1 Physics 613: Problem Set 2 (due Monday Feb 19)

1.1 Spin and the Dirac Equation

1. Verify that $\left[L_{i}, P_{j}\right]=i \epsilon_{i j k} P_{k}$ where $\mathbf{L}=\mathbf{r} \times \mathbf{p}$ is the angular momentum operator.
2. Verify that $\left[L_{z}, H_{\text {Dirac }}\right]=i\left(\alpha_{x} P_{y}-\alpha_{y} P_{x}\right)$. What are [$\left.L_{x}, H_{\text {Dirac }}\right]$ and $\left[L_{y}, H_{\text {Dirac }}\right]$?
3. Verify that with $\mathbf{S}=\frac{1}{2}\left(\begin{array}{cc}\boldsymbol{\sigma} & 0 \\ 0 & \boldsymbol{\sigma}\end{array}\right) \equiv \frac{1}{2} \boldsymbol{\Sigma}$, the total angular momentum $\mathbf{J}=\mathbf{L}+\mathbf{S}$ commutes with $H_{\text {Dirac }}$.

1.2 Solutions to the Dirac Equation

In class we introduced the solutions to the Dirac equation $\psi(x)=u_{s}(k) e^{-i k x}$ and $\psi(x)=$ $v_{s}(k) e^{i k x}$.

1. Verify by plugging into the Dirac equation that u_{s} and v_{s} satisfy

$$
\begin{equation*}
(\not k-m) u_{s}(k)=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(\not k+m) v_{s}(k)=0 \tag{2}
\end{equation*}
$$

2. By considering the eigenvalues of $\not k-m$ and $\not k+m$, prove that there are exactly two independent u_{s} and two independent v_{s} solutions for every k (so $s=1,2$).
3. Show that the helicity operator $h=\frac{\mathbf{P} \cdot \mathbf{\Sigma}}{|\mathbf{P}|}$ commutes with the Dirac Hamiltonian $H_{\text {Dirac }}=\boldsymbol{\alpha} \cdot \mathbf{P}+\beta m$ and find the eigenvalues of h.
4. For momentum in the z direction (i.e. $\mathbf{k}=(0,0, k))$, find explicitly the solutions u_{s} and v_{s} classified by eigenvalues of the helicity operator.

1.3 Dirac Hamiltonian and charge

1. Substitute the mode expansion

$$
\begin{equation*}
\Psi(x)=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3} 2 E_{\mathbf{k}}} \sum_{s}\left(b_{s}(\mathbf{k}) u_{s}(\mathbf{k}) e^{-i k x}+d_{s}^{\dagger}(\mathbf{k}) v_{s}(\mathbf{k}) e^{i k x}\right) \tag{3}
\end{equation*}
$$

into the Dirac Hamiltonian

$$
\begin{equation*}
H=\int d^{3} x\left(-i \bar{\Psi} \gamma^{i} \partial_{i} \Psi(x)+m \bar{\Psi} \Psi(x)\right) \tag{4}
\end{equation*}
$$

and, using the canonical commutation relations for b_{s} and d_{s}, derive

$$
\begin{equation*}
H=\sum_{s} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3} 2 E_{\mathbf{k}}} E_{\mathbf{k}}\left(b_{s}^{\dagger}(\mathbf{k}) b_{s}(\mathbf{k})+d_{s}^{\dagger}(\mathbf{k}) d_{s}(\mathbf{k})\right) \tag{5}
\end{equation*}
$$

2. Do the same for the charge operator

$$
\begin{equation*}
Q=\int d^{3} x \Psi^{\dagger} \Psi \tag{6}
\end{equation*}
$$

and derive

$$
\begin{equation*}
Q=\sum_{s} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3} 2 E_{\mathbf{k}}}\left(b_{s}^{\dagger}(\mathbf{k}) b_{s}(\mathbf{k})-d_{s}^{\dagger}(\mathbf{k}) d_{s}(\mathbf{k})\right) \tag{7}
\end{equation*}
$$

