RUTGERS UNIVERSITY, DEPARTMENT OF PHYSICS & ASTRONOMY, SSP 1/2017 - 601

HomeWork #1. Due September 20.

Jak Chakhalian

September 15, 2017

1 HEAT CAPACITY AT THE 2^{nd} ORDER PHASE TRANSITION.

- 1. Using the definition of specific heat $c_p = T(dS/dT)_V$, $S = -(d\Phi/dT)_P$, η^2 and Φ_{min} derived in class, find the behavior of c_p at the 2^d order transition.
- 2. Using results from 1.1 calculate total entropy in the ordered state $S_{ord} = \int_{o}^{T_c} c_p(T)/T dT$ for the case when *spin* is S = 1/2 (note here S is spin not entropy!).
- 3. Comment on the physical meaning of this specific numerical value if experiment finds it greater or less than calculated S_{ord} for S = 1/2 (again here S refers to spin). *Hint* : In the fully disordered phase above T_c , the total number of possible states is 2S + 1 and the spin entropy must be removed when T goes to zero.

2 Connection between specific heat jump Δc_p , compressibility and thermal expansion.

Find the connection between specific heat jump Δc_p at the second-order transition T_c (take the Δc_p result from Problem 1.1) and

- thermal expansion $\beta = 3\alpha = 1/V(dV/dT)$
- compressibility $\kappa = -1/V(dV/dP)$

Hint: Those formulae are also known as the Ehrenfest relations.