
Chapter 13

Local Symmetry

So far, we have discussed symmetries of the quantum mechanical states. A
state is a global (non-local) object describing an amplitude everywhere in
space.

In relativistic physics, global objects are awkward because the finite ve-
locity with which effects can propagate is expressed naturally in terms of
local objects. For this reason high energy physics is expressed in terms of a
field theory.

Consider the proton field ψp(~x, t), which is defined throughout space-
time. We also have a neutron field ψn(~x, t). We know that physics is (sort
of) invariant under an isospin rotation

Ψ(~x, t) :=

(

ψp(~x, t)
ψn(~x, t)

)

→ e−i~ω · ~τ/2
(

ψp(~x, t)
ψn(~x, t)

)

where the same rotation is applied to the field at each point in space-time.
This is called a global symmetry transformation.

But if physics is local, shouldn’t it be possible to choose our symme-
try transformations differently at different points? Suppose we consider a
transformation

Ψ′(~x, t) = e−i~ω(~x, t) · ~τ/2Ψ(~x, t)

where the isorotation depends on position.

To consider whether this can be an invariance, it is good to consider the
kind of terms which enter the Lagrangian or Hamiltonian.
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The Hamiltonian for a noninteracting fermion1 is

H =

∫

d3xH1, with H1 =
∑

j

−iψ†
j~α · ~∇ψj +mψ†

jβψj

where j = p or n. In doublet form,

H1 = −iΨ†~α · ~∇Ψ +mΨ†βΨ.

Under the symmetry transformation,

Ψ′ †(~x, t) = Ψ†(~x, t)e+i~ω(~x,t)·~τ/2,

so2

mΨ†βΨ → mΨ†e+i~ω(~x,t)·~τ/2βe−i~ω(~x,t)·~τ/2Ψ = mΨ†βΨ

is unchanged, but

−iΨ†αj
∂

∂xj

Ψ → −iΨ†e+i~ω(~x,t)·~τ/2αj
∂

∂xj

e−i~ω(~x,t)·~τ/2Ψ

= −iΨ†e+i~ω(~x, t) · ~τ/2αj

[

∂

∂xj

(

e−i~ω(~x, t) · ~τ/2
)

]

Ψ

−iΨ†αj
∂

∂xj
Ψ.

Thus H1 is not unchanged — in fact the variation under a rotation ~ω(~x, t)
adds a piece

δH1 = −iΨ†αj

(

e+i~ω(~x, t) · ~τ/2 ∂

∂xj
e−i~ω(~x, t) · ~τ/2

)

Ψ.

1The Dirac equation is first order in ~∇ψ, unlike the quadratic
(

~∇φ
)2

we had for the

string or would have for scalar fields. But the important point is just that ψ†∇ψ is
involved, and symmetry would require ∇ψ to transform the same way ψ does. This is
true for global transformations ψ → ei~ω·~τ/2ψ for constant ~ω, but not if ~ω is a function of
~r. Here α and β are constant matrices and do not disrupt the symmetry.

2Note that Ψ has both a two-dimensional isospin index and a four-dimensional spinor
index. The τ is the two-dimensional isospin representation, acting only on the first index,
and the β = γ0 is a 4 × 4 matrix acting only on the spinor index, so τ and β commute.
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This is a feature of any local symmetry. The momentum must appear in
the Hamiltonian, and the momentum operator is a derivative. That is, the
momentum operator compares the fields at different points. But how can we
attach meaning to the difference of two values if we are allowed to rotate at
each point independently? In order to subtract two vectors, we need to be
able to express them in common coordinate systems.

The solution is to introduce a new field which specifies how the coor-
dinates change as you move them in space. This is called the connection
or gauge field. We need a field for each direction of motion, Ai, and one
for time too (that we need A0 would be more obvious if we talked about a
Lagrangian formulation). These are elements of the Lie algebra, so let us gen-
eralize from SU(2) to some arbitrary Lie algebra. The gauge transformation
then becomes

Ψ′(~x, t) = e−iω(~x,t)Ψ(~x, t),

where ω is the representation (suitable for Ψ) of an arbitrary Lie algebra
element.

