Chapter 10

$S_k$ and Tensor Representations

(Ref: Schensted Part II)

If we have an arbitrary tensor with $k$ indices $W_{i_1 \cdots i_k}$ we can act on it with a permutation $P = \begin{pmatrix} 1 & 2 & \cdots & k \\ a & b & \cdots & \ell \end{pmatrix}$ so

$$(Pw)_{i_1, i_2, \cdots, i_k} = w_{ia, ib, \cdots, i\ell}.$$ 

Consider the algebra $\mathcal{A}$ formed by taking arbitrary linear combinations of the different permutations, considered as operators acting on the space of $k$'th rank tensors. This algebra can be constructed for any group, particularly finite groups, and is called the group algebra. (this is not the Lie algebra!). Note that this sum of permutations makes sense only as operators on a vector space. It is not the composition of permutations. Also note that as $\mathcal{A}$ is an algebra, one can both add and multiply (by composition) elements in $\mathcal{A}$.

The group algebra is useful because it can extract the tensors of specified symmetry. First consider tensors of rank 2. Writing $1 = \frac{1}{2}(\mathbb{I} + (1 \ 2)) + \frac{1}{2}(\mathbb{I} - (1 \ 2))$ we can extract

$$s^{ij} = \frac{1}{2}(\mathbb{I} + (1 \ 2)) w^{ij}$$
$$a^{ij} = \frac{1}{2}(\mathbb{I} - (1 \ 2)) w^{ij}$$

and $w^{ij} = s^{ij} + a^{ij}$ is a decomposition into a symmetric tensor and an antisymmetric tensor.

The action of the permutations commutes with the SU($n$) rotations on the tensors, so a constraint on a tensor of the form $Aw = 0$ for some $A \in \mathcal{A}$, if it holds for one state of an irreducible representation of SU($n$), will hold on all states in that representation. Thus $s$ and $a$ are separate representations.

Now consider a rank 3 tensor $w^{ijk}$, and define

$$s^{ijk} = \frac{1}{6} \sum_{P \in S_3} P w^{ijk}$$
$$a^{ijk} = \frac{1}{6} \sum_{P \in S_3} (\text{sign } P) P w^{ijk}$$

These are the totally symmetric and totally antisymmetric parts of $w$, but it is not all of $w$. For example, suppose $w^{112} = w^{121} = 1$, $w^{211} = -2$, all other components zero. Then $s^{ijk}$ and $a^{ijk}$ are both zero. The rest is related to the two-dimensional representation of $S_3$ (see homework #3, problem 1). In general, there will be operators in $\mathcal{A}$ associated with the different irreducible representations of $S_k$, which extract the corresponding irreducible representations of SU($n$).

So we now turn to the problem of finding the irreducible representations of $S_k$.

10.1 Irreducible Representations of $S_k$

We know in general that the number of irreducible representations is the number of conjugacy classes. So let us begin with that.

Any element of $S_k$ can be written as a product of disjoint cycles. For example, $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix} = (1 \ 2 \ 3)(4 \ 5)$. This factorization is unique (remember $(1 \ 2 \ 3) = (2 \ 3 \ 1)$) up to the order of the factors, which commute because they are disjoint cycles.

Under conjugation by $P = \begin{pmatrix} 1 & 2 & \cdots & k \\ P_1 & P_2 & \cdots & P_k \end{pmatrix}$ a cycle simply has its elements permuted. Thus $P(i \ j \ k)P^{-1} = (P_i \ P_j \ P_k)$. This is true for products of cycles as well. Thus two permutations whose descriptions in terms of disjoint cycles contain the same number of cycles of each length are conjugate, and only those are. We describe the conjugacy class of elements describable in terms of disjoint cycles, $I_k$ of length $\ell_k$, as $(\ell_1 \ell_2 \cdots \ell_k)$. Including one-cycles for any element left unmoved, we have $\sum \ell_m = k$. 

118. Last Latexed: March 22, 2016 at 14:30 Joel A. Shapiro
Example: $S_3$

\[
\begin{align*}
\mathbb{1} & \in (1^3) \\
(12) & = (12)(3) \in (2,1) \\
(23), (13) & \in (2,1) \text{ as well} \\
(123), (132) & \in (3)
\end{align*}
\]

There is one conjugacy class for each partition of $k$. A partition of an integer $k$ is an unordered set of positive integers, possibly with repeats, which add to $k$.

