A Topological Look at the
Quantum Hall Effect

The amazingly precise quantization of Hall conductance in a
two-dimensional electron gas can be understood in terms of
a topological invariant known as the Chern number.
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he story of the Hall effect begins with a mistake made

by James Clerk Maxwell. In the first edition of his Trea-
tise on Electricity and Magnetism, which appeared in 1873,
Maxwell discussed the deflection of a current by a mag-
netic field. He then said: “It must be carefully remembered
that the mechanical force which urges a conductor . . . acts,
not on the electric current, but on the conductor which car-
ries it.” If readers are puzzled by this assertion, they
should be.

In 1878, Edwin Hall, a student at Johns Hopkins Uni-
versity, was reading Maxwell for a class taught by Henry
Rowland. Hall asked Rowland about Maxwell’s remark.
The professor replied that he “doubted the truth of
Maxwell’s statement and had sometime before made a
hasty experiment . . . though without success.”

Hall made a fresh start and designed a different ex-
periment, aimed at measuring, instead, the magneto-
resistance—that is, the change of the electrical resistance
due to the magnetic field. As we now know, that is a much
harder experiment, and it too failed. Maxwell appeared to
be safe. Hall then decided to repeat Rowland’s experiment.
Following his mentor’s suggestion, Hall replaced the orig-
inal metal conducting bar with a thin gold leaf, to com-
pensate for the weakness of the available magnetic field.

That did the trick. A schematic diagram of Hall’s
setup for examining what is now known as the Hall effect
is shown in figure 1. He found that—Maxwell to the con-
trary notwithstanding—the magnetic field permanently
altered the charge distribution, thereby defecting the gal-
vanometer connected to the lateral edges of the conduc-
tor. The transverse potential difference between the edges
is called the Hall voltage. The Hall conductance is essen-
tially the longitudinal current divided by this transverse
voltage.

The discovery earned Hall a position at Harvard. His
paper came out in 1879, the year of Maxwell’s death at age
48. In the second edition of Maxwell’s book, which ap-
peared in 1881, a polite footnote by the editor says: “Mr.
Hall has discovered that a steady magnetic field does
slightly alter the distribution of currents in most conduc-
tors so that the statement . . . must be regarded as only
approximately true.”
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It turned out that the magnitude,
and even the sign, of the Hall voltage
depends on the material properties of
the conductor—the gold leaf in Hall’s
experiment. That made the Hall effect
an important diagnostic tool for in-
vestigating the carriers of electric
current. Eventually it pointed to the
concept of positively charged holes as current carriers in
solids. So Maxwell, even when he was wrong, inspired
fruitful research.

The quantum Hall effect

A century later, the Hall effect was revived as a source of
astonishing new physics. In 1980 at the Grenoble High
Magnetic Field Laboratory in France, Klaus von Klitzing
was studying the Hall conductance of a two-dimensional
electron gas at very low temperatures. He discovered, in
essence, that the Hall conductance, as a function of the
strength of the magnetic field applied normal to the gas
plane, exhibited a staircase sequence of wide plateaus.?
With totally unanticipated precision, the successive values
of the Hall conductance were integer multiples of a fun-
damental constant of nature,

e*/h = 1/(25 812.807 572 ),

irrespective of the geometric details of the experiment or the
imperfections of its materials (see figure 2). Von Klitzing
was awarded the 1985 Nobel Prize in Physics for the dis-
covery of this quantum Hall effect (see PHYSICS TODAY, De-
cember 1985, page 17), and its precision has provided
metrologists a superior standard of electrical resistance.

The quantum Hall effect can also be regarded as an
appealingly straightforward precision measurement of the
fine-structure constant, e?%c, yielding a value of
1/137.0360 0300(270). The alternative of measuring the
electron’s anomalous magnetic moment does give the fine-
structure constant with somewhat greater precision. But
that path has required a huge calculational effort—more
than a thousand Feynman diagrams—frought with
chances for small mistakes.?

How can we understand the remarkable precision of
Hall quantization despite the imprecise characterization
of the experimental materials? Different samples have dif-
ferent impurities, different geometries, and different elec-
tron concentrations. Among the theoretical developments
spawned by this question has been the recognition that the
Hall conductance at the plateaus has topological signifi-
cance.*® It can be understood in terms of topological in-
variants known as Chern numbers. After some prelimi-
naries, we explain what Chern numbers are and how they
relate to the quantum Hall effect.

