1 Physics 613: Problem Set 1 (due Monday, Feb 5)

1.1 Covariant Formulation of E\&M

Maxwell's equations are

$$
\begin{align*}
& \nabla \cdot \mathbf{E}=0 \\
& \nabla \times \mathbf{B}-\dot{\mathbf{E}}=0 \tag{1}\\
& \nabla \times \mathbf{E}+\dot{\mathbf{B}}=0 \\
& \nabla \cdot \mathbf{B}=0
\end{align*}
$$

with \mathbf{E} and \mathbf{B} given in terms of the scalar and vector potential as:

$$
\begin{align*}
& \mathbf{E}=-\nabla \Phi-\dot{\mathbf{A}} \\
& \mathbf{B}=\nabla \times \mathbf{A} \tag{2}
\end{align*}
$$

We can combine Φ and \mathbf{A} into the Lorentz-covariant gauge potential $A_{\mu}=(\Phi, \mathbf{A})$ and define the gauge invariant field strength $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$.

1. Show how $F_{\mu \nu}$ contains the \mathbf{E} and \mathbf{B} fields.
2. Show how the covariant form of Maxwell's equations $\partial_{\mu} F^{\mu \nu}=0$, together with the relations between the gauge potential and the \mathbf{E} and \mathbf{B} fields (2), imply the usual component form of Maxwell's equations (1).
3. In class we argued that $F_{\mu \nu} F^{\mu \nu}$ was the unique object which satisfies the following requirements: Lorentz invariant, gauge invariant, quadratic in A_{μ} and second order in derivatives. There is one other possible object that satisfies these requirements: $\epsilon^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}$, where $\epsilon^{\mu \nu \rho \sigma}$ is the totally antisymmetric 4-index tensor. Show that this term (called the θ-term) is in fact a total derivative.

1.2 Canonical Quantization of a Scalar Field

A much simpler field theory than Maxwell theory is that of a real scalar field $\phi(x)$, with Lagrangian:

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m^{2} \phi^{2} \tag{3}
\end{equation*}
$$

1. Derive the equation of motion for ϕ :

$$
\begin{equation*}
\square \phi=m^{2} \phi \tag{4}
\end{equation*}
$$

This is called the Klein-Gordon equation.
2. Derive the conjugate momentum $\Pi=\dot{\phi}$ and show that the Hamiltonian density is

$$
\begin{equation*}
\mathcal{H}=\frac{1}{2} \Pi^{2}+\frac{1}{2}(\nabla \phi)^{2}+\frac{1}{2} m^{2} \phi^{2} \tag{5}
\end{equation*}
$$

3. The mode expansion for ϕ is

$$
\begin{equation*}
\phi(x)=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{\mathbf{k}}}\left(a_{\mathbf{k}} e^{i k x}+a_{\mathbf{k}}^{\dagger} e^{-i k x}\right) \tag{6}
\end{equation*}
$$

Remember that $k x=k^{\mu} x_{\mu}=E_{\mathbf{k}} t-\mathbf{k} \cdot \mathbf{x}$. How are E_{k} and \mathbf{k} related?
4. Show that if $a_{\mathbf{k}}$ and $a_{\mathbf{k}}^{\dagger}$ satisfy the commutation relations of an infinite set of simple harmonic oscillators

$$
\begin{align*}
{\left[a_{\mathbf{k}}, a_{\mathbf{k}^{\prime}}\right] } & =\left[a_{\mathbf{k}}^{\dagger}, a_{\mathbf{k}^{\prime}}^{\dagger}\right]=0 \tag{7}\\
{\left[a_{\mathbf{k}}, a_{\mathbf{k}^{\prime}}^{\dagger}\right] } & =(2 \pi)^{3}\left(2 E_{\mathbf{k}}\right) \delta^{3}\left(\mathbf{k}-\mathbf{k}^{\prime}\right)
\end{align*}
$$

then one obtains the canonical commutation relations for ϕ and Π :

$$
\begin{align*}
& {\left[\phi(\mathbf{x}, t), \phi\left(\mathbf{x}^{\prime}, t\right)\right]=\left[\Pi(\mathbf{x}, t), \Pi\left(\mathbf{x}^{\prime}, t\right)\right]=0} \tag{8}\\
& {\left[\phi(\mathbf{x}, t), \Pi\left(\mathbf{x}^{\prime}, t\right)\right]=i \delta^{3}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}
\end{align*}
$$

5. Plug the mode expansion (6) into the Hamiltonian density (5) and show that the Hamiltonian reduces to that of an infinite set of decoupled simple harmonic oscillators (with energy $E_{\mathbf{k}}$):

$$
\begin{equation*}
H=\int d^{3} x \mathcal{H}=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{\mathbf{k}}} E_{\mathbf{k}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}} \tag{9}
\end{equation*}
$$

up to an overall (infinite) zero point energy.

1.3 Dirac Matrices

In class we derived the Dirac equation by starting from the requirement that there exist $N \times N$ Hermitian matrices $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ and β satisfying

$$
\begin{equation*}
\left(\mathbf{p}^{2}+m^{2}\right) \mathbb{1}_{N}=(\boldsymbol{\alpha} \cdot \mathbf{p}+\beta m)^{2} \tag{10}
\end{equation*}
$$

Here we will verify a number of the steps that we skipped over.

1. Verify that (10) implies $\alpha_{1}^{2}=\alpha_{2}^{2}=\alpha_{3}^{2}=\beta^{2}=1$ and $\left\{\alpha_{i}, \alpha_{j}\right\}=\left\{\alpha_{i}, \beta\right\}=0$ (for $i \neq j$).
2. Use part 1 to prove that the $\boldsymbol{\alpha}$ and β matrices must be traceless and have eigenvalues ± 1. (Together these imply that N must be even.)
3. Prove that there is no solution to (10) with $N=2$.
4. For $N=4$ verify that $\alpha_{i}=\left(\begin{array}{cc}0 & \sigma_{i} \\ \sigma_{i} & 0\end{array}\right)$ and $\beta=\left(\begin{array}{cc}\mathbb{1}_{2} & 0 \\ 0 & -\mathbb{1}_{2}\end{array}\right)$ satisfy (10).
5. Verify that $\gamma^{0}=\beta$ and $\gamma^{i}=\beta \alpha^{i}$ satisfy $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}$.
