1. [10 pts] $SU(1,1)$ is the set of 2×2 complex matrices of determinant 1 which leave invariant the form $|z_1|^2 - |z_2|^2$.
 a) Find all elements in an infinitesimal neighborhood of I, and parameterize them.
 b) What is the dimension of this group? Give a well-chosen basis for the Lie algebra.
 c) Find the structure constants and the Killing form. Is the group semisimple?
 d) Evaluate $e^{\Sigma \nu_j L_j}$ for finite ν_j, at least well enough to discuss the range of the parameters. Is the group compact? Is it simply connected?

2. [5 pts] Show that there does not exist a two-dimensional semisimple Lie algebra.

3. [10 pts] Let $R(\vec{\omega})$ be a rotation $\vec{r} \rightarrow \vec{r}'$ where, to first order in the angle of rotation ω, $\vec{r}' = \vec{r} - \vec{\omega} \times \vec{r}$. R acts on the space of functions on \mathbb{R}^3 by $Rf = f'$, with $f'(\vec{r}') = f(\vec{r})$, and if for infinitesimal $\vec{\omega}$ we write $R = 1 + i\vec{\omega} \cdot \vec{L}$,
 a) show that $\vec{L} = -i \vec{r} \times \vec{\nabla}$.
 b) Express this in component form, using ϵ_{ijk}, and verify that the operators L_i satisfy the $SU(2)$ Lie algebra commutation relations.
 c) Show that, in spherical coordinates,
 \[L_z = -i \frac{\partial}{\partial \phi}, \quad L_\pm = \frac{1}{\sqrt{2}} e^{\pm i \phi} \left(\pm \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right). \]
 d) Show that if a set of functions $Y_{\ell m}$ transform as $|\ell m\rangle$, then $Y_{\ell m}(\theta, \phi) = Y_{\ell m}(\theta) e^{im\phi}$. Find an equation to give $Y_{\ell,-\ell}(\theta)$ up to a multiplicative constant, and a recursion relation to determine the other $Y_{\ell m}$.

4. [5 pts] Complete the calculation begun in class for the Clebsch-Gordon coefficients $(1 \frac{1}{2} \ell \ m | 1 \frac{1}{2} \ m_1 \ m_2)$.