Laughlin’s argument

In a 1981 paper.,® theorist Robert Laughlin put forward an
argument to explain von Klitzing’s discovery (see PHYSICS
ToODAY, June 1981, page 17). That argument played a
major role in the development of the theory of what has
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Figure 1. Edwin Hall’s 1878
experiment was the first
demonstration of the Hall

come to be called the integer quantum Hall effect, and it
deserves to be reexamined a quarter of a century later.
(Laughlin also made seminal contributions to the under-
standing of the fractional quantum Hall effect, discovered
in 1983. But that’s another story.) His argument goes much
of the way toward explaining the unexpected precision of
the integral plateaus. But by our present understanding,
it is short by one important step—namely, the inclusion of
topological quantum numbers.

Laughlin considered a 2D electron gas cold enough so
that quantum coherence holds throughout. It is then
meaningful to speak of a wavefunction describing the sys-
tem and its Hamiltonian evolution. Laughlin looked at the
Hall effect as a quantum pump. He imagined the electron
gas confined to a looped ribbon, as shown in figure 3, with
a strong magnetic field normal to its surface. The two op-
posite edges of the ribbon are connected to separate elec-
tron reservoirs.

Laughlin then introduced a fictitious magnetic flux ®
threading the loop. The change in this flux drives the
pump: Increasing the flux creates an electromotive force
(emf) around the ring, which, by the classical Hall effect,
results in the transfer of charge from one reservoir to the
other. The Aharonov—Bohm principle tells us that the
Hamiltonian describing the system is gauge invariant
under flux changes by integral multiples of ®, = hc/e, the
elementary quantum of magnetic flux (see PHYSICS TODAY,
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effect. A magnetic field B nor-
mal to a gold leaf exerts a
Lorentz force on a current [
flowing longitudinally along
the leaf. That force separates
charges and builds up a trans-
verse “Hall voltage” between
the conductor’s lateral edges.
Hall detected this transverse
voltage with a voltmeter that
spanned the conductor’s two
edges.

January 1986, page 17). Therefore an adiabatic increase
of @ by a single flux quantum is a cycle of the pump.

An easy calculation shows that the charge transported
between the reservoirs in one pump cycle, in units of the
electron charge e, is the Hall conductance of the system in
units of e?/h, the quantum of Hall conductance. Therefore,
if we can understand the precise quantization of the
charge transported in one cycle of Laughlin’s pump, we
will understand the integer quantum Hall effect. In
Laughlin’s words, “By gauge invariance, adding ®, maps
the system back to itself, . . . [which results in] the trans-
fer of n electrons.” The quantization of Hall conductance
is then implied.

We must ask, however, why the average transferred
charge has to be an integral multiple of e, the charge of the
electron. Classically, of course, an electron is either in reser-
voir A or B, but not in both. But why is that also true in a
quantum mechanical system? Admittedly, even in quantum
mechanics, a measurement of the number of electrons in a
reservoir must be an integer, as must the transported
charge. But in quantum mechanics, consecutive cycles of the
pump may transport different amounts of charge.

Gauge invariance does require that, after a cycle, the
pump is back in its original state. Doesn’t that guarantee
that the transported charge in different cycles must be the
same? The answer is no. Only in classical mechanics does
an exact reproduction of a prior state guarantee reproduction

Figure 2. The integer quantum Hall effect. Plotting the Hall
resistance (essentially the reciprocal of the Hall conduc-
tance) of a low-temperature two-dimensional electron gas
against the strength of the imposed magnetic field normal to
the gas plane, one finds a stairlike quantized sequence of
Hall conductances very precisely equal to ne*h, where n is
the integer that characterizes each plateau. The natural unit
of resistance defined by this effect is about 26 k€. (Adapted
from M. Paalanen, D. Tsui, A. Gossard, Phys. Rev. B. 25,
5566 [1982].)
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Figure 3. Robert Laughlin’s 1981 gedanken experiment in-
terprets the integer Quantum Hall effect as a quantum
pump. Increasing the flux ® that threads the conducting
loop by a single flux quantum constitutes a cycle of the
pump, transferring a quantized amount of charge between
the two reservoirs, A and B, connected to the two edges of
the conducting loop. The loop is everywhere subjected to a
perpendicular magnetic field B.

of the prior measured result. In quantum mechanics, re-
producing the state of the system does not necessarily re-
produce the measurement outcome. So one cannot conclude
from gauge invariance alone that the same number of elec-
trons is transferred in every cycle of the pump.