Example: How many classes\(^1\) are there in $S_5$?

\[
\begin{align*}
(5); \quad (4,1); \quad (3,1,1) = (3,1^2); \quad (3,2); \quad (2^2,1); \quad (2,1^3); \quad (1^5)
\end{align*}
\]

answer: 7.

Thus we also know that there are that many irreducible representations, although there is not a straightforward correspondence between the representations and the conjugacy classes.

Define a **Young graph** for $S_k$ as a set of $k$ boxes arranged, left-justified, in rows each of which is no longer than the preceding. The lengths of the rows provide a partition of $k$. So

\[
\begin{align*}
(5) & \quad (3,2) & (2,1^3) & (1^5) \\
(4,1) & & (2^2,1) \\
(3,1^2)
\end{align*}
\]

There is one irreducible representation of $S_k$ corresponding to each Young graph.

A **Young tableau** is a Young graph with the numbers $1, 2, \cdots, k$ inserted in the boxes in some order, for example $\tau = \begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}$.

For each tableau we define $P_\tau = \sum P$, where the sum is over those permutations which permute the numbers within each row but do not move them from one row to another. Here

\[
P_\tau = [\mathbb{1} + (23) + (34) + (24) + (234) + (243)] [\mathbb{1} + (51)],
\]

\(^1\)The number of partitions of $n$ is given by the partition function of number theory, $p(n)$. There are other things called partition functions, especially $Z$ of statistical mechanics, which is different. The number-theory one, also called the integer partition function, arises also in counting states in string theory. It has the fascinating property that $p(k)$ has the generating function $\prod_{k=1}^\infty (1 - x^k)^{-1} = \sum_{k=0}^\infty p(k)x^k$, where we say $p(0) = 1$.

We also associate $Q_\tau = \sum (\text{sign } P)P$ where the sum includes only permutations which permute numbers in the same column but don’t move numbers from one column to another. Thus

\[
Q_\tau = [\mathbb{1} - (25)] [\mathbb{1} - (13)].
\]

Finally we define the **Young operator** $Y_\tau = Q_\tau P_\tau$.

We see that the way to get a totally symmetric rank 5 tensor is to apply $Y_\tau$ to an arbitrary one while you get a totally antisymmetric tensor by applying $Y_\tau$ with the numbers in any order in the boxes.

The $Y_\tau$ corresponding to any Young tableau $\tau$ is almost, but not quite, the element of the group algebra we want to extract irreducible representations. We find a related set of basis vectors in the group algebra by using the representations of $S_k$. Define

\[
e^\eta_{ij} = \frac{\ell_\eta}{k!} \sum_P \Gamma^\eta_{ji} (P^{-1})P,
\]

where $\eta$ is the Young graph corresponding to an irreducible representation of $S_k$, and $\ell_\eta$ is the dimension of that representation. The sum is over all the permutations.

For $\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}$, $\ell_\eta = 1$, $\Gamma = 1$, and $e^\eta_{11} = Y_\eta$. Other Young operators in $\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}$ differ only in sign, e.g. $Y_\eta = \text{sign}(12)Y_\eta = -Y_\eta$.

The $e$’s have some marvelous properties. They form vector spaces transforming as irreducible representations under $S_k$ separately from the right and from the left: For\(^2\) $Q \in S_k$,

\[
Qe^\eta_{ij} = \frac{\ell_\eta}{k!} \sum_P \Gamma^\eta_{ji} (P^{-1})QP = \frac{\ell_\eta}{k!} \sum_m \Gamma^\eta_{mj} (Q) \sum_P \Gamma^\eta_{jm} (P^{-1}Q^{-1})QP
\]

\[
= \frac{\ell_\eta}{k!} \sum_m \Gamma^\eta_{mj} (Q) \sum_R \Gamma^\eta_{jm} (R^{-1}) R = \sum_m \Gamma^\eta_{mj} (Q)e^\eta_{mj}
\]

\(^2\)Note $P$ and $Q$ are any elements of $S_k$, and are not related to $P_\tau$ and $Q_\tau$ defined earlier.
That’s just the way you’d expect a basis vector $\epsilon_i$ of representation $\eta$ to transform, for each fixed $j$.

