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Solution to  the MID TERM - SOLID STATE PHYSICS 2019


Problem 3 

 

112 Wave Scattering by Crystals

(14.2) ‡ X-ray scattering II
BaTiO3 has a primitive cubic lattice and a basis with

atoms having fractional coordinates

Ba [0,0,0]

Ti [ 12 ,
1
2 ,

1
2 ]

O [ 12 ,
1
2 , 0], [ 12 , 0,

1
2 ], [0, 1

2 ,
1
2 ]

! Sketch the unit cell.
! Show that the X-ray structure factor for the (00l)

Bragg reflections is given by

S(hkl) = fBa + (−1)lfTi +
[
1 + 2(−1)l

]
fO

where fBa is the atomic form factor for Ba, etc.
! Calculate the ratio I(002)/I(001), where I(hkl) is the

intensity of the X-ray diffraction from the (hkl) planes.
You may assume that the atomic form factor is propor-
tional to atomic number (Z), and neglect its dependence
on the scattering vector. (ZBa = 56, ZTi = 22, ZO = 8.)

Fig. 14.2 Unit cell of BaTiO3

The X-ray structure factor is given by

S(hkl) =
∑

d

fde
ik(hkl)·Rd =

∑

d

fde
2πi(hxd+kyd+lzd)

where Rd = (xd, yd, zd) are the positions of atom d in the unit cell, and
fd it the corresponding form factor (which we take to be proportional
to Zd). If we are interested in (00l) we set h = k = 0 and obtain

S(00l) = fBa + (−1)lfTi + [1 + 2(−1)l]fO

The Bragg peak intensity is proportional to the square of the structure
factor (times a multiplicity factor, but the multiplicity for all (00l) are
the same!), thus we obtain

I002
I001

=
(fBa + fTi + 3fO)

2

(fBa− fTi − fO)
2 ≈ 15.4

In reality the form factor depends on the scattering vector, and the
variation is different from each atom, so this is just an approximation.
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Problem 2.  
 

 

4 5.61 Physical Chemistry Lecture #31 

N 

Etot = ∑Ei 
i=1 

where Ei are the MO eigenvalues determined in the third step. 

To illustrate how we apply Hückel in practice, let’s work out the energy of 
benzene as an example. 

1 

2 

35 

6 

4 

1) Each of the MOs is a linear combination of 6 pz orbitals 
⎛ cµ ⎞ 
⎜ 1 

µ ⎟ 
⎜ c2 ⎟ 

6 ⎜ cµ ⎟ 
ψ µ = ∑cµ pz

i → c
µ = ⎜ 3 

µ ⎟i 
i=1 ⎜ c4 ⎟ 

⎜ cµ ⎟ 
⎜ 5 ⎟⎜ µ ⎟
⎝ c6 ⎠ 

2) It is relatively easy to work out the Hamiltonian. It is a 6­by­6 matrix. 
The first rule implies that every diagonal element is α: 

⎛α ⎞ 
⎜ ⎟ 
⎜ α ⎟ 
⎜ α ⎟ 

H = ⎜ ⎟ 
⎜ α ⎟ 
⎜ α ⎟ 
⎜ ⎟⎜ α ⎟⎝ ⎠ 

The only other non­zero terms will be between neighbors: 1­2, 2­3, 3­4, 4­5, 
5­6 and 6­1. All these elements are equal to β: 

⎛α β β ⎞ 
⎜ ⎟ 
⎜ β α β ⎟ 
⎜ β α β ⎟ 

H = ⎜ ⎟ 
⎜ β α β ⎟ 
⎜ β α β ⎟ 
⎜ ⎟⎜ ⎟
⎝ β β α ⎠ 

All the rest of the elements involve non­nearest neighbors and so are zero: 
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⎛α β 0 0 0 β ⎞ 
⎜ ⎟ 
⎜ β α β 0 0 0 ⎟ 
⎜ 0 β α β 0 0 ⎟ 

H = ⎜ ⎟ 
⎜ 0 0 β α β 0 ⎟ 
⎜ 0 0 0 β α β ⎟ 
⎜ ⎟⎜ ⎟
⎝ β 0 0 0 β α ⎠ 

3) Finding the eigenvalues of H is easy with a computer. We find 4 distinct 
energies: 