Why, then, is the Hall conductance quantized? To com-
plete the argument, one has to explain why the mean
transferred charge, averaged over many pump cycles, is
indeed quantized. That’s where topological quantum num-
bers come into play: Chern numbers quantize averages.

Adiabatic curvature

In 1981, Michael Berry discovered that the phase accumu-
lated by the wavefunction undergoing adiabatic evolution
has a particular geometric component, now known as
Berry’s phase’ (see the article by Berry in PHYSICS TODAY,
December 1990, page 34). To explain what Berry’s phase is
and its significance for the Hall effect, let’s take a step back
and review the notion of parallel transport in geometry.

In 1917, Tulio Levi-Civita developed the modern per-
spective on the geometry of surfaces based on Karl
Friedrich Gauss’s earlier work. In the Euclidean plane,
there is an obvious notion of parallelism for vectors at dif-
ferent points. But that’s not so on a curved surface, where
there is no natural way to compare the directions of tan-
gent vectors at different points. To compare directions, we
need the notion of parallel transport.

For concreteness and simplicity, let us consider the
surface of Earth—ignoring its rotation for the moment.
The plane of a pendulum’s swing defines a direction on the
plane tangent to the surface. If the pendulum is moved
slowly from one point to another, the propagation of that
direction is a realization of parallel transport.

On the rotating planet, a Foucault pendulum is an ex-
ample of parallel transport along a line of latitude. Parallel
transport is an intriguing phenomenon, and the Foucault
pendulum never fails to fascinate visitors to science muse-
ums. John Sullivan has created an interactive Web site that
nicely illustrates parallel transport on a sphere.® It shows
how a vector can be transported parallel to itself and yet
point in a different direction at the end of a round trip.
That’s what happens with the Foucault pendulum after 24
hours. Only at the poles and on the equator does the pen-
dulum point in the same direction as it did 24 hours earlier.

The failure of parallel transport for closed paths is a
hallmark of intrinsic curvature. In modern geometry, the
local curvature of a surface is defined as the angular mis-
match after the traversal of an infinitesimal closed loop,
divided by the loop’s area.

This notion of curvature extends to a wide range of
other situations. In particular, it lets us introduce curva-
ture into quantum mechanics. Consider a quantum Hamil-
tonian H(®d,0) that depends on two angular parameters.
The parameters play a role analogous to the spherical co-
ordinates on Earth’s surface. Suppose that the Hamilton-
ian has a nondegenerate ground state at energy zero. Let
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e [y(d,0)) denote the ground state. We are free to choose
«a as we please; it is the analog of the pendulum’s initial
direction.

Consider now a closed loop in the parameter space. If
the parameters are varied slowly, we can use the time-
dependent Schriodinger equation to transport the ground
state. The failure of parallel transport around a closed loop
is measured by Berry’s phase. In this case, the local adia-
batic curvature K of the bundle of ground states in the pa-
rameter space, defined as the limit of the Berry phase mis-
match divided by the loop area, turns out to be

K = 2 Tm (9,0,). (1)

Hall conductance as curvature

The Hall conductance can be thought of as a curvature. To
see why, we identify the two angular parameters on which
the Hall-effect Hamiltonian depends. One of them, ®, is
associated with the emf that drives the Hall current in fig-
ure 3. The second parameter, 6, is related to the ammeter
that measures the Hall current. More precisely, 6 is cho-
sen in such a way that the Hall current takes the form:
I = co,H(®D,0). One can treat both ® and 6 as angular pa-
rameters because, by gauge invariance, the Hamiltonian
is periodic in both, with period ®,.

If ® varies slowly and the ground-state energy is in-
dependent of @ (and strictly below that of the first excited
state), the Schrodinger equation gives

W) = ficKd 2)

for the expectation value of the Hall current, where K is
the adiabatic curvature given by equation 1.

Equation 2 gives a linear relation between the expec-
tation value of the Hall current and the driving emf, ®/c,
generated by the time-varying flux tube that threads the
loop. The Hall conductance is therefore Ac?K. That relation
establishes the geometric interpretation of the Hall con-
ductance as curvature.

Ludwig Boltzmann is reputed to have said that ele-
gance is for tailors. The geometric interpretation of the
Hall conductance as curvature is clearly elegant. But is
there more to it than elegance? There is: Geometry links
the Hall conductance with topological invariants. Topol-
ogy, therefore, is our next topic.