From the other side, $e^\eta_j Q = \sum_m \Gamma^\eta_m(Q) e^\eta_m$.

We say that the set $e^\eta_j$ is a two sided ideal (or invariant subalgebra) of the group algebra over $S_k$.

This gives the $e$’s an interesting algebra:

$$e^\eta_{ij} e^\eta_{mn} = \frac{\ell_{ij} \ell_{mn}}{(k)!^2} \sum_{P,P' \in S_k} \Gamma^\eta_{ij} (P^{-1}) \Gamma^\eta_{mn} (P'^{-1}) PP'$$

$$= \frac{\ell_{ij} \ell_{mn}}{(k)!^2} \sum_{P \in S_k} \Gamma^\eta_{ij} (P^{-1}) \sum_p \Gamma^\eta_{pm} (P^{-1}) \Gamma^\eta_{pm} (P) R$$

$$= \frac{\ell_{ij}}{k!} \sum_{P \in S_k} \Gamma^\eta_{ij} (P) \sum_p \Gamma^\eta_{pm} (P) e^\eta_{pm}$$

$$= \delta_{mn} \delta_{jm} e^\eta_{in}$$

by unitarity

by the great orthogonality theorem

We may also show that the diagonal elements $e^\eta_{ii}$ form a decomposition of the identity. From the great orthogonality theorem “transposed” ,

$$\delta_{GG'} = \sum_{ij \eta} \frac{\ell_{ij}}{k!^2} \Gamma^\eta_{ij} (G') \Gamma^\eta_{ij} (G)$$

we can write the identity element of $S_k$ as

$$\mathbb{1} = \sum_G \delta_{G^{-1},G} \mathbb{1} = \sum_{ij \eta} \frac{\ell_{ij}}{k!} \Gamma^\eta_{ij} (\mathbb{1}) \Gamma^\eta_{ij} (G^{-1})$$

$$= \sum_{ij \eta} \frac{\ell_{ij}}{k!} \Gamma^\eta_{ij} (G^{-1}) \mathbb{1} = \sum_{\eta i} e^\eta_{ii}$$

so

$$\mathbb{1} = \sum_{\eta i} e^\eta_{ii}$$

Thus the whole algebra is spanned by these two sided ideals. In particular, the $Y_\tau$ are contained in the corresponding $e^\eta_{ij}$ (an $\ell_\eta^2$ dimensional algebra).

In fact, the space spanned by $e^\eta_{ij}$ is also spanned by $Q_i s_{ij} P_j$, where $Q_i$ and $P_j$ are the antisymmetrizers and symmetrizers of a set of standard tableaux for $\eta$, which means tableaux in which the numbers increase left to right in each row, and also top to bottom in each column. Thus $\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array}$ and $\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}$ are standard tableaux, but $\begin{array}{c} 2 \\ 3 \\ 4 \end{array}$ and $\begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array}$ are not. Here $s_{ij}$ is the permutation such that $\tau_i = s_{ij} \tau_j$. Each of these spaces has dimension $\ell_\eta^2$, with $\ell_\eta$ equal to the number of standard tableaux, so

The dimension of $\Gamma^\eta$ is the number of standard tableaux of $\eta$.

Counting all possibilities is tedious, so we have a magic formula in terms of hooks.

For each box $b$ in a Young graph with $k$ boxes, define the hook of $b$, $g_b = 1$ plus the number of boxes directly to the right plus the number of boxes directly beneath. Then

$$\ell_\eta = \prod_b g_b$$

Example: In the Young graph I have placed the corresponding hooks (this is not a Young tableau)

$$\begin{array}{cc} 7 & 5 \\ 6 & 4 \\ 3 & 1 \\ 1 \end{array}$$

$$\ell = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3^2 \cdot 2^2 \cdot 1^3 = 1320.$$ It would be hard to count this explicitly. For our more reasonable case $\begin{array}{c} 3 \\ 1 \\ 1 \end{array}$ gives $\ell = \frac{3!}{3} = 2$.