We need to introduce a term into the Hamiltonian whose variation will
cancel what we got from ~∇Ψ.

Try adding an interaction H2 − −eΨ†~α · ~A(~x, t)Ψ,, where each vector

component of ~A is a representative of a Lie algebra element, a 2 × 2 matrix
in the case of isospin on an isodoublet. Then

δH2 = −eΨ†
(

eiω(~x, t)~α · ~A′(~x, t)e−iω(~x, t) − ~α · ~A(~x, t)
)

Ψ,

which will cancel δH1 if

eiω(~x, t)A′
j(~x, t)e

−iω(~x, t) = Aj −
i

e
eiω(~x, t) ∂

∂xj

e−iω(~x, t),

or

A′
j = e−iω(~x, t)Aje

iω(~x, t) −
i

e

(

∂

∂xj
e−iω(~x, t)

)

eiω(~x, t).

This is actually familiar in another application. Instead of SU(2), consider
ψ1 and ψ2 as the real and imaginary parts of a wave function, and ω → θτ2.
Then the group transformations are U(1), corresponding to a local change
in phase of the field Ψ. As the group is Abelian, we have A′

j = Aj −
1
e

∂
∂xj
ω,

which is just the gauge transformation of electromagnetism.
It is important to note that, as a price for requiring local invariance under

SU(2) rotations for the Ψ, we were forced to introduce a new dynamical field
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~A. So this is not analogous to what we did earlier, in using a symmetry of the
states to extract information. Here we have actually expanded the theory
in a very elegant fashion to obtain a locally gauge invariant theory. This
involved replacing the derivative ~∇ by ~∇− ig ~A, the covariant derivative.

Our new field ~A needs to have dynamics of its own. So it needs a ki-
netic energy term. It needs to be of a special form, for

∑

j ∇
2Aj would

give additional pieces when we performed a symmetry transformation, which
would ruin the invariance under this transformation. For electromagnetism,
we know the answer is given in terms of Fµν , the field strengths.

This reminds us that we are interested in relativistic physics, (that is why
we felt compelled to consider local invariance) and thus far we have done
things nonrelativistically. Relativistic formulations of field theory generally
start with the Lagrangian rather than the Hamiltonian. For a fermion field3

L = iψ̄γµ∂µψ −mψ̄ψ.

This L plays its role as part of the action

S =

∫

d3x dtL (ψ(~x, t)) ,

and the dynamics takes place in spacetime, not just space. So a local gauge
transformation (i.e. a local symmetry transformation) requires invariance un-
der

ψ(~x, t) → ψ′(~x, t) = e−iω(~x, t)ψ(~x, t),

where the ω parameters of the group transformation are varying in space and
in time as well. Invariance requires an A0 field as well, now, because we have
a ∂0 ∝

∂
∂t

in the lagrangian.
There is much interest these days in what is called “Lattice gauge field

theory”. This involves approximating the continuous ψ fields by fields defined
only on the sites of a (usually hypercubic) lattice. This is what we did
nonrelativistically in one dimension with our string. The chief advantage of
this approach is that it constitutes a way of defining the regulated field theory
independent of perturbation theory. Field theories expressed perturbatively
have ultraviolet divergences which must be cut off in some fashion, which
come from interactions between field at points which approach each other in
space-time. In perturbative theory one defines renormalized quantities which

3For a free massive scalar field L = 1

2
(∂µφ)† ∂µφ− 1

2
m2φ†φ.
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remain finite as the cutoff is removed (i.e. pcutoff → ∞). In the same way,
but without recourse to perturbation theory, a lattice can be used to impose
the cutoff (one automatically has ∆x ≥ a, the lattice spacing), and one can
then talk about quantities which remain finite as a→ 0.

This is more than an analytic tool. Computer simulation has become an
important approach in investigating QCD, and of course, a continuous field
must be approximated by a grid of values on the computer.

Finally, the lattice has an advantage in discussing local gauge invariance,
in that the gauge group plays a more natural role on the lattice, and the kind
of structure we found in the continuous theory has a more natural motivation,
and is more easily understood, as a connection on each link between nearest
neighbors on the lattice.

