4 Physics 613: Problem Set 4 (due Thursday March

 21)
4.1 Feynman Parameters

Starting from the Feynman parameter trick we introduced in class:

$$
\begin{equation*}
\frac{1}{A B}=\int_{0}^{1} d x d y \delta(x+y-1) \frac{1}{(x A+y B)^{2}} \tag{1}
\end{equation*}
$$

Derive the following additional identities

1. $\frac{1}{A B^{n}}=\int d x d y \delta(x+y-1) \frac{n y^{n-1}}{(x A+y B)^{n+1}}$
2. $\frac{1}{A B C}=2 \int d x d y d z \delta(x+y+z-1) \frac{1}{(x A+y B+z C)^{3}}$

4.2 QED with multiple fermions

Consider QED with N_{f} fermions Ψ_{i} with charge Q_{i} and mass $m_{i}, i=1, \ldots N_{f}$. (The basic case we have been studying in class is $N_{f}=1$ with $Q_{1}=1$ and $m_{1}=m$.)

1. What is the vacuum polarization function $\Pi\left(p^{2}\right)$ in this theory? You don't need to derive this from scratch or evaluate any integrals; rather you should start from the result we derived in class for the basic $N_{f}=1$ case, which is

$$
\begin{equation*}
\Pi\left(p^{2}\right)=-\frac{e^{2}}{2 \pi^{2}} \int_{0}^{1} d x x(1-x) \log \left(\frac{m^{2}-p^{2} x(1-x)}{m^{2}}\right) \tag{2}
\end{equation*}
$$

2. In the Standard Model, there are 3 leptons with charge - 1 (electron, muon, tau); and 9 quarks with charge $2 / 3$ (up,charm,top with 3 colors each); and 9 quarks with charge $-1 / 3$ (down, strange, bottom with 3 colors each). Assuming these all have a common mass (let's say 1 GeV for simplicity), use your answer in part 1 to figure out where is the Landau pole of QED for the Standard Model.

$4.3 \quad Z_{1}=Z_{2}$

In this problem we will prove that $Z_{1}=Z_{2}$ at one-loop including the finite parts, starting from the expressions for the electron self energy and vertex function that we derived in
class (with some typos and conventions fixed - in this problem we are in the mostly plus signature):

$$
\begin{align*}
\Sigma(\not p)=- & \frac{\alpha}{2 \pi} \int_{0}^{1} d x((4-\epsilon) m+(2-\epsilon) x \not p)\left(\frac{1}{\epsilon}+\frac{1}{2} \log \frac{\tilde{\mu}^{2}}{x(1-x) p^{2}+(1-x) m^{2}+x m_{\gamma}^{2}}\right) \tag{3}\\
& -\left(Z_{2}-1\right) \not p-\left(Z_{m}-1\right) m
\end{align*}
$$

and

$$
\begin{align*}
V^{\mu} & =\frac{e^{3}}{8 \pi^{2}}\left(\left(\frac{1}{\epsilon}-1-\frac{1}{2} \int d F_{3} \log \frac{D}{\tilde{\mu}^{2}}\right) \gamma^{\mu}+\frac{1}{4} \int d F_{3} \frac{N^{\mu}}{D}\right)+e Z_{1} \gamma^{\mu} \\
D & =x_{1}\left(1-x_{1}\right) p^{2}+x_{2}\left(1-x_{2}\right) p^{\prime 2}-2 x_{1} x_{2} p \cdot p^{\prime}+\left(x_{1}+x_{2}\right) m^{2}+x_{3} m_{\gamma}^{2} \tag{4}\\
N^{\mu} & =\gamma_{\nu}\left(x_{1} \not p-\left(1-x_{2}\right) \not p^{\prime}+m\right) \gamma^{\mu}\left(-\left(1-x_{1}\right) \not p+x_{2} \not{ }^{\prime}+m\right) \gamma^{\nu}
\end{align*}
$$

where $\int d F_{3}=2 \int d x_{1} d x_{2} d x_{3} \delta\left(x_{1}+x_{2}+x_{3}-1\right)$. Impose the renormalization conditions

$$
\begin{equation*}
\left.\Sigma^{\prime}(\not p)\right|_{\not p=-m}=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\bar{u}\left(p^{\prime}\right) V^{\mu}\left(p, p^{\prime}\right) u(p)\right|_{p=p^{\prime}, p^{2}=-m^{2}}=e \bar{u}(p) \gamma^{\mu} u(p) \tag{6}
\end{equation*}
$$

to determine Z_{1} and Z_{2}, and show that $Z_{1}=Z_{2}$. (You only need to show this for the singular and finite terms in the $\epsilon \rightarrow 0$ and $m_{\gamma} \rightarrow 0$ limits. The calculation is quite messy, you are encouraged to use Mathematica to evaluate the necessary integrals and expansions.)

4.4 Gordon Identity

In this problem we will prove the Gordon identity:

$$
\begin{equation*}
2 m \bar{u}\left(p^{\prime}\right) \gamma^{\mu} u(p)=\bar{u}\left(p^{\prime}\right)\left(p^{\prime}+p\right)^{\mu}-2 i S^{\mu \nu}\left(p^{\prime}-p\right)_{\nu} u(p) \tag{7}
\end{equation*}
$$

where $S^{\mu \nu} \equiv \frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$. This identity plays a key part in the derivation of the anomalous magnetic moment of the electron.

1. Prove the identities $\gamma^{\mu} \not p=-p^{\mu}-2 i S^{\mu \nu} p_{\nu}$ and $\not p^{\prime \prime} \gamma^{\mu}=-p^{\mu}+2 i S^{\mu \nu} p_{\nu}^{\prime}$.
2. Use part 1 to prove the Gordon identity.