10.2 Representations of SU($n$)

We now turn to the extraction of arbitrary representations of SU($n$). Georgi discusses the fundamental weights of SU($n$), and shows that an arbitrary representation can be found from a tensor product of an adequate number of defining representations. The problem is to extract from the tensor product of $k$ defining representations $\otimes N^k$ the irreducible pieces. We have seen that this can be done by demanding that elements of the permutation group algebra vanish. If we impose $e_{ii}^\eta w = 0$ for all $\eta$ and $i$ save one, that is equivalent to projecting out our representation

$$T^{a_1 a_2 \cdots a_k} = (\epsilon_{ii}^\eta)^{a_1 a_2 \cdots a_k}$$

for one particular representation $\eta$ and one basis vector $i$. The dimensions of the irreducible pieces are $\ell_\eta^2$.
The different $i$ generate equivalent representations. The different $\eta$'s, however, each correspond to a different (inequivalent) representation of SU($n$).

Before doing more formal arguments, we will do an example. Consider three spin $\frac{1}{2}$ objects, or the tensor product of three defining representations of SU(2). We will extract from this 8 dimensional state space the piece $e_{11}^{\underline{124}}$. From the problem you did for homework (#3, problem 1),

$$e_{11}^{\underline{124}} = \frac{2}{6} \sum_P \Gamma_{\eta}^P (P^{-1}) P$$

$$= \frac{1}{3} \left( \mathbb{I} + (1 2) - \frac{1}{2} (2 3) - \frac{1}{2} (1 3) - \frac{1}{2} (1 2 3) - \frac{1}{2} (1 3 2) \right),$$

Let this act on the basis vectors which we expand as $\uparrow = e_1$, $\downarrow = e_2$.

\begin{align*}
\uparrow\uparrow\uparrow & : \frac{1}{3} \uparrow\uparrow\uparrow + \frac{1}{3} \uparrow\uparrow\uparrow - \frac{1}{6} \uparrow\uparrow\downarrow - \frac{1}{6} \uparrow\downarrow\uparrow - \frac{1}{6} \downarrow\uparrow\uparrow - \frac{1}{6} \downarrow\downarrow\uparrow = 0 \\
\uparrow\uparrow\down\down & : \frac{1}{3} \uparrow\uparrow\down\down + \frac{1}{3} \uparrow\uparrow\down\down - \frac{1}{6} \uparrow\down\up\down - \frac{1}{6} \up\down\up\down - \frac{1}{6} \down\up\down\down - \frac{1}{6} \down\down\up\down = \frac{2}{3} \up\up\down\down - \frac{1}{3} \up\down\up\down - \frac{1}{3} \down\up\down\down \\
\down\down\up\up & : \frac{1}{3} \down\down\up\up + \frac{1}{3} \down\down\up\up - \frac{1}{6} \down\down\down\down - \frac{1}{6} \down\down\down\down - \frac{1}{6} \down\down\down\down - \frac{1}{6} \down\down\down\down = \frac{1}{3} \down\down\down\down + \frac{1}{6} \down\down\down\down + \frac{1}{6} \down\down\down\down \\
\down\down\down\down & : \frac{1}{3} \down\down\down\down + \frac{1}{3} \down\down\down\down - \frac{1}{6} \down\down\down\down - \frac{1}{6} \down\down\down\down - \frac{1}{6} \down\down\down\down - \frac{1}{6} \down\down\down\down = 0
\end{align*}

Notice this only results in one state of $J_z = \frac{3}{2}$ and one of $J_z = -\frac{1}{2}$. So $e_{11}^{\underline{124}}$ projects out a 2-dimensional $s = \frac{1}{2}$ state. $e_{22}^{\underline{124}}$ would project out an orthogonal spin $\frac{1}{2}$. Thus the tensor product of three spin $\frac{1}{2}$'s is a spin $3/2$ (the totally symmetric part, $e_{11}^{\underline{124}}$) and two spin $1/2$ representations, $2 \times 2 \times 2 = 4 + 2 + 2 + 2$.

Having completed this trivial but tedious example of the simple case of SU(2) and $\underline{124}$, we are ready for some abstract reasoning.

Now we consider the general case of $N^k$. The basis vectors which are mixed by the permutational are only those with the same number of indices equal to 1, and the same number equal to 2, etc. Consider the subspace with $r_i$ of the indices equal to $i$, with $\sum r_i = k$, each $r_i = 1, \ldots, N$.