So let us consider a theory defined on a rectangular lattice in space-time,
with some fields ψn, which we will later call matter fields, defined on the sites
n = (n0, n1, n2, n3) ∈ (Z)4, corresponding to the space-time point xµ = aµnµ

(no sum), where aµ is the lattice spacing in the µ direction. We are allowing
for unequal spacings, in particular so we may consider the continuous time,
lattice space limit later.

The kinetic energy terms, derivatives in a continuum theory, become cou-
plings between nearest neighbors, which arise from the terms ψn+µ−ψn either
squared (for scalars) or contracted with ψ† (for fermions). These are sup-
posed to reflect the change in the field from one point to the next, but if
the fields have local symmetry transformations, it may not be clear what it
means for the field not to change. For example, the components of a constant
vector field expressed in radial coordinates have components which vary from
point to point, so moving a vector field while keeping it constant, called par-
allel transport, does not correspond to keeping the coordinates constant. If
Un,n+µ is the operator (a representation of some group element) that parallel
transports ψn to lattice site n+µ, the nearest neighbor coupling should come
from ψn+µ − Un,n+µψn and would involve ψ̄n+µUn,n+µψn, as well as the local
terms ψ̄nψn. There may also be other local terms. These local terms will be
symmetric under a group symmetry for which they transform with a unitary
representation, but the nearest neighbor terms will need to have the parallel
transport operator U transform suitably. Under a symmetry transformation

ψ̄n+µUn,n+µψn → ψ̄n+µe
iωn+µU ′

n,n+µe
−iωnψn,
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so we see that invariance requires the link fields to transform as

U ′
n,n+µ = e−iωn+µUn,n+µe

iωn .

The U needs to be multipliable on either side by a group element — why not
make it a group element itself, or more accurately, the representation of the
group element in the representation under which ψ transforms.

Thus we have a dynamics which consists of a field ψ living in a vector
space transforming as a representation η of the group, and defined at each
lattice site, and a group element g on each link between nearest neighbors.

Before we proceed with our lattice dynamics, let us ask how this relates
to our continuum description. To get close to a derivative, add in a local
interaction ψ̄n+µψn+µ (as we have not yet specified our local interaction,
except that it is group invariant, we can always add and subtract this) so
that the link interaction is

−ψ̄n+µ (Un,n+µψn − ψn+µ) .

In the continuum limit, one expects ψ varies slowly, ψn+µ ∼ ψn + aµ∂µψn.
We also expect U , which gives the rotations necessary to get from analogous
states at n to states at n + µ, should differ from the identity by a small
amount, of order a, so we may write Un,n+µ = eiaµωn,n+µ ∼ 1I + iaµωn,n+µ,
so to first order in aµ, we find the interaction to be aµψ̄n (∂µ − iωn,n+µ)ψn.
This is what we expect for the covariant derivative, with4 ωn,n+µ = gAµ,
U = eigaµAµ.

Now consider a local symmetry transformation

U → U ′ = e−iωn+µUeiωn

=
(

e−iωn + aµ∂µe
−iωn

)

eigaµAµeiωn = eigaµA′

µ .

Expand to first order in a

igaµA′
µ = e−iωnigaµAµe

iωn + aµ
(

∂µe
−iωn

)

eiωn

or

A′
µ = e−iωnAµe

iωn −
i

g

(

∂µe
−iωn

)

eiωn ,

4Here g is the coupling constant, the generalization of the electric charge e. There are
two normalizations of the gauge field commonly used. Here we are using the standard
one, in which the covariant derivative has the gauge field multiplied by the charge before
adding to the derivative operator. Sometimes the field is defined to include the charge.
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which agrees with what we found from the continuous derivation.

Now let us go back to the general case with finite a. We have a dynamical
variable U on each link, but we do not yet have a kinetic energy term, or any
term depending solely on U . How can one make a gauge invariant (i.e. local
symmetry invariant) object of the U ’s to put in the L?

