Collision between particles

Lecture #6

(identical) Also read Feynman's Lectures Ch. 4-1

\[\text{detector} \]

\[\text{this is a center of mass picture.} \]

\[\text{(or) } + \]

\[\text{D1} \]

\[\text{D2} \]

\[\text{1} \]

\[\text{2} \]

Some have two independent channels. And we cannot decide which way we scatter particles 1 and 2, and we have to sum up the amplitudes for both events.

Note, classically we would have a different cross-section which is the sum of \(f \), meaning we adding up probabilities and not amplitudes.

\[\frac{d\sigma}{d\Omega} = |f(\theta, \phi)|^2 \]

and \(f \) is defined from the scattered w.f.

\[\psi_r \rightarrow \psi_{\theta, \phi} = e^{i\mathbf{k} \cdot \mathbf{r}} + f(\theta, \phi) \frac{e^{i\mathbf{k} \cdot \mathbf{r}}}{r} \]

Now recall the product for bosons and fermions is very different.

1. Let's assume we scatter 2 spin-1 bosons

\[r_1 \rightarrow r_2 \rightarrow 1r_1 = r_1 - r_2 \Rightarrow r_2 \rightarrow -r_1 \]

and in the polar coordinates means that \(\theta, \phi \)
\[Y_\ell^m (r \rightarrow +\infty) = e^{ikr} + e^{-ikr} + \left[f(\theta, \phi) + f(\pi-\theta, \pi+\phi) \right] e^{ikr} \]

\[\frac{d\sigma}{d\Omega} = \left| f(\theta, \phi) + f(\pi-\theta, \pi+\phi) \right|^2 \]

\[= \left| f(\theta, \pi) \right|^2 + \left| f(\theta, \phi+\pi) \right|^2 + 2 \text{Re} \left[f(\theta, \phi) \right] \quad \text{this is extra compared to classical scattering.} \]

\[f^* (\pi-\theta, \phi+\pi) \]

If the potential is independent of \(\phi \) (e.g. central potential) \(\Rightarrow \)

\[\frac{d\sigma}{d\Omega} = \left| f(\theta) \right|^2 + \left| f(\pi-\theta) \right|^2 + 2 \text{Re} \left[f(\theta). f(\pi-\theta) \right] \]

Note if \(\theta = \frac{\pi}{2} \rightarrow \frac{d\sigma}{d\Omega} = 4 \left| f(\theta) \right|^2 \]

\[\uparrow \quad \text{the symmetry angle in the c.o.f. } \]

\[\uparrow \quad \text{so } 1 + 1 = 4 \]

Moreover recall in the phase shift analysis lecture to be symmetric \(\theta \rightarrow \pi-\theta \)

\[\left(P_e(-x) = (-1)^x P_e(x) \right) \quad \text{It can contain only even } \ell \]

(2) Scattering of 2 fermions spin = \(\frac{1}{2} \)

The total wave func. must be antisymmetric.
The spin part of the w.f. can be symmetric or antisymmetric. Then the spectral part must be symmetric for $\uparrow \uparrow$ and antisymmetric for $\uparrow \downarrow$. Assume the potential is central and spin independent. Then

$$\begin{align*}
fs &= f(\theta) + f(\theta - \pi), \\
fa &= f(\theta) - f(\theta - \pi)
\end{align*}$$

$$\frac{d\sigma}{d\Omega} = \left| f(\theta) \right|^2 + \left| f(\pi - \theta) \right|^2 + 2 \text{Re} \left[f(\theta) f^*(\pi - \theta) \right]$$

and

$$\left(\frac{d\sigma}{d\Omega} \right)_{\uparrow \downarrow} = \left| f(\theta) \right|^2 + \left| f(\pi - \theta) \right|^2 - 2 \text{Re} \left[f(\theta) f^*(\pi - \theta) \right]$$

Assume that incoming fermions are up-polarized. E.g.,

<table>
<thead>
<tr>
<th>Fraction</th>
<th>$S\uparrow$</th>
<th>$S\downarrow$</th>
<th>Spin \uparrow in D_1</th>
<th>Spin \uparrow in D_2</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$</td>
<td>\uparrow</td>
<td>\uparrow</td>
<td>\uparrow</td>
<td>\uparrow</td>
<td>$\frac{1}{2} \left</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>\downarrow</td>
<td>\uparrow</td>
<td>\downarrow</td>
<td>\downarrow</td>
<td>$\frac{1}{2} \left</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>\uparrow</td>
<td>\downarrow</td>
<td>\uparrow</td>
<td>\downarrow</td>
<td>$\frac{1}{2} \left</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>\downarrow</td>
<td>\downarrow</td>
<td>\downarrow</td>
<td>\downarrow</td>
<td>$\frac{1}{2} \left</td>
</tr>
</tbody>
</table>

Total: $= \frac{1}{2} \int \left[\left| f(\theta) - f(\pi - \theta) \right|^2 + \left| f(\theta - \pi) \right|^2 + \frac{1}{2} \left| f(\theta - \pi) \right|^2 + \frac{1}{2} \left| f(\theta) \right|^2 \right] d\theta$
Total cross section = unpolarized \[\frac{1}{4} \left(\frac{d\sigma}{d\Omega} \right)_{uu} + \frac{3}{4} \left(\frac{d\sigma}{d\Omega} \right)_{un} \]
\[= |f(0)|^2 + 1 |f(\pi)|^2 - \frac{1}{2} \int (f(\theta) f^*(\pi-\theta))^2 \]

Compared to bosons, the cross section is a factor of 4 less.