Chern numbers

Geometry and topology are intimately related. Let us re-
call this relation in the familiar setting of surfaces. A re-
markable relation between geometry and topology is the
formula by Gauss and Charles Bonnet:

1 kaa=201-g). 3)

278

The integral is over a surface S without a boundary, like
the torus in figure 4, and K is the local curvature of the
surface. Therefore, K dA is the angular mismatch of par-
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allel transport around the small loop enclosing the area
dA. The left side of the Gauss—Bonnet equation is geo-
metric and not quantized a priori. But the right side is
manifestly quantized; the integer g is the number of han-
dles characterizing the topology of S. (For the torus in fig-
ure 4, g = 1.) So, if we change K arbitrarily by denting the
surface—so long as we do not punch through new han-
dles—the quantized right side of equation 3 does not
change.

The Gauss—Bonnet formula has a well-known modern
generalization, due to Shiing-shen Chern. The Gauss-
Bonnet-Chern formula applies not only to the geometry of
surfaces but also to the geometry of the eigenstates para-
meterized by ® and 0. It looks exactly like equation 3, ex-
cept that K is now the adiabatic curvature of equation 1,
and the surface S is a torus parameterized by the two
fluxes @ and 6. The right-hand side of the Chern’s gener-
alization of equation 3 is still an integer. Indeed, it is the
so-called Chern number. But there is a difference: It is not
necessarily an even integer, and g can no longer be inter-
preted as a tally of handles.

But if the Chern number doesn’t count handles, why
does it have to be an integer? One can see why by consid-
ering the failure of parallel transport around the little loop
in figure 4. The loop can be thought of as the boundary of
the small red “inside” area, but also as the boundary of the
“outside” area that makes up the rest of the toroidal sur-
face. The phase mismatch of parallel transport can then
be calculated as an integral of the curvature either over
the inside area or the outside area. And the two integrals
must agree up to an integral multiple of 27r. The difference
between them, divided by 27, is the Chern number. As one
shrinks the small red area to zero, one readily sees that
the Chern number is given by the integral in equation 3.

The Chern number is topological in the sense that it
is invariant under small deformations of the Hamiltonian.
Small changes of the Hamiltonian result in small changes
of the adiabatic curvature and therefore, one might think,
in a small change in the Chern number. But because the
Chern number is an integer, it can’t change at all if it has
to change continuously. We conclude, therefore, that a
graph of the Chern number must have plateaus.

But then, how does the Chern number change from one
plateau to the next? Large deformations of the Hamiltonian
can cause the ground state to cross over other eigenstates.
When such a “level crossing” happens in a quantum Hall sys-
tem, the adiabatic curvature K diverges and the Chern num-
ber is no longer well defined. Transitions between Chern-
number plateaus take place at level crossings.

http://www.physicstoday.org

Figure 4. The Gauss—Bonnet formula (equation 3) is illus-
trated here by a toroidal surface with one handle. The
local curvature K is positive on those portions of the sur-
face that resemble a sphere and negative on those, near
the hole, that resemble a saddle. Because g, the number
of handles, equals one, the integral of the curvature over
the entire surface vanishes. One can make

Shiing-shen Chern’s quantum generalization of the
Gauss—Bonnet formula plausible by considering the
angular mismatch of parallel transport after a circuit
around the small red patch in the figure.

Returning to Laughlin’s argument, we now see that, in
fundamental units, the Hall conductance and therefore the
average charge transport in Laughlin’s gedanken experi-
ment are Chern numbers. That explains why the trans-
ported charge, averaged over many pump cycles, is quan-
tized. And thus it explains the surprisingly precise plateau
structure discovered in 1980 by von Klitzing.

The Hofstadter model

The glory of Chern numbers in the Hall effect emerges
from a theoretical model investigated in 1976 by Douglas
Hofstadter,® three years before the publication of his
widely read book Gdédel, Escher, Bach: An Eternal Golden
Braid. The model, which was first analyzed in the 1950s
by Rudolph Peierls and his student P. G. Harper, describes
independent electrons on a 2D lattice, acted on by a ho-
mogeneous magnetic field. The model is interesting for
several reasons. First, its rich conjectural scheme was ex-
perimentally realized in 2001 by Christian Albrecht, von
Klitzing, and coworkers in a 2D electron gas in a super-
lattice potential.l’ The experiment verified the remarkably
detailed Hofstadter-model predictions of David Thouless
and coworkers.* Second, the only known way of computing
the Hall conductance in Hofstadter’s model is with Chern
numbers. Third, the model provides a dazzling structure
built of Chern numbers.