This subspace $S^\underline{r}$ is spanned by the basis vector

$$e = e_1 \otimes e_1 \cdots \otimes e_1 \otimes e_2 \cdots \otimes e_2 \cdots \otimes e_N \cdots \otimes e_N,$$

$$r_1 \text{ times} \quad r_2 \text{ times} \quad r_N \text{ times}$$

together with all permutations $P e$, for $P \in S_k$. If all the indices are different, all $r_i = 0$ or 1, all of the permutations are inequivalent, and we get a $k!$ dimensional space. But if the $r_i$'s are not all $\leq 1$, there is a subgroup $P \subset S_k$ with $B e = e$ for $B \in P$. In fact, $P = S_{r_1} \times S_{r_2} \times \cdots S_{r_N}$.

Let $P_P = \sum_{B \in P} B$ which is a element of the group algebra $A$. Then while the subspace $S^\underline{r}$ is spanned by $\{Pe\mid P \in S_k \}$ it is also spanned by $\{PP_P e\mid P \in S_k \}$.

We now want to extract from $S^\underline{r}$ the piece projected out by $e_{ij}^\eta$. The products $\{e_{ij}^\eta\}$ for all $P$ are just sums of multiples of $e_{ij}^\eta$, for all $j$ (by p. 121) so we want to know the dimension of the space $\{e_{ij}^\eta P_P\}$ for all $j$. As $e^\eta$ is a two-sided ideal, this space is $\sum_{j} e_{ij}^\eta b_{ij}$, so the dimensionality depends on the constraints on $b_{ij}$. If they were all independent, they would form an $\ell_\eta$ dimensional space. But there are constraints. For $B \in \mathcal{P}$, $P_P B = P_P$. Let’s be more explicit:

$$e_{ij}^\eta P_P = \sum_n e_{ij}^\eta b_{nj} = e_{ij}^\eta P_P B = \sum_n b_{nj} e_{im}^\eta B = \sum_{nm} \Gamma_{nm}^\eta(B) e_{im}^\eta b_{nj}.$$  

The $e_{im}^\eta$ are linearly independent, so $b_{nj} = \sum_m b_{mj} \Gamma_{nm}^\eta(B)$, for $B \in \mathcal{P}$. To find out how many degrees of freedom survive this constraint for each $j$, observe that $\Gamma_{nm}^\eta(B)$ forms a reducible representation of the subgroup $\mathcal{P}$. So we can write

$$\Gamma^\eta(B) = U \bigoplus_{\epsilon} \Gamma^\epsilon(B) U^{-1},$$

where $\Gamma^\epsilon$ are irreducible representations of $\mathcal{P}$. Now if $c = bU$,

$$b = b\Gamma^\eta(B) = bU \bigoplus \Gamma^\epsilon(B) U^{-1} \implies c = c \left( \bigoplus \Gamma^\epsilon(B) \right).$$

The vector $c$ breaks up into pieces for each representation $\epsilon$, with $\epsilon \Gamma^\epsilon(B) = c\epsilon$ for all $B \in \mathcal{P}$. This is possible for nonzero $c$ only if $\epsilon$ is the identity representation, as the representations are irreducible.
Therefore the dimensionality of the space $e_i^PPe$ is the number of times, $\gamma_i$, that the identity representation of $P$ is contained in $\Gamma^\eta$.

But the number of times the representation $i$ is contained in $\Gamma^\eta$ is

$$\gamma_i = a_{i=1} = \frac{1}{g_P} \sum_{B \in P} \chi^{i*}(B)\chi^\eta(B) = \frac{1}{g_P} \sum_{B \in P} \chi^\eta(B)$$

for $i=$identity, where $g_P$ is the number of elements in $P$, which is $\prod r_i$!

Example: $\eta = \begin{pmatrix} 1 & 2 \end{pmatrix}$. From homework, and recalling $\chi = \text{Tr} \Gamma$,

- $\chi = 2$ for $B = \mathbb{I}$
- $\chi = 0$ for $B = (12), (13)$, or $(23)$
- $\chi = -1$ for $B = (123), (132)$

Consider the space starting from $e_1 \otimes e_1 \otimes e_2$.

$$P = \{ \mathbb{I}, (12) \}, \quad g_P = 2, \quad \gamma_i = \frac{1}{2}(2 + 0) = 1$$

so $e_{11}$ generates only one state from the three-dimensional space $S^2$.

From $e_1 \otimes e_1 \otimes e_2$, $P = S_3$, $g_P = 6$, $\gamma_1 = \frac{1}{6}(2 - 1 - 1) = 0$ so we get no state here.

