Let's apply this theory to explain the effect of FERROELECTRICITY.

In many insulators an applied electric field, E, causes internal stress which is $\sim E^2$

This phenomenon is known as **electrostriction**.

We don't want to discuss this, instead there are some interesting crystals where strain $\sim E$: pyroelectrics, ferroelectrics and piezoelectrics.

...are very interesting since they undergo the 2nd order phase transition.

NR. Symmetry consideration: To have internally uncompensated electric fields: $\sum \vec{P}_i(r) = \vec{P}$

Below the transition T_c, crystal must transform into a new crystal symmetry which has no inversion symmetry, i.e. non-centrosymmetric.

Side note: The difference between FERRO- and PYRO-.

![Diagram]

Let's apply the Landau idea from L_1 and L_2 to BaTiO_3 — a "classic" FE

WHAT ARE FERROELECTRICS?
Free energy as usual can be written as:

\[F(\eta, T) = F(P, T) = \]

Here \(P \) is polarization which is our order parameter since below \(T_c < P \neq 0 \).

\[\frac{dF}{d\eta} = 0 \quad \Rightarrow \quad 2a(T - T_c)P + 2B P^3 = 0 \]

\[P_M = \begin{cases} 0 & T > T_c \\ \left[\frac{-a(T - T_c)}{2B} \right]^{1/2} & T < T_c \end{cases} \]

Insert \(P_M \) into \(F(P, T) \) we can get:

\[F = \begin{cases} F_0(T) & T > T_c \\ F_0(T) - 4a(T - T_c) \cdot \left(\frac{-a(T - T_c)}{2B} \right)^2 & T < T_c \end{cases} \]

\[= \begin{cases} F_0(T) & T > T_c \\ F_0(T) - a^2(T - T_c)^2 \cdot \frac{1}{4B} & T < T_c \end{cases} \]

Let's think how heat capacity changes at \(T_c \):

\[C = T \frac{dS}{dT} = -T \frac{2F}{T^2} \]

\[\frac{2F}{T^2} = \frac{-a^2}{2B} \]

\[C = \begin{cases} \text{(constant)} & T > T_c \\ T \cdot \frac{a^2}{2B} & T < T_c \end{cases} \]