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Solution to the MID TERM - SOLID STATE PHYSICS 2019

Problem 3

Unit cell of BaTiOg

The X-ray structure factor is given by

— ik ‘Rg __ 2mi(hxqg+kyq+1
S(hkl) — E faetkmen Ra — E fae mi(hzat+kya+iza)
d d

where Ry = (x4, Y4, 24) are the positions of atom d in the unit cell, and
fa it the corresponding form factor (which we take to be proportional
to Zg). If we are interested in (00]) we set h = k = 0 and obtain

Swory = fBa+ (1) fri + [L+2(=1)"] fo

The Bragg peak intensity is proportional to the square of the structure
factor (times a multiplicity factor, but the multiplicity for all (001) are
the same!), thus we obtain

loo2 _ (fBa + fri +3f0)? ~ 154

Too1 (fsa — fri — fo)’

In reality the form factor depends on the scattering vector, and the
variation is different from each atom, so this is just an approximation.
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1) Each of the MOs is a linear combination of 6 pz orbitals

2) It is relatively easy to work out the Hamiltonian. It is a 6-by-6 matrix.
The first rule implies that every diagonal element is o

a
(44

The only other non-zero terms will be between neighbors: 1-2, 2-3, 3-4, 4-5,
5-6 and 6-1. All these elements are equal to 4

All the rest of the elements involve non-nearest

a p B
B a B
B a B
B a B
B a p
B B«
neighbors and so are zero:
a B 0 0 0 B
B a B 0 0 0
0 8 a B 0 0
00 8 a B 0
000 B ap
B0 0 0 B «
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3) Finding the eigenvalues of H is easy with a computer. We find 4 distinct
energies:
Ee=a-20

Es=Es= af

Ei=a+2B

The lowest and highest energies are non-degenerate. The second/third and
fourth/fifth energies are degenerate with one another. With a little more
work we can get the eigenvectors. They are:

+1 +1 +1 +1 +1 +1

-1 -2 0 0 +2 +1
N R N IOFRIS U B 8 PR 1 o N AUER B o N EUCRUS B s N RS B
Je!| -1 Ji2| +1 Ja | +1 Ja| -1 Ji2| -1 J6 ! +1
+1 -2 0 0 -2 +1

-1 +1 -1 +1 -1 +1

The pictures at the bottom illustrate the MOs by denting positive (negative)
lobes by circles whose size corresponds to the weight of that particular p;,
orbital in the MO. The resulting phase pattern is very reminiscent of a
particle on a ring, where we saw that the ground state had no nodes, the
first and second excited states were degenerate (sine and cosine) and had
one node, the third and fourth were degenerate with two nodes. The one
difference is that, in benzene the fifth excited state is the only one with
three nodes, and it is non-degenerate.

4) There are 6 m electrons in benzene, so we doubly occupy the first 3 MOs:

Ee=a—-20
Es=Es=a-f

bl g
Ei=a+28 | ?

5) The Hiickel energy of benzene is then:
E=2E +2E, +2E, =6a+8p
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Problem 1.

1. Like the body-centered cubic cell, the body-centered tetragonal cell has two Bra-
vais lattice points per conventional cell. The latter contains twice the chemical
formula La;CuQOy4 (see Fig. 1a ). A possible primitive cell containing the for-
mula LapCuO4 only once is shown in Fig. 1b . It is constructed from the
vectors a(—1,0,0), a(0,1,0), and (—a/2,a/2,c/2).

2. 2La and 40 give an even number of electrons per unit cell. However, copper
has an odd number of electrons. The primitive cell thus contains an odd number
of electrons. There will therefore be at least one partially occupied band in an
LCAQO calculation and this leads to a metallic state.

3. The square primitive cell in the CuO; plane containing one Cu atom and two O
atoms is shown in Fig. 2a . The square reciprocal lattice of side 2 /a and the
first Brillouin zone are depicted in Fig. 2b

4. The LCAO calculation gives E(ky,ky) = Eo — to — 2t1(coskya + coskya). The
constant energy curves are

Eo—ty—E

coskya+coskya =
21

These are almost circular curves around k = 0 for E 2 Ey — ty — 2¢; and around
k= (;t/a,m/a) for E < Ey — to+ 2t;. For one electron per cell, the last filled level
corresponds to a half-filled band, or

e Cu

@ Oxygen

OlLa
)

(b)

Fig. 1 Crystal structure of LapyCuQOg4. (a) Conventional cell containing twice Lay;CuOj.
(b) Possible primitive cell
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Fig. 2 (a) Square primitive cell of the CuO; plane. (b) Square reciprocal lattice and first

Brillouin zone

Fig. 3 Constant  energy
curves and Fermi surface

which corresponds to

coskya = —coskya .

This is represented by the square in Fig. 3 which would be the Fermi surface
of the corresponding metal.

5. Since neutrons and X rays do not give the same Bragg spots below 300 K,
this suggests that magnetic order occurs at this temperature. The further spots
obtained with neutron diffraction at the four points (£ /a,+m/a) can be used to
determine the reciprocal lattice of the magnetic order. It corresponds to a square
lattice of side 7+/2/a, with area equal to half that of the reciprocal lattice of
the crystal structure (see Fig. 4a ). The real magnetic lattice thus has a unit
cell of area 242, twice that of the crystal lattice. The ground state is therefore
antiferromagnetic with two sublattices.
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(a) (b)

Fig. 4 (a) Reciprocal lattice of the magnetic structure. (b) Real space two-sublattice antifer-
romagnetic structure showing the primitive cell (shaded) and the two antiparallel Cu spin states of
the magnetic basis

Since the La’>* and O?~ in the LaO planes donate one electron per primitive cell of the atomic
structure to the CuO» plane, it seems likely that the electronegativity of the oxygen is satisfied
and that the Cu is in a state Cu®*, or 3d°. Therefore, the Cu?>* do carry the magnetic moment.
The antiferromagnetic primitive cell is shown in Fig. 40 . This natural hypothesis regarding
magnetism is borne out experimentally by measuring the intensities of the magnetic spots,
which show that the corresponding structure factor is indeed that of Cu. The orientation of
the moments in the unit cell cannot be obtained directly from this data, and are indeed more
difficult to determine experimentally.

6. Replacing xLa>* by xSr>* amounts to transferring x fewer electrons per primitive
cell to the CuO; planes. This seems to be enough to destroy the antiferromagnetic
state and make the system metallic. Whereas one electron was lacking to saturate
the 3d shell of Cu, 1+ x are now lacking. Formally, there are therefore 1 —x
electrons or 1+ x holes in the last occupied CuO, band. If we attempt to interpret
this metallic state in a band model with 1 — x electrons, this corresponds in the
case x = (.15 to a curve of constant E with area 0.85/2 times the area of the first
Brillouin zone. This would be roughly the area enclosed by the dotted curve in
Fig. 3

In reality, the compound LayCuOy is a Mott—Hubbard insulator, and the holes created by
substituting Sr are in fact holes on the oxygens in the planes. We are still a long way from
understanding this type of metallic state, in which a magnetic moment associated with the hole
on the Cu coexists with holes on the oxygen that play a dominant role in electron transport
properties. The many conceptual difficulties sketched here explain in part the considerable
effort required to understand the origins of high-7¢. superconductivity.
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