Each U transforms with an G−1
n = eiωn on the

right from its starting point and an Gn+µ = e−iωn

on the left from its ending. These G’s are repre-
sentations (in the mathematician’s sense) of group
elements in the representation appropriate for the
ψ field. The dynamical variable for the link a

1 2a
Ga → G2GaG

−1
1

from n to n+µ is also a group element represented in the same representation,
so lets call U = Ga. Clearly Ga is not invariant, and there is no way to make
a nontrivial invariant function from just one Ga, as applying the symmetry
Ga to its tail makes it the identity.

The only way to combine these U ’s to tranform rea-
sonably is to multiply them so the beginning of the second
is at the end of the first, Thus we can combine the G’s
for two links with a common point and the product be-
comes invariant under gauge transformations G2 at the
joint, GbGa → G3GbGaG

−1
1 .

1 2

3

a

b

We can continue this to a string of G’s, but we still
have dependence on the first and last point. This sug-
gests closing the loop by going around one square of the
lattice, called a placquette. So we consider having a
piece of our Lagrangian depend on Gp := Gd′Gc′GbGa.
(We will define our link variables so they point to the
right or up, links c and d are “backwards” here, so I have

4 3

21 a

b

c’

d’

primed them.) But even Gp is not invariant, forGp −→
gauge

G1GpG
−1
1 . Nonethe-

less this is an improvement, because now there is an invariant we could make,
for in the trace we can move the G1 to the end and it cancels.
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What is the relation of Gc′ to the right-pointing vari-
able Gc? We are adding a term ψ̄n+µUn,n+µψn to the La-
grangian, with U pointing to the right from n to n + µ,
but the Lagrangian must be hermitean, so we also need
the complex conjugate ψ̄nU

†
n,n+µψn+µ. Thus U †

n,n+µ is the
left-pointing link Uc′ , and is the inverse of Uc, for (1) our
representations are unitary, and (2) the transformation 1 2

34

a

b

c

d

which takes the basis at n+µ to that at n is the inverse of the transformation
which takes the basis at n to that at n+ µ. Thus

Gp = U−1
d U−1

c UbUa.

To understand what this means and just how to add Gp dependence to
the Lagrangian, let’s consider the continuum limit. In approaching this limit,
the ψ’s are assumed to differ only of order the lattice spacings aµ between
neighboring points, and the group elements for each loop can be expanded
in a power series in aµ. Gb = eigaνAν ∼ 1I + iaνgAν −

1
2
aν 2g2A2

ν + . . ..

So let us carefully evaluate Gp for a placquette
in the µν plane with x at its center. We may use
the expansion above, but we also need to Taylor
series expand the dependence on position. Let ∆µ

be a four vector with 1 in the µ direction and zero
in the others. For example,

Gb = eiga
νAν(x+ aµ∆µ/2).

a 21

c

d

4 3

b

µ

νx

Expanding each link to order O(a2)

Gb ≈ 1 + iaνgAν(x +
1

2
aµ∆µ) −

1

2
aν 2g2A2

ν(x +
1

2
aµ∆µ)

≈ 1 + iaνgAν(x) +
1

2
iaµaνg∂µAν(x) −

1

2
aν 2g2A2

ν(x)

Ga ≈ 1 + iaµgAµ(x −
1

2
aν∆ν) −

1

2
aµ 2g2A2

µ(x −
1

2
aν∆ν)

≈ 1 + iagAµ(x) −
1

2
iaν 2g∂νAµ(x) −

1

2
aµ 2g2A2

µ(x)

G−1
c ≈ 1 − iaµgAµ(x +

1

2
aν∆ν) −

1

2
aµ 2g2A2

µ(x +
1

2
aν∆ν)

≈ 1 − iaµgAµ(x) −
1

2
iaµaνg∂νAµ(x) −

1

2
aµ 2g2A2

µ(x),
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so, to order a2,

GP =

(

1 − iaνgAν(x) +
1

2
iaµaνg∂µAν(x) −

1

2
aν 2g2A2

ν(x)

)

(

1 − iaµgAµ(x) −
1

2
iaµaνg∂νAµ(x) −

1

2
aµ 2g2A2

µ(x)

)

(

1 + iaνgAν(x) +
1

2
iaµaνg∂µAν(x) −

1

2
aν 2g2A2

ν(x)

)

(

1 + iaµgAµ(x) −
1

2
iaµaνg∂νAµ(x) −

1

2
aµ 2g2A2

µ(x)

)

= 1 + aµaνg {g [Aµ(x),Aν(x)] + i∂µAν(x) − i∂νAµ(x)}

As we might expect, Gp differs from the identity by order aµaν . If either a
vanished, two links would become identities and the other two cancel. Also,
as Gp is unitary, its lowest order difference from 1I is antihermitean, so let us
define the field strength tensor

Fµν(x) = ∂µAν(x) − ∂νAµ(x) − ig [Aµ(x),Aν(x)] , GP ≈ 1 + igaµaνFµν .

