Most of the interest in supersymmetry involves massless particles when
the symmetry is unbroken. Consider a single massless particle state |ψ〉
with momentum P µ = (E, 0, 0, E) moving along the z axis. Then γµP

µ =
(

0 0 2 0

0 0 0 0

0 0 0 0

0 2 0 0

)

E, and {Qja, Qjb} |ψ〉 = −2E

(
0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

)

ab

|ψ〉 if we assume no

central charge. Now we see that {Q1j , Q
†
1j} 6= 0 acting on |ψ〉 and Q†

1j

is a lowering operator. Consider the state of highest Jz = λmax. Then
Q1 |ψ〉 = 0, but 〈ψ|Q1Q

†
1 |ψ〉 = 〈ψ| {Q1, Q

†
1} |ψ〉 = −〈ψ|Q1Q4 |ψ〉 = 2E 6= 0,

so Q†
1 |ψ〉 6= 0 and has a lower helicity.

If we have different j’s, the Q1j ’s anticommute with each other and with

the other Q†
1k’s (for j 6= k) even if we have central charges, because (C)ab = 0

for a, b = 1, 4. Thus on the maximum helicity state all Q1j ’s vanish, while
Q4j can be applied once for each j, lowering the helicity by 1/2 each time.

Suppose we have N Qaj ’s, j =
1, . . . , N . Suppose the maximum
helicity state ψ has helicity λ. Then
on this state we have the states
shown in the table. This goes on

until
(
∏N

i=1Q4i

)

|ψ〉 produces just

one state with helicity λ−N/2.
One very exciting field of

application of supersymmetry is
supergravity. Supergravity theories
involve the graviton, which means
two massless states, of helicity ±2.
They also involve states of lesser

state helicity # of states
|ψ〉 λ 1

Q4j |ψ〉 λ− 1
2

N

Q4jQ4k |ψ〉 λ− 1
(

N

2

)

Q4jQ4kQ4ℓ |ψ〉 λ− 3
2

(
N

3

)

...
...

...
N∏

j=1

Q4j |ψ〉 λ− N
2

1

helicity, but not states with |helicity| > 2, which cause grave problems in
field theory when massless. This means that if we start with a graviton and
work our way down, we will wind up with an impossible λ = −5/2 state if
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N > 8. So the largest
supergravity theory has 8
Qj ’s. The massless states
(before the required su-
persymmetry breaking) are
given in the table.

The theory is very at-
tractive in that it seems to
be at least very close to
being a finite field theory
of gravity, which is much

helicity λ name # in N = 8
2 graviton 1

3/2 gravitino 8
1 gluons,W±, Z, γ,etc. 28

1/2 quarks,leptons, etc. 56
0 Higgs?, etc. 70
...

...
...

−2 graviton 1

better than ordinary Einstein gravity coupled to matter (electrons, quarks,
etc.). In quantum field theory, spin 2 particles lead to loop diagrams with
nonrenormalizable infinities unless some symmetry forces them to vanish.
Such symmetries do exist for gravity coupled only to itself, but not when
coupled to “matter” fields. If, however, we have a supergravity multiplet,
symmetries apply to the whole multiplet4. In the supermultiplet built on
the graviton, could the massless states given by our discussion of the helicity
multiplets give the “physical particles” at today’s level of understanding?
They should include states in multiplets of color SU(3)C × Salam-Weinberg
SU(2) × U(1):

needed particle property under color property under SW
graviton 1 1

gluons 8 1

photon, W±, Z 1 3 ⊕ 1

quarks 6 × 3 3 × 2

leptons 1 3 × 2

There is an argument by Gell-Mann that O(8) supergravity is not quite
big enough. There seem to be enough particles, but their properties are not
quite right. For example, if the gluons are to be made by Q4jQ4k |grav〉, there
must be some Q’s which are 3 and some 3̄ under color SU(3). These must be
Salam-Weinberg singlets because there aren’t enough Q’s for them to be dou-
bled. So Salam-Weinberg gauge fields, which are an adjoint representation