E6=α−2β 

E4=E5=α−β 

E2=E3=α+β 

E1=α+2β 

The lowest and highest energies are non­degenerate. The second/third and 
fourth/fifth energies are degenerate with one another. With a little more 
work we can get the eigenvectors. They are: 

⎛ +1⎞ ⎛ +1⎞ ⎛ +1⎞ ⎛ +1⎞ ⎛ +1⎞ ⎛ +1⎞ 
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 
⎜ −1⎟ ⎜ −2⎟ ⎜ 0 ⎟ ⎜ 0 ⎟ ⎜ +2⎟ ⎜ +1⎟ 

1 ⎜ +1⎟ 1 ⎜ +1⎟ 1 ⎜ −1⎟ 1 ⎜ −1⎟ 1 ⎜ +1⎟ 1 ⎜ +1⎟ 
c 6 = ⎜ ⎟ c 5 = ⎜ ⎟ c 4 = ⎜ ⎟ c 3 = ⎜ ⎟ c 2 = ⎜ ⎟ c 1 = ⎜ ⎟ 

6 ⎜ −1⎟ 12 ⎜ +1⎟ 4 ⎜ +1⎟ 4 ⎜ −1⎟ 12 ⎜ −1⎟ 6 ⎜ +1⎟ 
⎜ +1⎟ ⎜ −2⎟ ⎜ 0 ⎟ ⎜ 0 ⎟ ⎜ −2⎟ ⎜ +1⎟ 
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ −1⎠ ⎝ +1⎠ ⎝ −1⎠ ⎝ +1⎠ ⎝ −1⎠ ⎝ +1⎠ 

The pictures at the bottom illustrate the MOs by denting positive (negative) 
lobes by circles whose size corresponds to the weight of that particular pz 

orbital in the MO. The resulting phase pattern is very reminiscent of a 
particle on a ring, where we saw that the ground state had no nodes, the 
first and second excited states were degenerate (sine and cosine) and had 
one node, the third and fourth were degenerate with two nodes. The one 
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difference is that, in benzene the fifth excited state is the only one with 
three nodes, and it is non­degenerate. 
4) There are 6 π electrons in benzene, so we doubly occupy the first 3 MOs: 

E6=α−2β 

E4=E5=α−β 

E2=E3=α+β 

E1=α+2β 

5) The Hückel energy of benzene is then: 
E = 2E + 2E + 2E = 6α + 8β1 2 3 

Now, we get to the interesting part. What does this tell us about the 
bonding in benzene? Well, first we note that benzene is somewhat more 
stable than a typical system with three double bonds would be. If we do 
Hückel theory for ethylene, we find that a single ethylene double bond has 
an energy 

EC=C = 2α + 2β 

Thus, if benzene simply had three double bonds, we would expect it to have a 
total energy of 

E = 3EC=C = 6α + 6β 

which is off by 2β. We recall that β is negative, so that the ππππ­electrons in 
benzene are more stable than a collection of three double bonds. We call 
this aromatic stabilization, and Hückel theory predicts a similar stabilization 
of other cyclic conjugated systems with 4N+2 electrons. This energetic 
stabilization explains in part why benzene is so unreactive as compared to 
other unsaturated hydrocarbons. 

We can go one step further in our analysis and look at the bond order. In 
Hückel theory the bond order can be defined as: 

occ 
µ µOij ≡ ∑ci cj 

µ=1 

This definition incorporates the idea that, if molecular orbital µ has a bond 
between the ith and jth carbons, then the coefficients of the MO on those 
carbons should both have the same sign (e.g. we have pzi + pzj). If the orbital 
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Problem 1. 

Problem 17: Electronic Properties of La2CuO4 559

Solution

1. Like the body-centered cubic cell, the body-centered tetragonal cell has two Bra-
vais lattice points per conventional cell. The latter contains twice the chemical
formula La2CuO4 (see Fig. P17.3a). A possible primitive cell containing the for-
mula La2CuO4 only once is shown in Fig. P17.3b. It is constructed from the
vectors a(−1,0,0), a(0,1,0), and (−a/2,a/2,c/2).

