LECTURE 3
Approximation methods III
WK
This method works when we have a slow verying potential with changes no more than few wave lenghts.

In other words the system should have high kinetic energy and $b c$ in some high excited state.
Most often used for tunnelling across small and smooth potentials.
WKB is often used as the first step for semiclassical path integrals and instantons.

$$
\text { WK's } 3 \text { steps }
$$

1. Eigenfunction is expanded in powers of \hbar.
The approximation be comes wrong

$$
\text { at } x: E=V(x)
$$

2. Construct a separate solution at
3. Apply Boundary conditions

Sine details:
Start with Schrödinger eqn:

$$
\begin{array}{r}
\longrightarrow \hbar^{2} \psi^{\prime \prime}+2 m(E-V(x)) \psi=0 \\
\psi(x)=A(x) e^{i S(x) / \hbar}
\end{array}
$$

$A(x)$ and $s(x)$ are real.

$$
\begin{aligned}
& \hbar^{2} A^{\prime \prime}(x)-2 j A \hbar S^{\prime} \cdot A^{\prime}+i \hbar A S^{\prime \prime}-A S^{\prime 2}+ \\
& +2 m(E-V) A=0
\end{aligned}
$$

Breaking it into $2 e a l$ and Inigenary parts:

$$
\left\{\begin{array}{l}
\hbar^{2} A^{\prime \prime}-A S^{12}+2 m(E-V) A=0 \\
2 A^{\prime} S^{\prime}+A S^{\prime \prime}=\left(A^{2} S^{\prime}\right)^{\prime}=0
\end{array}\right.
$$

$A=C / \sqrt{s^{\prime}} \quad C$ is some constant
This one is hard to solve.
intsead we assume that

$$
\begin{aligned}
& \left\{\begin{array}{l}
A=A_{0}+\hbar^{2} A_{1}+\ldots \text { and } \\
S=S_{0}+\hbar^{2} S_{1}+\ldots . . \\
p \ln g \text { those into the }{ }^{\text {st }} \text { ign. }
\end{array}\right. \\
& \hbar^{2}\left(A_{0}^{\prime \prime}+\hbar^{2} A_{1}^{\prime \prime}+\ldots\right)-\left(A_{0}+\hbar^{2} A_{1}+\ldots\right)
\end{aligned}
$$

$$
\left(s_{0}+\hbar^{2} s_{1}+\cdots\right)^{12}+\cdots \text { and so on }
$$

Lets collect the terms with \hbar^{0} :

$$
\hbar \circ\left\{\begin{array}{l}
S_{0}^{\prime 2}=2 m(E-V) \Rightarrow S_{0}^{\prime}= \pm[2 m(E-V)]^{1 / 2} \\
A_{0}=c / \sqrt{S_{0}^{\prime}} \\
\text { and for } \hbar^{2}
\end{array}\right.
$$

$$
\hbar^{2}: \quad A_{0}^{\prime \prime}-2 S_{0}^{1} S_{1}^{\prime} A_{0}=0
$$

recall that $\hbar p(x)=\sqrt{2 m(E-V)}$
then $S_{0}^{\prime}= \pm \sqrt{2 m(E-V)} \stackrel{\downarrow}{=} \pm p(x)$
from \hbar^{2} :

$$
\begin{aligned}
\Rightarrow S_{0} & = \pm \int d x^{\prime} p\left(x^{\prime}\right) \text { and } \\
A_{0} & =\frac{c}{\sqrt{p(x)}}
\end{aligned}
$$

$$
s_{1}^{\prime}=\frac{1}{\left(\sqrt{S_{0}^{\prime}}\right)^{\prime \prime}} \cdot \frac{1}{2 \sqrt{S_{0}^{\prime}}}
$$