The thermodynamic properties of the 2D electron gas
in Hofstadter’s model are determined by three parameters:
the magnetic flux, the temperature, and the chemical po-
tential, which fixes the electron density. The most inter-
esting case, shown in figure 5, occurs at zero temperature.

The figure, sometimes called Hofstadter’s butterfly, is
the model’s phase diagram. It represents all the thermo-
dynamic phases of the 2D electron gas that emerge as one
varies the chemical potential and the magnetic field. Un-
like the phase diagrams of simple thermodynamic systems
that have only a few phases—say liquid, solid, and gas—
the Hofstadter model has infinitely many different phases.
Each phase is characterized by its integral Hall conduc-
tance, and all integer values are allowed. These different
Chern integers are represented in the figure by different
colors. The figure was made using the equations of Thou-
less and company.*

How is it that something as simple as the Hofstadter
model® turns out to generate such a magnificently complex
structure? The cause is, as is so often the case in physics,
the phenomenon of “frustration.” Frustration occurs here
because two different area scales are in competition. One
characteristic area is the unit cell of the superlattice in Al-
brecht’s experiment. The other area scale is ®,/B, associ-
ated with the unit of quantum flux.

The character of the problem changes according to
whether or not the two areas are commensurable. We say
they are incommensurable when their ratio is an irrational
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number. Hoftstadter’s 1976 paper begins by asking how
the irrationality of a parameter could possibly affect an
experimental outcome. Any such effect would seem to re-
quire infinite experimental resolution. The moral of the
Hofstadter model is that commensurability has stable, ex-
perimentally realizable consequences in fractal-like struc-
tures. Rough experiments can resolve gross features like
the large butterfly wings. Increasingly finer experiments
eventually resolve finer and finer structures—the tiny
wings—at the smallest energy scales.

Beyond elegance

Elegant results sometimes come at a price, and that is the
case here: For the Chern-number theory to apply to the
quantum Hall effect, a number of restrictive physical condi-
tions must hold. We have mentioned only a few of them here.
(Much of what we know thus far about the theory can be
traced from references 11 and 12.) And we have omitted an
interesting, alternative topological interpretation of the Hall
conductance by an analog of the Chern number that arises
in the context of a new branch of mathematics known as non-
commutative geometry.>

The geometric and topological ideas developed in the
context of the quantum Hall effect have had an impact on
an emerging direction in mesoscopic physics—quantum
pumps.!* These pumps are quantum dots that can trans-
port individual charges or spins between reservoirs.'® Here
too, the transported charge can be related to an analog of
the curvature.!¢

So far, we have barely mentioned the fractional quan-
tum Hall effect. In 1983, Horst Stormer, Daniel Tsui, and
coworkers at AT&T Bell Laboratories discovered that, in
2D electron gases confined at very high-quality semicon-
ductor interfaces, the Hall conductance develops plateaus
at simple fractional values of the Hall conductance. That
unexpected discovery required a revision of the quantum
Hall paradigm to a new theory in which electron—electron
interaction plays a central role. For his theory of the frac-
tional quantum Hall effect,* Laughlin shared the 1998
Nobel prize with Stormer and Tsui (see PHYSICS TODAY,
December 1998, page 17.)

Laughlin’s 1983 theory of the fractional effect has
evolved into a large body of knowledge.!” Chern numbers
do not play a role in that theory. But topology does (see the
article by J. K. Jain in PHYSICS TODAY, April 2000, page
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Figure 5. The Hofstadter “butterfly” is a
fractal phase diagram of Douglas
Hofstadter’s model of a quantum Hall
system in a periodic potential. Each of
the infinite number of phases is charac-
terized by the Chern number of its Hall
conductance and displayed with a dif-
ferent color. The horizontal axis gives
the chemical potential, which deter-
mines the electron density. The left side
corresponds to zero electron density.
The vertical axis, indicating magnetic
flux though the system, goes from zero
at the bottom to one flux quantum per
unit cell of the crystal lattice at the top.
At higher fluxes, the phase diagram re-
peats periodically. Warm colors indicate
positive Chern numbers; cool colors,
negative numbers. Only on the extreme
left and right do we see white spaces,
which indicate Chern number zero.
(Adapted from D. Osadchy, J. Avron,

J. Math. Phys. 42, 5665 [2001].)

39). A topological field theory based on the work of Chern
and James Simon plays a significant role in recent formu-
lations of the theory of the fractional quantum Hall effect.
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