Also:
At \[\theta = \frac{\pi}{2} \]

\[\left(\frac{d\sigma}{d\Omega} \right)_{\text{fermions}} \Theta = \frac{\pi}{2} = |f(\Theta = \frac{\pi}{2})|^2 \]

For bosons \[\Theta = \frac{\pi}{2} \]

\[\left(\frac{d\sigma}{d\Omega} \right)_{\text{bosons}} \Theta = \frac{\pi}{2} = 2 |f(\Theta = \frac{\pi}{2})|^2 \]
Occupation number representation

This idea is very useful for many body theory or quantum field theory.

1. Particle in the box of size L.

 \[\text{let's set } \hbar = 1, \quad p = -i \frac{\partial}{\partial x}; \quad \psi(x) = \frac{1}{\sqrt{2}} e^{i p x} \]

 \[p \psi(x) = -i \frac{\partial \psi}{\partial x} = p \psi(x) \]

 \[\text{if } \psi(x) = \psi(x + L), \quad e^{i p x} = e^{i p (x + L)} \Rightarrow p = \frac{2\pi n_m}{L} \]

 NEW NOTATION

 on to a multi-particle state (e.g. bosons):

 \[\left| p_1 p_2 \right> = (p_1 + p_2) \left| p_1 p_2 \right> \]

 \[H \left(p_1 p_2 \right) = (E_1 + E_2) \left| p_1 p_2 \right> \]

 What if I have 2 particles in p_3? $E_{p_3} = 2E_{p_3}$

 double of a single particle energy

 In general:

 \[\sum \frac{n_{p_m} E_{p_m}}{m}, \quad n_{p_m} \text{ is the total number of particles in the state } p_m \]

 In QFT instead of listing what particle is in what state we can say two particles are in p_1, 1 particle in p_2, etc.

 so we just specify how many in what state p_1, \ldots, p_n

 \[\text{e.g. } 12100... \]

 number of particles in this momentum state, is called **occupation number representation**

 \[\text{e.g. } |12100...> \]

 \[19191919 > \]

 \[12071292 > 1027 \]

 \[11119 > \quad \text{etc.} \]

 \[1307 \]
What we can do on this state is

\[\langle \mathbf{H} | \mathbf{n}_L, \mathbf{n}_R \cdots \rangle = \left[\sum_m \hbar p_m E_{p_m} \right] \mathbf{n}_L, \mathbf{n}_R \cdots \]

simply we find out how many particles
in that state & energy of that state.

Big Q: Why do we care?

Recall in harmonic oscillator:

\[E_n = (n+\frac{1}{2})\hbar \omega \quad \text{or} \quad E_n = n \hbar \omega \]

so in the oscillator we have \(n \) quanta,
and the energy between states is equally
spaced. Independent

Now imagine \(N \) oscillators each labeled by \(k \), and the spacing is \(\hbar \omega_k \).
The total \(E = \sum_k E_{k} \) so the \(k \)th oscillator,

\[E_k = \sum_{n=0}^{\infty} (n+\frac{1}{2}) \hbar \omega_k \cdot n_k \]

\[E_k = \sum_{n=0}^{\infty} n \hbar \omega_k \cdot n_k \]

e.g. \(k = 3 \) \(\hbar \omega_3 \) oscillator has \(n_3 \) quanta in it
and contributes to the energy \(\hbar \omega_3 \cdot n_3 \).

In general:

\[E = \sum_m \hbar p_m E_{p_m} \quad \text{so we say,} \]

the momentum state \(p_m \) has \(h p_m \) particles in it
and contributes \(h p_m E_{p_m} \) energy.

So it looks like we can think of a general
system as analogous to oscillators.

Summary:

<table>
<thead>
<tr>
<th>Quanta in oscillators</th>
<th>Particles in momentum states</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)th oscillator</td>
<td>(m)th momentum mode (p_m)</td>
</tr>
<tr>
<td>(E = \sum_{k=1}^{N} n_k \hbar \omega_k)</td>
<td>(E = \sum_{m=1}^{N} n_{p_m} E_{p_m}).</td>
</tr>
</tbody>
</table>
VERY IMPORTANT STEP

REPLACE STATE VECTOR WITH AN OPERATOR!