In the lowest approximation we only consider A_{0} and S_{0} :

$$
\psi(x) \equiv A_{0}(x) e^{i s_{0} / \hbar}=\frac{c_{1}}{\sqrt{p}} e^{i y_{1}}+\frac{c_{2}}{\sqrt{p}} e^{-i y_{1}}
$$

where $y_{1}=\frac{1}{\hbar} \int_{0}^{x} p\left(x^{\prime}\right) d x^{\prime}$
$b / c \quad p(x)=\sqrt{\cdots} \quad y$, is rail if $V \angle E$ and Jiuginar $v>E$
The solution will oscillate inside $v<E$ and decay for $E>V$
NB! Applicability: to converge $\hbar^{2} s_{1}<S_{0}$ on $\left|\hbar^{2} s_{1} / s_{0}\right|<1 \Rightarrow \hbar^{2} s_{1}^{\prime} / s_{0}^{\prime}$ is small. since $S_{0}^{\prime}=\hbar / p=\hbar / \lambda \Rightarrow\left|1^{\prime 2}-211^{\prime \prime}\right| \ll 32 \pi$
here $1^{\prime}=\left(\frac{d \Lambda}{d x}\right) / 1 \Rightarrow$

$$
\lambda\left|\frac{d p}{d x}\right| / p \ll 1 \quad \text { slice } 1=\hbar / p
$$

in other words
the change of momentum across 1 should be very small
Now, once the quantum object is Closer to $\bar{E}-V\left(x_{0}\right)=0$ the particle stapes at the turning point x o
i. l. the $l=2 \pi t / p\left(x_{0}\right)$ 个 ∞
x_{0} is called the turning point
Ok whatls the solution near to?
Lets assume $x=0$ is turning point we expand around x_{0}

$$
p^{2}(x)=\int_{n>0}^{x^{n}}\left(1+\alpha x+\beta x^{2}+\ldots\right)
$$

Lets consider only the first term:

$$
\begin{aligned}
& \hbar^{2} \psi^{\prime \prime}+\underbrace{2 m_{1}(E-V(x))^{\prime}} \psi=0 \\
& \psi^{\prime \prime}+\rho x^{n} \psi=0 \quad \text { which has the } \\
& \psi(x)=A \sqrt{\frac{y}{p}} J_{m}(y)+B \sqrt{y / P_{1}} J_{-m}(y) \\
& \text { with } \left.m=1 /(h+2) \quad y=\int_{Q}^{x} p\left(x^{\prime}\right) d_{x^{\prime}} \text { Jain }(y) \text { Bess }\right) \text {. }
\end{aligned}
$$

Now consider the turning point $x=0$.

Lets start from $x<0$: at $x=0$ $E=V(x=0)$ so the kinetic term $=0$ and at that point the particle should bounce back (in class. neh) In QM it will tanned, thatis why often we call I -classical

$$
\begin{gathered}
\text { (T) hon-ceass. } \\
\text { Regions }
\end{gathered}
$$

in other words in: regions
I: $\quad y_{1}=\frac{1}{\hbar} \int_{x}^{0} p\left(x^{\prime}\right) d x$ zeal II: $y_{2}=\frac{1}{\hbar} \int_{x}^{0} p\left(x^{\prime}\right) d x$ imaginary and for ψ :

$$
\left\{\begin{array}{l}
\text { and for } \psi \text { : } \\
\psi_{1}(x)=A_{1} \sqrt{y_{1} / p} J_{1 / 3}\left(y_{1}\right)+B_{1} \sqrt{\frac{y_{1}}{p}} J_{-1 / 3}\left(y_{1}\right) \\
\psi_{2}(x)=A_{2} \sqrt{y_{2} / p} I_{1 / 3}\left(y_{2}\right)+I \sqrt{\frac{y_{2}}{p} I_{-1 / 3}}
\end{array}\right.
$$