2. 2La and 4O give an even number of electrons per unit cell. However, copper
has an odd number of electrons. The primitive cell thus contains an odd number
of electrons. There will therefore be at least one partially occupied band in an
LCAO calculation and this leads to a metallic state.

3. The square primitive cell in the CuO2 plane containing one Cu atom and two O
atoms is shown in Fig. P17.4a. The square reciprocal lattice of side 2π/a and the
first Brillouin zone are depicted in Fig. P17.4b.

4. The LCAO calculation gives E(kx,ky) = E0 − t0 − 2t1(coskxa + coskya). The
constant energy curves are

coskxa+ coskya = E0− t0−E
2t1

.

These are almost circular curves around k = 0 for E ! E0− t0−2t1 and around
k = (π/a,π/a) for E " E0− t0 +2t1. For one electron per cell, the last filled level
corresponds to a half-filled band, or

E = E0− t0 ,

(a) (b)

Cu

Oxygen

La

c

y

x

z

a

Fig. P17.3 Crystal structure of La2CuO4. (a) Conventional cell containing twice La2CuO4.
(b) Possible primitive cell

1a
1b

1

2a
2b
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(a) (b)

y

x

ky

kx

2  /aπ

Fig. P17.4 (a) Square primitive cell of the CuO2 plane. (b) Square reciprocal lattice and first
Brillouin zone

Fig. P17.5 Constant energy
curves and Fermi surface

π

π210−1−2−π
−π

−2

−1

0

1

2

kya

kxa

which corresponds to

coskxa =−coskya .

This is represented by the square in Fig. P17.5, which would be the Fermi surface
of the corresponding metal.

5. Since neutrons and X rays do not give the same Bragg spots below 300 K,
this suggests that magnetic order occurs at this temperature. The further spots
obtained with neutron diffraction at the four points (±π/a,±π/a) can be used to
determine the reciprocal lattice of the magnetic order. It corresponds to a square
lattice of side π

√
2/a, with area equal to half that of the reciprocal lattice of

the crystal structure (see Fig. P17.6a). The real magnetic lattice thus has a unit
cell of area 2a2, twice that of the crystal lattice. The ground state is therefore
antiferromagnetic with two sublattices.

2

3

4a

3
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ky

ky

kx

kx

2π /a

y

x

(a) (b)

Fig. P17.6 (a) Reciprocal lattice of the magnetic structure. (b) Real space two-sublattice antifer-
romagnetic structure showing the primitive cell (shaded) and the two antiparallel Cu spin states of
the magnetic basis

Since the La3+ and O2− in the LaO planes donate one electron per primitive cell of the atomic
structure to the CuO2 plane, it seems likely that the electronegativity of the oxygen is satisfied
and that the Cu is in a state Cu2+, or 3d9. Therefore, the Cu2+ do carry the magnetic moment.
The antiferromagnetic primitive cell is shown in Fig. P17.6b. This natural hypothesis regarding
magnetism is borne out experimentally by measuring the intensities of the magnetic spots,
which show that the corresponding structure factor is indeed that of Cu. The orientation of
the moments in the unit cell cannot be obtained directly from this data, and are indeed more
difficult to determine experimentally.

6. Replacing xLa3+ by xSr2+ amounts to transferring x fewer electrons per primitive
cell to the CuO2 planes. This seems to be enough to destroy the antiferromagnetic
state and make the system metallic. Whereas one electron was lacking to saturate
the 3d shell of Cu, 1 + x are now lacking. Formally, there are therefore 1− x
electrons or 1+x holes in the last occupied CuO2 band. If we attempt to interpret
this metallic state in a band model with 1− x electrons, this corresponds in the
case x = 0.15 to a curve of constant E with area 0.85/2 times the area of the first
Brillouin zone. This would be roughly the area enclosed by the dotted curve in
Fig. P17.5.

In reality, the compound La2CuO4 is a Mott–Hubbard insulator, and the holes created by
substituting Sr are in fact holes on the oxygens in the planes. We are still a long way from
understanding this type of metallic state, in which a magnetic moment associated with the hole
on the Cu coexists with holes on the oxygen that play a dominant role in electron transport
properties. The many conceptual difficulties sketched here explain in part the considerable
effort required to understand the origins of high-Tc superconductivity.

4b

4

3
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