4Sugra + matter is not 1-loop finite, but pure sugra is 1- and 2-loop finite, but not
3-loop. Is extended sugra (N = 8 in particular) finite to all loops? Green, Russo and
Vanhove, JHEP 0707:099 (2007)
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of SU(2)×U(1), can only come from the remaining 2 Q’s, antisymmetrized,
while we need 4 colorless gauge particles. There could be no charged W ’s and
no quarks which are both SU(3) 3 and SU(2) doublets. There is, nonetheless,
still work being done on this idea5.

17.3 Superfields

Reference: A. Salam and J. Strathdee, Nucl. Phys. B76 (1974) 477, Phys.

Rev. D11 (1974) 1521.
In ordinary field theory, the momentum operator acts to generate, from

a single operator φ(xµ = 0), the whole operator-valued field

φ(x) = eiPxφ(0)e−iPx.

Now we have an algebra which includes Qm as well as Pµ. (From now on we
specialize to N = 1 for simplicity, so Qaj → Qa.) Let us define

φ(x, θ) = eiPµxµ+iθ̄aQaφ(0)e−iPµxµ−iθ̄aQa

which is a function not only of x but also of the 4 Grassmann quantities θa.
If we expand this function in a power series in θ, things will terminate with
quartic terms because each (θa)2 = 0.

Unlike the P ’s. the Q’s do not all (anti) commute. Thus

ǭ
∂

∂θ̄
e±iθ̄Q =

∫ 1

0

e±iαθ̄Q(±iǭQ)e±i(1−α)θ̄Q dα

= ±

∫ 1

0

e±iαθ̄Q(iǭQ)e∓iαθ̄Q dα e±iθ̄Q

= ±

∫ 1

0

{
iǭQ± i2α

[
θ̄Q, ǭQ

]}
dα e±iθ̄Q

as6 the commutator

[
θ̄Q, ǭQ

]
= −θ̄bǭa{Qb, Qa} = −ǭγµCθ̄P

µ = −ǭγµθP
µ,

5Krzysztof A. Meissner and Hermann Nicolai, “Standard Model Fermions and N=8
supergravity”, arXiv:1412.1715v2 (2/23/15)

6By the Hadamard Lemma or Campbell-Baker-Hausdorff identity.
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commutes with θ̄Q. Then

ǭ
∂

∂θ̄
e±iθ̄Q = ±

(

iǭQ±
1

2
ǭγµθP

µ

)

e±iθ̄Q

= ±e±iθ̄Q

(

iǭQ∓
1

2
ǭγµθP

µ

)

where the change of sign in the last expression comes from [iǭQ,±iθ̄Q].
Thus

ǭ
∂

∂θ̄
φ(x, θ) =

(

iǭQ+
1

2
ǭγµθP

µ

)

φ(x, θ) + φ(x, θ)

(

−iǭQ−
1

2
ǭγµθP

µ

)

= i [ǭQ, φ(x, θ)] +
1

2
ǭγµθ [Pµ, φ(x, θ)] .

As Pµ acts as the derivative ∂µ on φ, we see that acting on φ,

ǭQ = −iǭ

(
∂

∂θ̄
+
i

2
γµθ∂µ

)

.

Let us write out the power series expansion. The linear terms in θ can
be recombined into θ̄. The quadratic terms [θm, θn] can be written as θ̄Mθ
for some Dirac matrix M . As the θ are Majorana, θ̄ = (C−1θ)T = −θC−1 as
C is antisymmetric, so θ̄Mθ = −θC−1Mθ = −1

2
θaθb

(
C−1M − (C−1M)T

)

ab
.