If all vectors are unequal, say $e_1 \otimes e_2 \otimes e_3$ for SU($n > 2$), $P = \mathbb{I}$, $g_P = 1$, $\gamma_i = \frac{1}{1} = 1$.

For SU($N$), there are $N$ states of the form $e_i \otimes e_i \otimes e_i$, not contributing anything to $\eta = \begin{pmatrix} 1 & 2 \end{pmatrix}$. There are $N(N - 1)$ states $e_i \otimes e_j \otimes e_j$ with $i \neq j$, each contributing one state, so from these we get $N(N - 1)$ states. There are also $N(N - 1)(N - 2)/6$ states of the form $e_i \otimes e_j \otimes e_k$, with $i < j < k$, each contributing 2 states, so the dimension of $\begin{pmatrix} 1 & 2 \end{pmatrix}$ is

$$N(N - 1) + \frac{1}{3}N(N - 1)(N - 2) = \frac{N(N^2 - 1)}{3} = \begin{cases} 2 & \text{for } N = 2 \\ 8 & \text{for } N = 3 \end{cases}$$

Let’s work another example, $\begin{pmatrix} 1 & 2 \end{pmatrix}$ for SU($N$). As we need the characters for this representation, let’s take them from Schensted: $\chi = 3$ for $\mathbb{I} \in (1^4)$, [1 element]; $\chi = 0$ for $(3, 1)$, [8 elements]; $\chi = 1$ for $(2, 1^2)$, [6 elements]; $\chi = -1$ for $(2, 2)$, [3 elements] and for $(4)$, [6 elements].

Enumerating the basis states in the various partitions, and multiplying $\chi(B)$ by their number for those within $P$, we find

<table>
<thead>
<tr>
<th>indices</th>
<th>subspace</th>
<th>$P$</th>
<th>$\gamma_i$</th>
<th># index choices</th>
<th># states</th>
</tr>
</thead>
<tbody>
<tr>
<td>all $i$</td>
<td>$e_ie_ie_i$</td>
<td>$S_4$</td>
<td>$\frac{1}{24}$</td>
<td>$N(N-1)$</td>
<td>$N(N-1)$</td>
</tr>
<tr>
<td>$i \neq j$</td>
<td>$e_ie_ie_i$</td>
<td>$S_3$</td>
<td>$\frac{1}{6}$</td>
<td>$N(N-1)/2$</td>
<td>$N(N-1)/2$</td>
</tr>
<tr>
<td>$i &lt; j$</td>
<td>$e_ie_ie_i$</td>
<td>$S_2 \times S_2$</td>
<td>$\frac{1}{4}$</td>
<td>$N(N-1)(N-2)/2$</td>
<td>$N(N-1)(N-2)/2$</td>
</tr>
<tr>
<td>$i \neq j &lt; k \neq i$</td>
<td>$e_ie_ie_i$</td>
<td>$S_2$</td>
<td>$\frac{1}{2}$</td>
<td>$N(N-1)$</td>
<td>$N(N-1)$</td>
</tr>
<tr>
<td>all $\neq$</td>
<td>$e_ie_je_je_\ell$</td>
<td>$\mathbb{I}$</td>
<td>$\frac{1}{3}$</td>
<td>$(N(N-1)(N-2)/2)$</td>
<td>$(N(N-1)(N-2)/2)$</td>
</tr>
</tbody>
</table>

Rewriting this with only the results for $\gamma_i$ to allow room for counting index choices and states, we have

<table>
<thead>
<tr>
<th>indices</th>
<th>subspace</th>
<th>$P$</th>
<th>$\gamma_i$</th>
<th># index choices</th>
<th># states</th>
</tr>
</thead>
<tbody>
<tr>
<td>all $i$</td>
<td>$e_ie_ie_i$</td>
<td>$S_4$</td>
<td>$0$</td>
<td>$N$</td>
<td>$0$</td>
</tr>
<tr>
<td>$i \neq j$</td>
<td>$e_ie_ie_i$</td>
<td>$S_3$</td>
<td>$1$</td>
<td>$N(N-1)$</td>
<td>$N(N-1)$</td>
</tr>
<tr>
<td>$i &lt; j$</td>
<td>$e_ie_ie_i$</td>
<td>$S_2 \times S_2$</td>
<td>$1$</td>
<td>$N(N-1)/2$</td>
<td>$N(N-1)/2$</td>
</tr>
<tr>
<td>$i \neq j &lt; k \neq i$</td>
<td>$e_ie_ie_i$</td>
<td>$S_2$</td>
<td>$2$</td>
<td>$N(N-1)(N-2)/2$</td>
<td>$N(N-1)(N-2)/2$</td>
</tr>
<tr>
<td>all $\neq$</td>
<td>$e_ie_je_je_\ell$</td>
<td>$\mathbb{I}$</td>
<td>$3$</td>
<td>$N(N-1)(N-2)/2$</td>
<td>$N(N-1)(N-2)/2$</td>
</tr>
</tbody>
</table>

