1 Physics 613: Problem Set 3 (due Monday March 4)

1.1 Dirac Matrix Identities

Prove the following identities involving Dirac matrices:

1. $\operatorname{Tr}\left(\gamma^{\mu}\right)=0$
2. $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 \eta^{\mu \nu}$
3. $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4 \eta^{\mu \nu} \eta^{\rho \sigma}-4 \eta^{\mu \rho} \eta^{\nu \sigma}+4 \eta^{\mu \sigma} \eta^{\nu \rho}$
4. $\left(\gamma^{\mu}\right)^{\dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}$
5. $\left(\bar{f} \gamma^{\mu_{1}} \ldots \gamma^{\mu_{n}} f^{\prime}\right)^{*}=\bar{f}^{\prime} \gamma^{\mu_{n}} \ldots \gamma^{\mu_{1}} f$ where f and f^{\prime} can be any Dirac spinor (i.e. u_{s} or v_{s}).

1.2 Rutherford Scattering

In class we used crossing symmetry to transform $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$into $e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$(in class we called it p instead of μ^{-}but it doesn't matter); the answer for the squared and summed/averaged matrix element is

$$
\begin{equation*}
\frac{1}{4}|\mathcal{M}|^{2}=\frac{2 e^{4}}{t^{2}}\left(u^{2}+s^{2}+4 t\left(m_{e}^{2}+m_{\mu}^{2}\right)-2\left(m_{e}^{2}+m_{\mu}^{2}\right)^{2}\right) \tag{1}
\end{equation*}
$$

1. Rederive this directly from the t-channel Feynman diagram for $e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$ scattering (thereby verifying explicitly the validity of crossing symmetry in this example).
2. Carefully take the $m_{\mu} \rightarrow \infty$ limit and derive the Mott formula:

$$
\begin{equation*}
\left.\frac{d \sigma}{d \Omega}\right|_{m_{\mu} \rightarrow \infty}=\frac{e^{4}}{64 \pi^{2} v^{2} p^{2} \sin ^{4} \frac{\theta}{2}}\left(1-v^{2} \sin ^{2} \frac{\theta}{2}\right) \tag{2}
\end{equation*}
$$

where $v=p / E$ and p and E are the 3-momentum and energy of the incoming electron respectively. [Be careful! I think the treatment in Matt Schwartz's book may not be completely correct!]

1.3 Yukawa Theory

Consider a theory of a massive scalar ϕ with mass m and an electron with mass M (described by a massive Dirac fermion field Ψ) coupled together via the interaction term:

$$
\begin{equation*}
H_{i n t}=g \int d^{3} x \phi \bar{\Psi} \Psi \tag{3}
\end{equation*}
$$

This is known as the Yukawa theory.

1. List all possible $2 \rightarrow 2$ scattering processes allowed by the theory, and draw all tree-level Feynman diagrams for each (don't calculate them or worry about relative minus signs). Is there any process that is allowed but not present at tree-level?
2. Use the momentum space Feynman rules to calculate $\frac{d \sigma_{C M}}{d \Omega}$ for $e^{-} \phi \rightarrow e^{-} \phi$ scattering, summed over final state spins and averaged over initial state spins.
3. Assuming $m>2 M, \phi$ can decay to $e^{+} e^{-}$. Compute the total decay rate $\Gamma(\phi \rightarrow$ $e^{+} e^{-}$), in the ϕ rest frame, summed over final state spins.