What's next: can we remove the notion of state vectors at all?

\[|n_1, n_2, ..., n_N\rangle = \prod_{k} \frac{1}{\sqrt{n_k!}} (a_k^+)^{n_k} |0\rangle \]

so we retain only one very special state \(|0\rangle \)

\[|n_1, n_2, ..., n_N\rangle = \frac{1}{\sqrt{n_1! n_2! ... n_N!}} (a_1^+)^{n_1} (a_2^+)^{n_2} ... (a_N^+)^{n_N} |0, 0, 0\rangle \]

The general state of the harmonic oscillator:

\[|n_1, n_2, ..., n_N\rangle = \prod_{k} \frac{1}{\sqrt{n_k!}} (a_k^+)^{n_k} |0\rangle \]

we create a particle with momentum \(p_i \)

\[|2, 1, 0, 0, 0, 0\rangle = \left[\frac{1}{\sqrt{2!}} (a_1^+) \right] ^2 \left[\frac{1}{\sqrt{1!}} (a_2^+) \right] |0\rangle \]

so we can think of this situation as \(a_2^+ \) creating a particle with momentum \(p_2 \)

But we need to think of \(|p_2\rangle \)

In distinguishability & symmetry

What I want to do is to repeat the same consideration about sym. and anti-sym. argument for bosons and fermions.

E.g.: let's add another particle into the vacuum:

\[\begin{align*}
 a_{p_1}^+ |10\rangle &= |110\rangle \\
 a_{p_2}^+ |10\rangle &= |101\rangle \\
 a_{p_1}^+ a_{p_2}^+ |0\rangle &= |111\rangle \\
 a_{p_1}^+ a_{p_2}^+ |0\rangle &= |111\rangle \\
 a_{p_1}^+ a_{p_2}^+ &= \lambda a_{p_2}^+ a_{p_1} \\
 \lambda &= \pm 1
\end{align*} \]
As before we select:
\[a^+_{p_2} a^+_{p_1} = a^+_{p_1} a^+_{p_2} \rightarrow [] = 0 \]
\[[a_i^+ a_j] = \delta_{ij} \]

Those commutation rules are the same as for oscillators.

The many particle state of bosons:
\[|n_1, n_2, \ldots > = \prod_m \frac{1}{(h_{p_m}!)^{1/2}} (a^+_{p_m})^{n_{p_m}} 10 > \]

\[a^+_{p_1} a^+_{p_2} 10 > = a^+_{p_2} a^+_{p_1} 10 > = 11_{p_1} 1_{p_2} > \]

In general:
\[\{ a_i^+ 1, n_1, n_2, \ldots > = \sqrt{k_{i+1}} 1, n_1, n_2, \ldots > \]
\[a_i^+ 1, n_1, n_2, \ldots > = \sqrt{k_i} 1, \ldots n_i, \ldots > \]

Fermions

Case 2: \(\lambda = -1 \)

\[\{ c_i^+ c_j^+ \} \equiv c_i^+ c_j^+ + c_j^+ c_i^+ = 0 \]

If I set \(i \neq j \rightarrow c_i^+ c_i = 0 \) (no way)

\(\text{For fermions} \quad \text{anti-commutator} \)

\[c_i^+ |n_1, n_2, \ldots > = (-1)^{Z_i} \sqrt{1-n_i} |n_1, \ldots, n_i+1, \ldots > \]

\[c_i^+ |1, \ldots n_i, \ldots > = (-1)^{Z_i} \sqrt{k_i} |1, \ldots, n_i-1, \ldots > \]

\[(-1)^{Z_i} \equiv (-1)^{n_i+k_i+k_{i-1} + \ldots + k_1} \]

Pauli exclusion principle.

Check that \(n^i c_i^+ c_i \) works!
The continuous limit

1) \(\delta_{ij} \rightarrow \delta^3(p) \)

As the size of the system goes up, spacing in \(p \) goes very much down.

\[[a_\mathbf{p}^+ a_\mathbf{q}] = \delta^3(p-q) \quad \text{and} \]

\[H = \int d^3\mathbf{p} \, \varepsilon \mathbf{p} a_\mathbf{p}^+ a_\mathbf{p} \]

E.g., for a single-particle state

\[\langle \Psi | \mathbf{p}' \rangle = \langle 0 | a_\mathbf{p}^+ 10 \rangle \]

\[\langle \Psi | \mathbf{p} \rangle = \langle 0 | [\delta^3(p-p') + a_\mathbf{p}^+ a_\mathbf{p}] 10 \rangle = \]

\[= \langle 0 | \delta^3(p-p') 10 \rangle = \delta^3(p-p') \]

So it works and we can rewrite both operators and states in terms of the number of particles with momentum \(p \) and the very special state \(10 \).

Summary:

- The occupation number representation describes states by listing the number of identical particles in each quantum state.
- We focus on the vacuum state \(|0\rangle \) and then construct many-particle states by acting on \(|0\rangle \) with creation operators.
- To obey the symmetries of many-particle mechanics, bosons are described by commuting operators and fermions are described by anticommuting operators.