So the total dimensionality of $\begin{pmatrix} 1 & 2 \end{pmatrix}$ for SU($N$) is

$$0 + N(N-1) + \frac{N(N-1)}{2} + N(N-1)(N-2) + 3 \frac{N(N-1)(N-2)(N-3)}{4!} = N(N-1) \left( \frac{3}{2} + (N-2) + \frac{1}{8}(N-2)(N-3) \right) = \frac{(N+2)!}{8(N-2)!}.$$  

For SU(3), $N = 3$, the total dimension is

$$5!(8 \cdot 1!) = 15.$$
We now know how to extract the irreducible representations or just to count their dimensionality. Now it is time for magic.

The number $\gamma_\eta$ of states extracted by $e^{\eta}_r$ from $S_r$, the space spanned by $P(\bigotimes e^{\eta}_r)$ by all $P \in S_k$, is given by the number of ways one can place $r_1$ 1's, $r_2$ 2's, $\cdots$ in the Young graph so that in each row the numbers do not decrease, and in each column they increase. This is called a permissible placement.

To see how this works, let’s check it out on $SU(N)$. For $r_1 = 4$ there is no way to avoid two 1’s in the same column, so $\gamma = 0$.
For $r_1 = 3$ and $r_2 = 1$, the 2 has to be in the second row, so there is only one way, $\gamma = 1$.
For $r_1 = r_2 = 2$, the only possibility is $\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}$, $\gamma = 1$.
For $r_1 = 2, r_2 = r_3 = 1$, we have $\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}$, $\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}$, so $\gamma = 2$.
For $r_1 = r_2 = r_3 = r_4 = 1$, we have $\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}$, and $\gamma = 3$.

Note in our previous method, it was clear that these numbers only depended on the set $\{r_i\}$ and not on the order. This is now not obvious.
Consider $r_1 = 1, r_2 = 2, r_4 = 1$. Then we have $\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}$ and $\begin{array}{llll}
1 & 2 & 4 & 3 \\
1 & 2 & 4 & 3
\end{array}$, so again $\gamma = 2$, as for $r_1 = 2, r_2 = r_3 = 1$.

Now to count the dimensionality of an irreducible representation of $SU(N)$ belonging to the Young graph $\eta$, we must sum, over all choices $r_i$, the corresponding $\gamma_\eta$. But for each choice of $r_i$ the $\gamma_\eta$ is the number of ways of placing the indices in the graph in a permissible fashion. So the dimension of the full irreducible representation of $SU(N)$ is the number of ways of placing $k$ integers, chosen from 1, 2, $\ldots$, $N$ (repeats allowed) in a permissible fashion in $\eta$, making a Young tableau.

Example for $SU(3)$: $\begin{array}{llll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 5 \\
4 & 5 & 6
\end{array}$, for a total of 8 dimensions.

There is an easier method of finding the dimensionality. For each box, associate the value $(N + \text{column number} - \text{row number})$. Then divide by the hook of that box. The dimension of the representation is the product of these quotients over all the boxes.

Examples: $\text{Dim } \begin{array}{ll}
1 & 2 \\
3 & 4
\end{array} = \frac{N+1}{N-1} \frac{N}{N+1} \frac{2}{3} \frac{1}{1} = \frac{N(N^2-1)}{3}$
$\text{Dim } \begin{array}{llll}
1 & 2 & 3 \\
4 & 2 & 1 \\
5 & 3 & 2
\end{array} = \frac{N+2}{N-1} \frac{N+1}{N+2} \frac{4}{5} \frac{2}{3} \frac{1}{1} = \frac{(N+2)!}{8(N-2)!}$