All 4 × 4 matrices are linear combinations of

1I
︸︷︷︸

S

, γµ
︸︷︷︸

V

, σµν
︸︷︷︸

T

, γµγ5
︸︷︷︸

A

, γ5
︸︷︷︸

P

where the labels stand for scalar, vector, tensor, axial vector, and pseu-
doscalar, which is what these matrices give if sandwiched between ψ̄ and
ψ. As the charge conjugation matrix satisfies C−1γµC = −γT

µ , C−1M is
symmetric for V and T, and antisymmetric for S, P, and A. Only the anti-
symmetric ones can contribute to the terms quadratic in θ, so these terms are
linear combinations of θ̄θ, θ̄γ5θ and θ̄γνγ5θ. There are 4 cubic terms which
can be written in terms of (θ̄θ)θ̄ and one quartic term (θ̄θ)2. Thus

φ(x, θ) = A(x) + θ̄ψ(x) +
1

4
θ̄θF (x) −

i

4
θ̄γ5θG(x) +

1

4
θ̄γνγ5θA

ν(x)

+
1

4
θ̄θθ̄χ(x) +

1

32
(θ̄θ)2D(x)
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expresses the superfield φ in terms of ordinary fields A,ψ, F,G,Aν, χ,D
This superfield is not irreducible. Consider the operators

Dm =
∂

∂θ̄m

−
i

2
(γµθ)m ∂µ which differ from the Q’s only by the sign of the

∂µ term. Now7 {Dm, Qn} = 0, so although the D’s do not anticommute with
each other, they do commute or anticommute appropriately with the P ’s and
Q’s. Under Lorentz transformations

[Lµν , Dm] =
1

2
(σµνD)

m
.

From the four D’s, let us divide into two pairs,

DL =
1

2
(1 − γ5)D,

DR =
1

2
(1 + γ5)D.

Then the pairs do not mix under the supersymmetry transformations. Thus
constraint equations such as DLφ = 0 are invariant under supersymmetries.
A superfield satisfying such a constraint is called a right-handed chiral su-

perfield.
We can solve this constraint conveniently if we note

DL =
1

2
(1 − γ5)D =

1

2
(1 − γ5)

(
∂

∂θ̄m

−
i

2
γµθ∂µ

)

=
1

2
(1 − γ5) e

i
4
θ̄ 6∂γ5θ ∂

∂θ̄
e−

i
4
θ̄ 6∂γ5θ

so DLφ = 0 =⇒ (1 − γ5)
∂

∂θ̄
e
−
i

4
θ̄ 6∂γ5θ

φ = 0

=⇒ φ = e

i

4
θ̄ 6∂γ5θ

φ̃ where (1 − γ5)
∂

∂θ̄
φ̃ = 0.

Although φ was real, φ̃ is complex. However, the constraints require

φ̃ = A−(x) + θ̄ψ−(x) +
1

2
θ̄

1 + γ5

2
θF−(x),

7To maintain the Grassmann character, we take ∂/∂θm to satisfy {∂/∂θm, θn} = δmn

instead of a commutator.
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with no cubic or quartic terms, and with (1 − γ5)ψ− = 0, so ψ− is a Weyl
fermion field.

Consider the effect of a supersymmetry on φ:

ǭQφ = −iǭ

(
∂

∂θ̄
+
i

2
γµθ∂µ

)

e

i

4
θ̄ 6∂γ5θ

φ̃

= e

i

4
θ̄ 6∂γ5θ

(

−iǭ

[
∂

∂θ̄
+ iγµθ∂µ

])

φ̃

= e
i
4
θ̄ 6∂γ5θ

(

ǭγµθ∂µ

[

A−+θ̄ψ−+
1

2
θ̄

1 + γ5

2
θF−

]

− iǭ

[

ψ−+
1+γ5

2
θF−

])

.

We know that DLǭQφ = ǭQDLφ = 0, so ǭQφ must be a right handed chiral
superfield of the form

ǭQφ = e

i

4
θ̄ 6∂γ5θ

(

δA− + θ̄δψ− +
1

2
θ̄

1 + γ5

2
θδF−

)

.

