1 Physics 613: Problem Set 5 (due Thursday April 11)

1.1 Spin operator revisited

In our derivation of the electron magnetic moment from QED, we had the formula

$$
\begin{equation*}
\langle e| H_{e f f}|e\rangle=-\frac{e B}{m}\langle e| \bar{\Psi} S^{12} \Psi|e\rangle \tag{1}
\end{equation*}
$$

where S^{12} came from $S^{\mu \nu} \equiv \frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$. I said in class that S^{12} was the generator of spin in the z direction, i.e. $S^{12}=S_{z}$. Using the explicit form of the γ matrices, verify more generally that $S^{i j}=\epsilon^{i j k} S_{k}$.

1.2 Lie algebra facts

1. Prove that $\left[T^{a}, T^{b}\right]$ is traceless and anti-Hermitian.
2. Prove that the structure constants $f^{a b c}$ are totally antisymmetric.
3. Prove the Jacobi identity $\left[T^{a},\left[T^{b}, T^{c}\right]\right]+\left[T^{c},\left[T^{a}, T^{b}\right]\right]+\left[T^{b},\left[T^{c}, T^{a}\right]\right]=0$
4. Prove that the adjoint commutation relations $\left[T_{a d j}^{a}, T_{a d j}^{b}\right]=i f^{a b c} T_{a d j}^{c}$ are equivalent to the Jacobi identity.
5. Prove that $\left[T^{a} T^{a}, T^{b}\right]=0$ (therefore $T^{a} T^{a}$ must be proportional to the identity in every representation; the proportionality constant is called the Casimir invariant).

$1.3 S U(3)$ generators

Look up the Gell-mann basis of the $S U(3)$ generators and explicitly find all the nonzero structure constants for $S U(3)$ in this basis (please use a computer, e.g. Mathematica, for this, don't do it by hand as it would be way too tedious!)

1.4 $S U(3)$ representations

$S U(3)$ irreducible representations (irreps) are labeled by two integers (n, m) and can be thought of as all multiple-index tensors of the form $A_{j_{1}, \ldots j_{m}}^{i_{1} \ldots i_{n}}$, with indices running from $1,2,3$, which are totally symmetric in all upper and all lower indices and are traceless under contraction of any upper with any lower index. For example, the fundamental rep corresponds to $(1,0)$ and the anti-fundamental to $(0,1)$. The adjoint corresponds to $(1,1)$.

1. Show that $\operatorname{dim}(n, 0)=\operatorname{dim}(0, n)=\frac{1}{2}(n+2)(n+1)$.

Irreps can be multiplied (tensor product) and decomposed (direct sum) into smaller irreps by symmetrizing and tracing over indices.

For example we can multiply a fundamental and antifundamental $A^{a} B_{b}=C_{b}^{a}+$ $\frac{1}{3} \delta_{b}^{a} A^{c} B_{c}$ where C is the traceless part of $A B$. In this way we obtain the sum of the adjoint (octet) and the trivial (singlet) representation. We can express this more mathematically as $(1,0) \otimes(0,1)=(1,1) \oplus(0,0)$, or in terms of the dimensions, $\mathbf{3} \otimes \overline{\mathbf{3}}=\mathbf{8} \oplus \mathbf{1}$.

One can derive (it takes a bit of thought) the following multiplication rule $(n, 0) \otimes$ $(m, 0)=(n+m, 0) \oplus(n+m-2,1) \oplus(n+m-4,2) \oplus \ldots$ and similarly for $(0, n) \otimes(0, m)$.
2. The (u, d, s) quarks transform in the fundamental of $S U(3)$ and their antiquarks transform in the anti-fundamental of $S U(3)$. Using the facts above, show that the mesons (which are quark anti-quark bound states) must transform in either the adjoint (octet) or the singlet representation.
3. Using the facts above, explain how the baryon octet and decuplet arise from multiplication of $S U(3)$ representations.