Note that Fµν is

• a Lie-algebra valued field, Fµν(x) =
∑

b F
(b)
µν (x)Lb.

• An antisymmetric tensor, Fµν(x) = −Fνµ(x).

• As F is a Lie algebra element, we can take the group element for the
placquette to be Up = eigaµaνFµν away from the continuum limit. F is
hermitean and Up is unitary.

• Because the Lie algebra is defined in terms of the structure constants,
c d
ab by

[La, Lb] = ic d
ab Ld,

the field-strength tensor may also be written

F (d)
µν = ∂µA

(d)
ν − ∂νA

(d)
µ + gc d

ab A
(a)
µ A(b)

ν .

The way we have defined Up, its gauge transformation depends on the
gauge at its lower left corner, but in the continuum limit this can be described
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as the gauge at the point (~x, t), so

Gp(~x, t) → e−iω(~x,t)Gp(~x, t)e
iω(~x,t)

and Fµν(~x, t) → e−iω(~x,t)Fµν(~x, t)e
iω(~x,t).

Note that the field strength tensor transforms homogeneously, unlike the
gauge field A, which picks up a piece independent of the initial value of the
field.

How should the gauge field and field strength tensor appear in the La-
grangian? We hit upon the placquette and the field strength tensor in trying
to find a gauge invariant expression to include in L. As we mentioned ear-
lier, F is not invariant, but its trace is. So we could add a piece Tr(Up − 1I),
except that is not hermitean, so we need to include a piece proportional to
Tr(Up + U †

p − 21I) = 2 Tr [cos (gaµaνFµν) − 1I]. The lowest order in lattice

spacing is ∝ TrF2
µν =

∑

d F
(d) 2
µν . Of course the correct way to sum over

directions of the placquettes means in the continuum limit we need to get
−1

4

∑

d F
(d)
µν F (d) µν . For electromagnetism, there is only one value of (d), and

this is the familiar term for the electromagnetic fields.
We are going to turn to a Hamiltonian description, which will give us

an interesting entrée into the invariant metric on a group. But before we
do that, I want to say a few words about the covariant derivative, which in
space-time we may write as

Dµ = ∂µ − igAµ = ∂µ − ig
∑

b

A(b)
µ Lb.

Notice that it involves both a derivative in space-time and an infinitesimal
generator in the group, which is a derivative in group space. If we take the
commutator of two of these operators at the same space-time point but in
different directions,

[Dµ, Dν ] = [∂µ − igAµ, ∂ν − igAν]

= −ig∂µAν − g2AµAν − (µ↔ ν)

= −g2 [Aµ,Aν] − ig∂µAν + ig∂νAµ

= −igFµν .

Notice that although the covariant derivative is in part a differential operator,
the commutator has neither first nor second derivatives left over to act on
whatever appears to the right. It does need to be interpreted, however, as
specifying a representation matrix that will act on whatever is to the right.



618: Last Latexed: April 25, 2017 at 9:45 147

13.1 Gauge Invariance

We have seen that, by looking for local symmetries, we have come across a
new class of theories with gauge invariance. These theories require a quite
different attitude than ordinary theories with global symmetries. In ordinary
theories, a symmetry transformation acting on a physical state gives a new
physical state, distinct from the original state, though it has the same energy
and other properties are related.

