1 [5 pts] If \(\Gamma \) is a representation of a group \(G \), show that the set of matrices \(\Gamma^*(A) \), which are the complex conjugates of \(\Gamma(A) \), form a representation of \(G \). Note this is the complex conjugate, not the hermitean conjugate,
\[
(\Gamma^*(A))_{ij} = (\Gamma_{ij}(A))^*.
\]
Also consider whether or not \(\Gamma^{-1} \) and \(\Gamma^\dagger \), (the Hermitean conjugate) are representations in general or under specific conditions. What are the conditions?

2 [10 pts] Find one subgroup of order two and one subgroup of order three of the group of permutations on three objects, \(S_3 \). For each
a) Is it a normal subgroup?

b) Give the left cosets in \(S_3 \).

c) If it exists, describe the quotient group.