It takes some considerable θ algebra, involving Fierz identities, but you can
eventually show

δA− = ǭψ−

δψ− =
1 + γ5

2
(F− − i6∂A−) ǫ

δF− = −iǭ 6∂ψ−.

Notice that under a supersymmetry transformation, the highest θ term,
here an F , changes by a total derivative. This will be the case for any su-
perfield, because the term in ǭQφ = −iǭ

(
∂
∂θ̄

+ i
2
γµθ∂µ

)
φ with the maximum

number of θ’s cannot get a contribution from ∂
∂θ̄
φ, so it must be 1

2
ǭγµθ∂µφ,

a total derivative.
That means that if we take as a Lagrangian the highest θ term, either

F in a chiral superfield or D in a general superfield, under supersymmetry
transformations δL will be a total derivative and will contribute to the action
only a surface integral.

Except for gauge fields, surface integrals at infinity can generally be taken
to be zero, because physics should be local and the dynamics of fields in the
laboratory should be independent of boundary conditions on the fields out
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beyond Pluto. So effectively the variation of the action is zero, and the theory
will be supersymmetry invariant.

Suppose our fundamental field is a chiral superfield φ. Then to make our
Lagrangian we might use the F term of φ or φ2 or φ3, etc., all of which are
chiral superfields because DL(φ1φ2) = (DLφ1)φ2 + φ1(DLφ2) = 0 if φ1 and
φ2 are right-handed chiral superfields. The F terms are

of φ F−

of φ2 2A−F− − 1
2
ψ̄−(1 + γ5)ψ−

of φ3 3A−F− − 3A−ψ̄−(1 + γ5)ψ−

so with φ3 terms we get interaction terms and mass terms, but no kinetic
energy terms. Note also that φ is not hermitean, because φ† is a left handed
superfield. So L must involve φ† as well.

What about φ†φ? This is a product of left and right handed superfields
and is therefore not chiral. So the Lagrangian must be taken from the D
term, which turns out to be

∂µA
†
−∂

µA− +
i

2
ψ̄ 6∂ψ + F †

−F−

where ψ = ψ− + ψ†
−. This gives the usual kinetic energy terms for the scalar

and spinor.
Consider just this term for L

L = −
1

2
∂µA

†
−∂

µA− −
i

2
ψ̄ 6∂ψ − F †

−F−.

The “equations of motion” give free particle equations for A and ψ, but just
a constraint equation for F , F− = 0. This is because there is no ∂F

∂t
term

in the Lagrangian. Fields like that are called subsidiary terms, and satisfy
constraint equations rather than equations of motion, and do not correspond
to particles. Thus the chiral superfield provides a supersymmetric theory
including one scalar and one spinor particle.

Note this chiral multiplet has a complex scalar, equivalent to two real
scalars, and one Majorana fermion. A Majorana fermion, with four real
components to the spinor, is equivalent to a Weyl fermion, with two complex
components, and consists of two physical states (either two helicities for a
(Majorana) self-conjugate particle, or one each for a Weyl particle and its
antiparticle. Thus the number of physical particles which are bosons and the
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number which are fermions are equal. This is counting “on shell” states. We
can also count “off-shell” degrees of freedom, including with the complex A−

and F− each counting as two real ones, and the chiral ψ− counting as four.
In the full real superfield φ, each product of k θ’s is multiplied by a totally

antisymmetric tensor with k Majorana indices, for
(
4
k

)
real off-shell degrees

of freedom, so 1 + 6 + 1 = 8 bosonic and 4 + 4 = 8 fermionic ones. From
this reducible multiplet we have extracted the left and right handed chiral
multiplets, totaling 4 + 4, so that leaves the “vector” superfield with 4 real
bosonic fields and 4 real spinor components. The four fermionic ones are
a Majorana fermion, and the four bosonic ones are a photon field, each of
which have two on-shell states.

There is much more to be said about supersymmetry. For a fuller expo-
sition of the fields, there is a standard text by Wess and Bagger, Supersym-
metry and Supergravity, Princeton University Press (1992).
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