But local symmetries, or gauge transformations, are not like that. To
understand the physical significance of these gauge transformations, consider
Maxwell theory, with which we are well familiar. We noted that here the
group is U(1) phase shifts, ψ → eiθψ, and Aν has only one direction in
group space, Aν → Aν . What are the physical degrees of freedom of the
electromagnetic field? The physical fields are ~E and ~B, defined at each point
of space and time. That would appear to be six independent degrees of
freedom at each point. But these are not independent degrees of freedom. In
the absence of charged particles, ~∇· ~E = ~∇· ~B = 0, which are not equations of
motion, for they have no derivatives in the time direction. We conclude that
these fields are constrained and that the theory can be better described by

four unconstrained fields Aµ(~x, t) =
(

Φ(~x, t), ~A(~x, t)
)

, with ~E = −~∇Φ− 1
c
~A

and ~B = ~∇ × ~A, which can be put together in four-dimensional language
into Fµν = ∂µAν − ∂νAµ.

Clearly ~E and ~B are determined by Aµ(~x, t), so now it appears we have
four degrees of freedom at each point in space-time, but this isn’t right either.
Maxwell’s equations are satisfied by Aµ when

∂νF
ν

µ =
4π

c
jµ → 0

in the absence of charged particles, and these do not, in fact, determine
the evolution of Aµ in time, as equations of motion for degrees of freedom
ought to do. For if Aµ satisfies this equation, and if Λ(~x, t) is an arbitrary
twice-differentiable function of space and time,

A′
µ = Aµ + ∂µΛ

gives

F ′
µν = ∂µAν + ∂µ∂νΛ − (∂νAµ + ∂ν∂µΛ) = Fµν .
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So A′ also satisfies all the equations, and has exactly the same physical fields
as A, so

• these are not distinct states of the system

• as we could choose Λ(~x, 0) = 0 and Λ̇(~x, 0) = 0, so as to leave the gauge
field state unchanged at t = 0, we can still make Λ(~x, t>0) anything
we want, changing the future development of Aµ.

So we see that Aµ(~x, t) is not fully determined by its initial conditions.
One thing that is clear is that the ambiguity of Λ means that one of the

degrees of freedom in Aµ has no physical meaning, so we might think there
are three degrees of freedom at each point. We might eliminate the spurious
degree of freedom by imposing a constraint, a gauge condition, such as the
Lorenz gauge, ∂µAµ = 0. As we can find an equivalent gauge field A′ from
any initial gauge field Aµ, with

∂µA′
µ = ∂µAµ + ∂µ∂µΛ,

we can take any gauge field Aµ and replace it with one that satisfies the
Lorenz gauge ∂µA′

µ = 0 if we can solve the inhomogeneous wave equation
∂µ∂µΛ(~x, t) = −∂νA

ν(~x, t) for Λ(~x, t). But this equation is always solvable,
and this determines the evolution of Λ in time, so we have a deterministic
system. The equations are now

∂µFµν = 0 = ∂µ∂µAν − ∂µ∂νAµ = ∂µ∂µAν ,

together with the Lorenz gauge condition ∂µAµ = 0 .
The solutions to the equations of motion in the absence of charges and in

the Lorenz gauge are

Aµ(~x, t) = A(~k)
µ eikµx

µ
with kµk

µ = 0,

together with the Lorenz contraint kµA
(~k)
µ = 0. So each three-momentum ~k

has three degrees of freedom, but there is still and ambiguity due to gauge,

because Λ(~x, t) = λ(~k)eikµxµ

can be added to Λ without changing its solution

to the Lorenz gauge condition, as ∂µ∂µΛ = −k2λ(~k)eikµxµ

= 0. So

A(~k)
µ → A(~k)

µ + λ(~k)kµ
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is a residual gauge invariance that does not affect the physics. So each 3-
momentum has only two physical degrees of freedom, which is why there are
two polarizations for a photon.

Now what does gauge invariance mean quantum mechanically? In quan-
tum mechanics, the transition amplitude from an initial state at one time to
a final state at a later time is given by the integral of eiS/~ over all “paths”,
possible values of the degrees of freedom at intermediate times. With a La-
grangian depending on fields and their derivatives, the fields are subject to
arbitrary variation but the time derivatives are evaluated from the fields as
functions of time. In our lattice discussion the time derivatives reside in the
U ’s on links in the time direction. We will need to examine how this effects
the momenta in the problem.
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