Here I is the Bessel function with imaginary y.
At $x=0: \psi_{1}(x)=\psi_{2}(x)$
for small $x: \rho^{2}(x) \approx \rho_{x} \Rightarrow$

$$
y_{1}=y_{2}=\frac{2}{3} \sqrt{\rho} x^{3 / 2}
$$

and thus $A_{2}=-A_{1} \quad B_{1}=B_{2}$

What about the solution far away from $x=0$!
For this we can simply cite the asymptotic form of the Bessel function int $x \rightarrow \pm \infty$
oscillates I:

$$
\begin{gathered}
\psi_{1}(x \rightarrow-\infty) \sim \frac{\alpha}{\sqrt{p}} \sin \left(y_{1}+\pi / 4\right) \\
\alpha=\sqrt{2} / \pi \\
\psi_{2}(x \rightarrow \infty) \sim \frac{\alpha}{\sqrt{p}} \cos \left(y_{1}+\pi / 4\right)
\end{gathered}
$$

decay II

$$
\begin{aligned}
& \psi_{1}(x \rightarrow \infty)=\frac{\alpha}{2 \sqrt{|p|}} e^{-y_{2}} \\
& \psi_{2}(x \rightarrow \infty)=\frac{\alpha}{\sqrt{|p|}} e^{y_{2}}
\end{aligned}
$$

* For several interesting apple.

Read pp: 409-414 and section 15.3 .3 oh α.decay
Few rimple applications of WKB.
Ex. 1 Energy levels of harmonic oscillator.
$L 3$
$V(x)=k x^{2} / 2$, the turning point
x is when $p(x)=0$ or

$$
\begin{aligned}
& p(x)=\sqrt{<m(E-V(x)} \rightarrow x^{ \pm}= \pm \sqrt{\frac{2 E}{k}} \\
& \psi=\frac{1}{\hbar} \int_{x}^{t_{T}} p(x) d x= \\
& =\frac{1}{\hbar} \int_{x-}^{x^{+}} d x \sqrt{2 m\left(E-\frac{k x^{2}}{2}\right)}= \\
& =\sqrt{\frac{2 m}{\hbar}} \int_{x-}^{x^{+}} \sqrt{1-\frac{k x^{2}}{2 E}} d x= \\
& =\frac{2 E}{\hbar} \sqrt{\frac{m}{k}} \int_{-1}^{x-1} d y \sqrt{1-y^{2}}=\frac{2 E}{\hbar \omega} \int_{-\pi / 2}^{\pi / L} \cos ^{2} z d z \\
& =\frac{E \pi}{\hbar \omega} \Rightarrow \\
& \begin{array}{r}
\frac{E \pi}{\hbar \omega}=\left(h+\frac{1}{2}\right) \pi \rightarrow E=\left(\frac{1}{2}+n\right) \hbar \omega \\
h=0,1,2 \\
\text { see eq. 15,22p } 410
\end{array} \\
& \text { Ex.2. Cold EMission of } e^{-} \text {FRoM METAL }
\end{aligned}
$$

Strong electric. field may strip out an electron from an atom $=$ this is srllcd cold emission

Fo remove electron from the metal we need to apply the electricec field (or potential) to we have 2 turning points

$$
\begin{array}{r}
z_{1}=0 \text { and } \quad w=e E z_{2} \Rightarrow \\
z_{2}=w / e t
\end{array}
$$

$$
\begin{aligned}
& V(z)=V_{0}-e E z \text { and } \\
& E-V(z)=\frac{V_{0}-e E z-\frac{E_{F}}{R}=w-e E z}{} \quad \text { W. en }
\end{aligned}
$$

Recall the tronsultion probability is

$$
\begin{aligned}
T & =\exp \left[-\frac{2}{\hbar} \int_{x_{1}}^{x_{2}} \sqrt{2 m(V(z)-E)} d z\right. \\
& =\exp \left[-\frac{2}{\hbar} \int_{x_{1}}^{x_{2}} \sqrt{-2 m(e E z-w)} d z\right. \\
& x_{1}=z_{1} \quad x_{2}=z_{2} \\
& =\exp \left[-\frac{4}{3} \frac{\sqrt{2 m w^{3}}}{3 \hbar e E}\right]
\end{aligned}
$$

$V_{0} \rightarrow$ surface potential.
Large E can lower the barter!

Assymfotic method:
To avoid different expressions for each region one can use the so-called Asym. METHoD. see pages 419-420 for this alternative treatment of the harmonic oscillator.

THE END. OF LB

